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Yangtze is longest river in China and the 

third longest in the world after the Amazon 

and Nile.  

The 'Three Gorges Dam' on the Yangtze 

will be the largest hydroelectric dam in the 

world and the dam could cost over 70 billiion 

US dollar. 

Hydro power must be one of the oldest 

methods of producing power. Huge power 

generators are placed inside dams. Water 

flowing through the dams spin turbine blades 

which are connected to generators. 
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 6.1 Introduction. 

The terms 'work', 'energy' and 'power' are frequently used in everyday language. A farmer 

clearing weeds in his field is said to be working hard. A woman carrying water from a well to 

her house is said to be working. In a drought affected region she may be required to carry it 

over large distances. If she can do so, she is said to have a large stamina or energy. Energy is 

thus the capacity to do work. The term power is usually associated with speed. In karate, a 

powerful punch is one delivered at great speed. In physics we shall define these terms very 

precisely. We shall find that there is at best a loose correlation between the physical definitions 

and the physiological pictures these terms generate in our minds.  

Work is said to be done when a force applied on the body displaces the body through a 

certain distance in the direction of force. 

 6.2 Work Done by a Constant Force. 

Let a constant force F  be applied on the body such that it makes an angle  with the 

horizontal and body is displaced through a distance s  

By resolving force F  into two components :  

(i) F cos  in the direction of displacement of the body.  

(ii) F sin  in the perpendicular direction of displacement of the 

body.  

Since body is being displaced in the direction of cosF , therefore work done by the force in 

displacing the body through a distance s is given by  

   cos)cos( FssFW   

or  sFW .   

Thus work done by a force is equal to the scalar or dot product of the force and the 

displacement of the body. 

F sin 

 

F cos 

s  

 

F 
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If a number of force nFFFF ......,, 321  are acting on a body and it shifts from position vector 

1
r  to position vector 

2r  then ).()....(
12321 rrFFFFW n   

 6.3 Nature of Work Done. 
 

Positive work Negative work 

Positive work means that force (or its 

component) is parallel to displacement  

 

 

       oo 900    

 

The positive work signifies that the external 

force favours the motion of the body. 

Negative work means that force (or its 

component) is opposite to displacement i.e.  

 

 

      oo 18090    

 

The negative work signifies that the external 

force opposes the motion of the body.  

Example: (i) When a person lifts a body from the 

ground, the work done by the (upward) lifting 

force is positive 

 

 

 

 

 

(ii) When a lawn roller is pulled by applying a 

force along the handle at an acute angle, work 

done by the applied force is positive. 

 

 

 

(iii) When a spring is stretched, work done by the 

external (stretching) force is positive. 

 

 

 

Example: (i) When a person lifts a body from the 

ground, the work done by the (downward) force 

of gravity is negative. 

 

 

 

 

(ii) When a body is made to slide over a rough 

surface, the work done by the frictional force is 

negative. 

 

 

 

 

(iii) When a positive charge is moved towards 

another positive charge. The work done by 

electrostatic force between them is negative. 

Maximum work : sFW max    Minimum work : sFW min   

Direction of 
motion 

 

F  

s  
 

F  

s  

Direction of 
motion 

s  

F  

F  

s  

s  F  

s  

gF  

s  

manF  

+ + s  

F  
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When  1maximumcos    i.e. o0  

It means force does maximum work when angle 

between force and displacement is zero. 

When 1minimumcos   i.e o180  

It means force does minimum [maximum 

negative] work when angle between force and 

displacement is 180o. 

 

 
 

Zero work 

Under three condition, work done becomes zero 0cos  FsW  

(1) If the force is perpendicular to the displacement ][ sF  

Example: (i)  When a coolie travels on a horizontal platform 

with a load on his head, work done against 
gravity by the coolie is zero. 

(ii) When a body moves in a circle the work done by 
the centripetal force is always zero. 

(iii) In case of motion of a charged particle in a 

magnetic field as force )]([ BvqF   is always 

perpendicular to motion, work done by this force 
is always zero. 

(2) If there is no displacement [s = 0] 

Example: (i) When a person tries to displace a wall or heavy 
stone by applying a force then it does not move, 
the work done is zero. 

(ii) A weight lifter does work in lifting the weight 
off the ground but does not work in holding it up. 

(3) If there is no force acting on the body [F = 0] 

Example: Motion of an isolated body in free space. 

  

Sample Problems based on work done by constant force 

Problem 1.  A body of mass 5 kg is placed at the origin, and can move only on the x-axis. A force of 10 N 

is acting on it in a direction making an angle of o60 with the x-axis and displaces it along 

the x-axis by 4 metres. The work done by the force is        [MP PET 2003] 

 (a) 2.5 J (b) 7.25 J (c) 40 J (d) 20 J 

Solution : (d) Work done JsFsF o 2060cos410cos.  


 

Problem 2.  A force )ˆ3ˆ5( jiF  N is applied over a particle which displaces it from its origin to the point 

)ˆ1ˆ2( jir   metres. The work done on the particle is     [MP PMT 1995; RPET 2003] 

 (a) –7 J (b) +13 J (c) +7 J (d) +11 J 

Solution : (c) Work done JjijirF 7310)ˆ2̂).(ˆ35(. 


 

gF  

s  

0s  

F  
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Problem 3.  A horizontal force of 5 N is required to maintain a velocity of 2 m/s for a block of 10 kg 

mass sliding over a rough surface. The work done by this force in one minute is   

 (a) 600 J  (b) 60 J (c) 6 J (d) 6000 J 

Solution : (a) Work done = Force  displacement = F  s = F  v  t = 5  2  60 = 600 J.  

Problem 4.  A box of mass 1 kg is pulled on a horizontal plane of length 1 m by a force of 8 N then it is 

raised vertically to a height of 2m, the net work done is     

 (a) 28 J (b) 8 J (c) 18 J (d) None of above  

Solution : (a) Work done to displace it horizontally = F  s = 8  1 = 8 J 

 Work done to raise it vertically F  s = mgh = 1  10  2 = 20 J 

  Net work done = 8 +20 = 28 J  

Problem 5.  A 10 kg satellite completes one revolution around the earth at a height of 100 km in 108 

minutes. The work done by the gravitational force of earth will be   

 (a) J10100108   (b) J
100

10108 
 (c) J

108

10100 
 (d) Zero 

Solution : (d) Work done by centripetal force in circular motion is always equal to zero. 

 6.4 Work Done by a Variable Force. 

When the magnitude and direction of a force varies with position, the work done by such a 

force for an infinitesimal displacement is given by  sdFdW .  

The total work done in going from A to B as shown in the figure is 

 
B

A

B

A
dsFsdFW )cos(.   

In terms of rectangular component kFjFiFF zyx
ˆˆˆ   

   kdzjdyidxsd ˆˆˆ   

)ˆˆˆ.()ˆˆˆ( kdzjdyidxkFjFiFW
B

A
zyx    

or   
B

A

B

A

B

A

z

z
z

x

x

y

y
yx dzFdyFdxFW  

Sample Problems based on work done by variable force 

Problem 6.  A position dependent force NxxF )327( 2


 acts on a small abject of mass 2 kg to 

displace it from 0x  to mx 5 . The work done in joule is      [CBSE PMT 1994] 

 (a) 70 J  (b) 270 J (c) 35 J (d)  135 J 

Solution : (d) Work done JxxxdxxxdxF
x

x
1351252535]7[)327( 5

0
32

5

0

22

1

   

Problem 7.  A particle moves under the effect of a force F = Cx from x = 0 to x = x1. The work done in 

the process is  

A 

B 

ds 

F 
 
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[CPMT 1982] 

(a) 2
1Cx  (b) 2

1
2

1
Cx  (c) 

1
Cx  (d)  Zero  

Solution : (b) Work done 2
1

0

2

0 2

1

2

1

12

1

xC
x

CdxCxdxF

x
xx

x













   

Problem 8.  The vessels A and B of equal volume and weight are immersed in water to a depth h. The 

vessel A has an opening at the bottom through which water can enter. If the work done in 

immersing A and B are AW and BW  respectively, then     

 (a) BA WW   (b) BA WW   (c) BA WW   (d)  BA WW   

Solution : (b) When the vessels are immersed in water, work has to be done against up-thrust force but 

due to opening at the bottom in vessel A, up-thrust force goes on decreasing. So work done 

will be less in this case. 

Problem 9.  Work done in time t on a body of mass m which is accelerated from rest to a speed v in time 

1t  as a function of time t is given by  

 (a) 2

12

1
t

t

v
m  (b) 2

1

t
t

v
m  (c) 2

2

12

1
t

t

mv










 (d)  2

2
1

2

2

1
t

t

v
m  

Solution : (d) Work done = F.s = 






 2

2

1
. tama  22

2

1
tam  2

2

12

1
t

t

v
m 










         








 given )( onacceleratiAs

1t

v
a  

 6.5 Dimension and Units of Work. 

Dimension :  As work =  Force  displacement 

              [W] = [Force]  [Displacement]  

             ][][][ 222   TMLLMLT  

Units :  The units of work are of two types 

Absolute units Gravitational units 

Joule [S.I.]: Work done is said to be one Joule, when 
1 Newton force displaces the body through 1 meter 
in its own direction. 

 From W = F.s  

  1 Joule = 1 Newton  1 metre  

kg-m [S.I.]: 1 Kg-m  of work is done when a force 
of 1kg-wt. displaces the body through 1m in its 
own direction. 

 From    W = F s  

 1 kg-m = 1 kg-wt  1 metre 

            = 9.81 N  1 metre = 9.81 Joule 

Erg [C.G.S.] : Work done is said to be one erg 
when 1 dyne force displaces the body through 1 cm 
in its own direction. 

 From W = F s  

       cmDyneErg 111   

Relation between Joule and erg  

 1 Joule = 1 N  1 m = 105 dyne  102 cm  

  = 107 dyne  cm = 107 Erg  

gm-cm [C.G.S.] :  1 gm-cm of work is done when a 
force of 1gm-wt displaces the body through 1cm in 
its own direction. 

 From W = F s 

 1 gm-cm = 1gm-wt  1cm. = 981 dyne  1cm  

                            = 981 erg  
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 6.6 Work Done Calculation by Force Displacement Graph. 

Let a body, whose initial position is i
x , is acted upon by a variable force (whose magnitude 

is changing continuously) and consequently the body acquires its final position 
f

x . 

Let F  be the average value of variable force within the interval dx from position x to (x + 
dx) i.e. for small displacement dx. The work done will be the area of the shaded strip of width 
dx. The work done on the body in displacing it from position i

x  to 
f

x  will be equal to the sum of 

areas of all the such strips  

dxFdW   

 
f

i

f

i

x

x

x

x
dxFdWW  


f

i

x

x
dxW )widthofstripofArea(  

fi xxW andBetweencurveunderArea   

i.e. Area under force displacement curve with proper algebraic sign represents work done 
by the force. 

Sample problems based on force displacement graph 

Problem 10.  A 10 kg mass moves along x-axis. Its acceleration as a function of its position is shown in 

the figure. What is the total work done on the mass by the force as the mass moves from 

0x  to 8x cm  [AMU (Med.) 2000] 

 

(a) J2108   

(b) J21016   

(c) J4104   

(d)  J3106.1   

Solution : (a) Work done on the mass = mass  covered area between the graph and displacement axis on 

a-t graph. 

                                = 22 1020)108(
2

1
10    = 2108   J. 

Problem 11.  The relationship between force and position is shown in the figure given (in one 

dimensional case). The work done by the force in displacing a body from 1x  cm to 

5x cm is    [CPMT 1976] 

 

(a) 20 ergs 

(b) 60 ergs 

F

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(c) 70 ergs 

(d)  700 ergs  

Solution : (a) Work done = Covered area on force-displacement graph = 1  10 + 1  20 – 1  20 + 1  10 = 

20 erg. 

Problem 12.  The graph between the resistive force F acting on a body and the distance covered by the 

body is shown in the figure. The mass of the body is 25 kg and initial velocity is 2 m/s. 

When the distance covered by the body is m5 , its kinetic energy would be  

 

(a) 50 J  

(b) 40 J 

(c) 20 J  

(d)  10 J  

Solution : (d) Initial kinetic energy of the body 50)2(25
2

1

2

1 22  mu J 

 Final kinetic energy = Initial energy – work done against resistive force (Area between graph 

and displacement axis) 

                          104050204
2

1
50  J. 

 

 6.7 Work Done in Conservative and Non-Conservative Field . 

(1) In conservative field work done by the force (line integral of the force i.e.  ldF. ) is 

independent of the path followed between any two points.  

  

III PathII PathI Path

BABABA WWW    

or  

III PathII PathI Path

...   ldFldFldF  

(2) In conservative field work done by the force (line integral of the force i.e.  ldF. ) over a 

closed path/loop is zero. 

  0
 ABBA

WW  

or     0. ldF  

 

 

Conservative force : The forces of these type of fields are known as conservative forces. 

A B 
I 

II 

III 

A B 

0 1 2 4 3 

10 

20 

x (m) 

F
 

(N
e
w

to
n

) 
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Example : Electrostatic forces, gravitational forces, elastic forces, magnetic forces etc and 

all the central forces are conservative in nature.  

If a body of man m lifted to height h from the ground level by different path as shown in 

the figure  

 

 

 

 

 

 

Work done through different paths  

   mghhmgsFWI  .  

   mgh
h

mglmgsFWII 



sin

sinsin.  

   4321 000 mghmghmghmghWIII  mghhhhhmg  )( 4321   

   mghsdFWIV   .   

It is clear that mghWWWW IVIIIIII  .  

Further if the body is brought back to its initial position A, similar amount of work (energy) 
is released from the system it means mghWAB    

and  mghWBA  . 

Hence the net work done against gravity over a round strip is zero.  

  BAABNet WWW   

          0)(  mghmgh  

i.e. the gravitational force is conservative in nature.  

Non-conservative forces : A force is said to be non-conservative if work done by or against 

the force in moving a body from one position to another, depends on the path followed between 

these two positions and for complete cycle this work done can never be a zero.  

Example:  Frictional force, Viscous force, Airdrag etc.  

If a body is moved from position A to another position B on a rough table, work done 

against frictional force shall depends on the length of the path between A and B and not only on 

the position A and B.  

  mgsWAB   

Further if the body is brought back to its initial position A, work has to be done against the 

F 

R  
s  

B B B B 

A A A A 

I II III IV 

 

h l 
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frictional force, which always opposes the motion. Hence the net work done against the friction 

over a round trip is not zero. 

  .mgsWBA   

.02  mgsmgsmgsWWW BAABNet   

i.e. the friction is a non-conservative force. 

Sample problems based on work done in conservative and non-conservative field 

Problem 13.  If 21 , WW  and 3W  represent the work done in moving a particle from A to B along three 

different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass 

m, find the correct relation  

 

(a) 321 WWW   

(b) 321 WWW   

(c) 321 WWW   

(d)  312 WWW   

Solution : (b) As gravitational field is conservative in nature. So work done in moving a particle from A to 

B does not depends upon the path followed by the body. It always remains same. 

Problem 14.  A particle of mass 0.01 kg travels along a curve with velocity given by ki ˆ16ˆ4  ms-1. After 

some time, its velocity becomes 1ˆ20ˆ8  msji  due to the action of a conservative force. The 

work done on particle during this interval of time is      

 (a) 0.32 J (b) 6.9 J (c) 9.6 J (d) 0.96 J 

Solution : (d) 272164 22
1 v  and 464208 22

2 v  

 Work done = Increase in kinetic energy Jvvm 96.0]272464[01.0
2

1
][

2

1 2
1

2
2  . 

 6.8 Work Depends on Frame of Reference. 

With change of frame of reference (inertial) force does not change while displacement may 

change. So the work done by a force will be different in different frames. 

Examples : (1) If a porter with a suitcase on his head moves 

up a staircase, work done by the upward lifting force relative to 

him will be zero (as displacement relative to him is zero) while 

relative to a person on the ground will be mgh.  

(2) If a person is pushing a box inside a moving train, the 

work done in the frame of train will sF.  while in the frame of 

earth will be )(.
0

ssF   where 
0

s  is the displacement of the 

train relative to the ground. 

h 

1 

3 

2 

B 

A 

m 
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 6.9 Energy. 

The energy of a body is defined as its capacity for doing work.  

(1) Since energy of a body is the total quantity of work done therefore it is a scalar 

quantity. 

(2) Dimension: ][ 22 TML  it is same as that of work or torque. 

(3) Units : Joule [S.I.], erg [C.G.S.] 

Practical units : electron volt (eV), Kilowatt hour (KWh), Calories (Cal) 

Relation between different units:  1 Joule = 710  erg  

     1 eV  = 19106.1   Joule  

     1 KWh = 6106.3  Joule  

     1 Calorie = Joule18.4   

(4) Mass energy equivalence : Einstein’s special theory of relativity shows that material particle 

itself is a form of energy. 

The relation between the mass of a particle m and its equivalent energy is given as  

   2mcE     where c = velocity of light in vacuum. 

If kgamum 271067.11   then JouleMeVE 10105.1931  . 

If kgm 1  then JouleE 16109  

Examples : (i) Annihilation of matter when an electron )( e  and a positron )( e  combine with 

each other, they annihilate or destroy each other. The masses of electron and positron are 
converted into energy. This energy is released in the form of  -rays. 

      ee  

Each    photon has energy = 0.51 MeV.  

Here two   photons  are emitted instead of one   photon to conserve the linear 

momentum. 

(ii) Pair production :  This process is the reverse of annihilation of matter. In this case, a 
photon )(  having energy equal to 1.02 MeV interacts with a nucleus and give rise to electron 

)( e and positron )( e . This energy is converted into matter. 

 

 

(iii) Nuclear bomb : When the nucleus is split up due to mass defect (The difference in the 

mass of nucleons and the nucleus) energy is released in the form of  -radiations  and  heat.  

(5) Various forms of energy  

(i) Mechanical energy (Kinetic and Potential)  (ii) Chemical energy   (iii) 

Electrical energy 

(iv) Magnetic energy    (v) Nuclear energy  (vi) Sound energy 

e– + e+ 

 (Photon) 
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(vii) Light energy     (viii) Heat energy 

(6) Transformation of energy : Conversion of energy from one form to another is possible 

through various devices and processes.   

 

Mechanical  electrical Light  Electrical Chemical  electrical 

 
 
 
 
 
Dynamo 
 
 

 
 
 
 
 
Photoelectric 
cell 

 
 
 
 
 
Primary  
cell 

Chemical  heat Sounds  Electrical Heat  electrical 

 

 
 
 
 
Coal  
Burning 
 

 

 
 
 
 
 
Microphone 

 

 
 
 
 
 
Thermo-couple 

Heat  Mechanical  Electrical  Mechanical Electrical  Heat 

 
 

 
 
 
 
Engine 
 

 
 

 
 
 
 
Motor 

 
 

 
 
 
 
Heater 

Electrical  Sound Electrical  Chemical Electrical  Light 

 
 
 

 
 
Speaker 
 
 

 
 
 

 
 
Voltameter 

 
 
 

 
 
Bulb 

 

 

Sample problems based on energy 

Problem 15.  A particle of mass ‘m’ and charge ‘q’ is accelerated through a potential difference of ‘V’ volt. 

Its energy is  

[UPSEAT 2001] 

N S – + 
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(a) qV (b) mqV (c) V
m

q








 (d)  

mV

q
 

Solution : (a) Energy of charged particle = charge  potential difference = qV  

Problem 16.  An ice cream has a marked value of 700 kcal. How many kilowatt hour of energy will it 

deliver to the body as it is digested        [AMU (Med.) 2000] 

(a) 0.81 kWh (b) 0.90 kWh (c) 1.11 kWh (d)  0.71 kWh  

Solution : (a) 700 k cal = 2.410700 3  J kWh81.0
106.3

2.410700
6

3





                 [As kWhJ 1106.3 6  ] 

Problem 17.  A metallic wire of length L metres extends by l metres when stretched by suspending a 

weight Mg to it. The mechanical energy stored in the wire is  

(a) Mgl2  (b) Mgl  (c) 
2

Mgl
 (d)  

4

Mgl
       

Solution : (c) Elastic potential energy stored in wire 
22

1 Mgl
FxU  . 

 6.10 Kinetic Energy. 

The energy possessed by a body by virtue of its motion is called kinetic energy.  

Examples : (i) Flowing water possesses kinetic energy which is used to run the water mills. 

(ii) Moving vehicle possesses kinetic energy. 

(iii) Moving air (i.e. wind) possesses kinetic energy which is used to run wind mills. 

(iv) The hammer possesses kinetic energy which is used to drive the nails in wood. 

(v) A bullet fired from the gun has kinetic energy and due to this energy the bullet 

penetrates into a target. 

(1) Expression for kinetic energy : Let  

m = mass of the body,    u = Initial velocity of the body (= 0) 

F = Force acting on the body,  a = Acceleration of the body 

s = Distance travelled by the body,   v = Final velocity of the body 

From asuv 222   

     asv 202    
a

v
s

2

2

  

Since the displacement of the body is in the direction of the applied force, then work done 

by the force is  

   sFW 
a

v
ma

2

2

  

   2

2

1
mvW   

This work done appears as the kinetic energy of the body 2

2

1
mvWKE   

F 

s 

u = 

0 

v 
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(2) Calculus method : Let a body is initially at rest and force F  is applied on the body to 

displace it through sd  along its own direction then small work done  

      dsFsdFdW  .  

              dsamdW       [As F = ma] 

              ds
dt

dv
mdW       










dt

dv
aAs  

              
dt

ds
mdvdW .   

              dvvmdW     …….(i)  







 v

dt

ds
As  

Therefore work done on the body in order to increase its velocity from zero to v is given by  

     









v v
v

v
mdvvmdvmvW

0 0
0

2

2
 2

2

1
mv  

This work done appears as the kinetic energy of the body 2

2

1
mvKE  . 

In vector form ).(
2

1
vvmKE    

As m and vv .  are always positive, kinetic energy is always positive scalar i.e. kinetic energy 

can never be negative. 

(3) Kinetic energy depends on frame of reference : The kinetic energy of a person of mass 

m, sitting in a train moving with speed v, is zero in the frame  of train but 2

2

1
mv  in the frame of 

the earth. 

(4) Kinetic energy according to relativity : As we know 2

2

1
mvE  .  

But this formula is valid only for (v << c) If v is comparable to c (speed of light in free 

space = sm /103 8 ) then according to Einstein theory of relativity  

   2

22

2

)/(1
mc

cv

mc
E 


  

(5) Work-energy theorem: From equation (i)  dvmvdW  . 

Work done on the body in order to increase its velocity from u to v is given by  

    
v

u
dvmvW   










v

u

v

u

v
mdvvm

2

2

 

   ][
2

1 22 uvmW   
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           Work done = change in kinetic energy 

   EW   

This is work energy theorem, it states that work done by a force acting on a body is equal 

to the change produced in the kinetic energy of the body. 

This theorem is valid for a system in presence of all types of forces (external or internal, 

conservative or non-conservative). 

If kinetic energy of the body increases, work is positive i.e. body moves in the direction of 

the force (or field) and if kinetic energy decreases work will be negative and object will move 

opposite to the force (or field). 

Examples : (i) In case of vertical motion of body under gravity when the body is projected 

up, force of gravity is opposite to motion and so kinetic energy of the body decreases and when 

it falls down, force of gravity is in the direction of motion so kinetic energy increases.  

(ii) When a body moves on a rough horizontal surface, as force of friction acts opposite to 

motion, kinetic energy will decrease and the decrease in kinetic energy is equal to the work 

done against friction.     

(6) Relation of kinetic energy with linear momentum: As we know  

   22

2

1

2

1
v

v

P
mvE 








    [As mvP  ] 

   PvE
2

1
    

or   
m

P
E

2

2

     









m

P
vAs  

So we can say that kinetic energy 
m

p
PvmvE

22

1

2

1 2

2   

and    Momentum P mE
v

E
2

2
 .  

From above relation it is clear that a body can not have kinetic energy without having 

momentum and vice-versa.  

(7) Various graphs of kinetic energy  

 

 

  E  v2  
   m = constant 

 

 

 

    2PE   

    m = constant 

E 

v v 

E 
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m

E
1

  

    P = constant 

 

 

    EP   

    m = constant 

 

Sample problem based on kinetic energy 

Problem 18.  Consider the following two statements  

1. Linear momentum of a system of particles is zero 

2. Kinetic energy of a system of particles is zero 

Then        [AIEEE 2003] 

 (a) 1 implies 2 and 2 implies 1  (b) 1 does not imply 2 and 2 

does not imply 1 

 (c) 1 implies 2 but 2 does not imply 1 (d)  1 does not imply 2 but 2 

implies 1 

Solution : (d) Momentum is a vector quantity whereas kinetic energy is a scalar quantity. If the kinetic 

energy of a system is zero then linear momentum definitely will be zero but if the 

momentum of a system is zero then kinetic energy may or may not be zero. 

Problem 19.  A running man has half the kinetic energy of that of a boy of half of his mass. The man 

speeds up by 1 m/s so as to have same K.E. as that of boy. The original speed of the man 

will be     [Pb. PMT 2001] 

 (a) sm /2  (b) sm /)12(   (c) sm /
)12(

1


 (d)  sm /

2

1
 

Solution : (c) Let m = mass of the boy, M = mass of the man, v = velocity of the boy and V = velocity of 

the man 

Initial kinetic energy of man 







 22

2

1

2

1

2

1
vmMV 
















 2

22

1

2

1
v

M
              








 given 

2
As

M
m  

  
4

2
2 v

V 
2

v
V    .....(i)  

When the man speeds up by 1 m/s ,   222

22

1

2

1
)1(

2

1
v

M
vmVM 








     

2
)1(

2
2 v

V    

 
2

1
v

V    .....(ii) 

From (i) and (ii)  we get speed of the man smV /
12

1


 .  

Problem 20. A body of mass 10 kg at rest is acted upon simultaneously by two forces 4N and 3N at right 

angles to each other. The kinetic energy of the body at the end of 10 sec is     [Kerala (Engg.) 2001] 

E 

m 

P 

E  
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 (a) 100 J (b) 300 J (c) 50 J (d)  125 J 

Solution : (d) As the forces are working at right angle to each other therefore net force on the body 

NF 534 22   

Kinetic energy of the body = work done = F  s 

22

2

1

2

1
t

m

F
FtaF 








 125)10(

10

5

2

1
5 2 








 J. 

Problem 21.  If the momentum of a body increases by 0.01%, its kinetic energy will increase by    [MP PET 2001] 

(a) 0.01% (b) 0.02 % (c) 0.04 % (d)  0.08 % 

Solution : (b) Kinetic energy 
m

P
E

2

2

    2PE   

 Percentage increase in kinetic energy = 2(% increase in momentum)             [If change is 

very small]  

                                                     = 2(0.01%) = 0.02%. 

Problem 22.  If the momentum of a body is increased by 100 %, then the percentage increase in the 

kinetic energy is    

  [NCERT 1990; BHU 1999; Pb. PMT 1999; CPMT 1999, 2000; CBSE PMT 2001] 

(a) 150 % (b) 200 % (c) 225 % (d)  300 % 

Solution : (d) 
m

P
E

2

2

   4
2

22

1

2

1

2 




















P

P

P

P

E

E
 

12 4 EE  3003 111  EEE % of 1E . 

Problem 23.  A body of mass 5 kg is moving with a momentum of 10 kg-m/s. A force of 0.2 N acts on it in 

the direction of motion of the body for 10 seconds. The increase in its kinetic energy is       [MP PET 1999] 

(a) 2.8 J (b) 3.2 J (c) 3.8 J (d)  4.4 J 

Solution : (d)  Change in momentum tFPP  12    smkgtFPP /-12102.01012   

Increase in kinetic energy ][
2

1 2
1

2
2 PP

m
E   .4.4

10

44
]100144[

52

1
])10()12[(

2

1 22 J
m




  

Problem 24.  Two masses of 1g and 9g are moving with equal kinetic energies. The ratio of the 

magnitudes of their respective linear momenta is     [CBSE PMT 1993; CPMT 1995] 

(a) 1 : 9 (b) 9 : 1 (c) 1 : 3 (d)  3 : 1 

Solution : (c) mEP 2   mP   if E = constant . So 
3

1

9

1

2

1

2

1 
m

m

P

P
. 

Problem 25.  A body of mass 2 kg is thrown upward with an energy 490 J. The height at which its kinetic 

energy would become half of its initial kinetic energy will be [ 2/8.9 smg  ] 

(a) 35 m (b) 25 m (c) 12.5 m (d)  10 m  
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Solution : (c) If the kinetic energy would become half, then Potential energy = 
2

1
(Initial kinetic energy) 

 ]490[
2

1
mgh   ]490[

2

1
8.92  h   mh 5.12  

Problem 26.  A 300 g mass has a velocity of )ˆ4ˆ3( ji  m/sec at a certain instant. What is its kinetic energy    

(a) 1.35 J (b) 2.4 J (c) 3.75 J (d)  7.35 J 

Solution : (c) )ˆ4ˆ3( jiv 


      smv /543 22  . So kinetic energy = Jmv 75.3)5(3.0
2

1

2

1 22   

 6.11 Stopping of Vehicle by Retarding Force. 

If a vehicle moves with some initial velocity and due to some retarding force it stops after 

covering some distance after some time. 

(1) Stopping distance :  Let    m = Mass of vehicle,  v  = Velocity,   P = Momentum,  E = 

Kinetic energy  

         F = Stopping force,     x = Stopping distance, t = Stopping time  

Then, in this process stopping force does work on the vehicle and destroy the motion. 

By the work- energy theorem 

   2

2

1
mvKW   

  Stopping force (F)  Distance (x) = Kinetic energy (E) 

  Stopping distance (x) 
)(forceStopping

)(energyKinetic

F

E
    

  
F

mv
x

2

2

         …..(i) 

(2) Stopping time : By the impulse-momentum theorem 

   PtFPtF   

   
F

P
t    

or   
F

mv
t    …..(ii) 

(3) Comparison of stopping distance and time for two vehicles : Two vehicles of masses 

m1 and m2 are moving with velocities v1 and v2 respectively. When they are stopped by the same 

retarding force (F).  

The ratio of their stopping distances 
2
22

2
11

2

1

2

1

vm

vm

E

E

x

x
   

Initial velocity = 
v 

x 

Final velocity = 
0 



 
 

 
 Work, Energy Power, and Collision 49 

and the ratio of their stopping time  
22

11

2

1

2

1

vm

vm

P

P

t

t
  

If vehicles possess same velocities  

v1 = v2 
2

1

2

1

m

m

x

x
  

2

1

2

1

m

m

t

t
  

If vehicle possess same kinetic momentum 

P1 = P2 
1

2
2

2

2

1

2
1

2

1

2

1 2

2 m

m

P

m

m

P

E

E

x

x





























  1

2

1

2

1 
P

P

t

t
 

If vehicle possess same kinetic energy   

E1 = E2 1
2

1

2

1 
E

E

x

x
 

2

1

22

11

2

1

2

1

2

2

m

m

Em

Em

P

P

t

t
  

 

Note :  If vehicle is stopped by friction then  

  Stopping distance 
F

mv

x

2

2

1


ma

mv 2

2

1


g

v

2

2

        ]As[ ga   

Stopping time  
F

mv
t 

gm

mv




g

v


  

Sample problems based on stopping of vehicle 

Problem 27.  Two carts on horizontal straight rails are pushed apart by an explosion of a powder charge 

Q placed between the carts. Suppose the coefficients of friction between the carts and rails 

are identical. If the 200 kg cart travels a distance of 36 metres and stops, the distance 

covered by the cart weighing 300 kg is  [CPMT 1989] 

 

(a) 32 metres   

(b) 24 metres 

(c) 16 metres 

(d)  12 metres  

Solution : (c) Kinetic energy of cart will goes against friction.  smg
m

P
E  

2

2

  
2

2

2 gm

P
s


  

As the two carts pushed apart by an explosion therefore they possess same linear momentum 

and coefficient of friction is same for both carts (given). Therefore the distance covered by 

the cart before coming to rest is given by 

  
2

1

m
s       metresS

m

m

s

s
1636

9

4

9

4

300

200
2

22

2

1

1

2 


















 . 

Q 

200 

kg 

300 kg 
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Problem 28.  An unloaded bus and a loaded bus are both moving with the same kinetic energy. The mass 

of the latter is twice that of the former. Brakes are applied to both, so as to exert equal 

retarding force. If 1x and 2x be the distance covered by the two buses respectively before 

coming to a stop, then    

(a) 21 xx   (b) 212 xx   (c) 214 xx   (d)  218 xx   

Solution : (a) If the vehicle stops by retarding force then the ratio of stopping distance 
2

1

2

1

E

E

x

x
 . 

 But in the given problem kinetic energy of bus and car are given same i.e. E1 = E2.  x1 = x2 .  

Problem 29.  A bus can be stopped by applying a retarding force F when it is moving with a speed v on a 

level road. The distance covered by it before coming to rest is s. If the load of the bus 

increases by 50 % because of passengers, for the same speed and same retarding force, the 

distance covered by the bus to come to rest shall be 

(a) 1.5 s (b) 2 s (c) 1 s (d)  2.5 s 

Solution : (a) Retarding force (F)  distance covered (x) = Kinetic energy 






 2

2

1
mv  

If v and F are constants then x  m      5.1
5.1

1

2

1

2 
m

m

m

m

x

x
  x2 = 1.5 s. 

Problem 30.  A vehicle is moving on a rough horizontal road with velocity v. The stopping distance will 

be directly proportional to  

(a) v  (b) v (c) 2v  (d)  3v  

Solution : (c) As 
a

v
s

2

2

   2vs  . 

 6.12 Potential Energy. 

Potential energy is defined only for conservative forces. In the space occupied by 

conservative forces every point is associated with certain energy which is called the energy of 

position or potential energy. Potential energy generally are of three types : Elastic potential 

energy, Electric potential energy and Gravitational potential energy etc. 

(1) Change in potential energy : Change in potential energy between any two points is 

defined in the terms of the work done by the associated conservative  force in displacing the 

particle between these two points without any change in kinetic energy.    

    
2

1

.12

r

r
WrdFUU


  ……(i) 

We can define a unique value of potential energy only by assigning some arbitrary value to 

a fixed point called the reference point. Whenever and wherever possible, we take the reference 

point at infinite and assume potential energy to be zero there, i.e. if take 1r  and rr 2  then 

from equation (i) 
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    
r

WrdFU


.   

In case of conservative force (field) potential energy is equal to negative of work done in 

shifting the body from reference position to given position.  

This is why in shifting a particle in a conservative field (say gravitational or electric), if the 

particle moves opposite to the field, work done by the field will be negative and so change in 

potential energy will be positive i.e. potential energy will increase. When the particle moves in 

the direction of field, work will be positive and change in potential energy will be negative i.e. 

potential energy will decrease. 

(2) Three dimensional formula for potential energy: For only conservative fields F


 

equals the negative gradient )( 


 of the potential energy. 

So  UF 


    (


 read as Del operator or Nabla operator and 

k
dz

d
j

dy

d
i

dx

d ˆˆˆ 


) 

 







 k

dz

dU
j

dy

dU
i

dx

dU
F ˆˆˆ


 

where   
dx

dU
 Partial derivative of U w.r.t. x (keeping y and z constant) 

  
dy

dU
 Partial derivative of U w.r.t. y  (keeping x and z constant) 

  
dz

dU
 Partial derivative of U w.r.t. z  (keeping x and y constant) 

(3) Potential energy curve : A graph plotted between the potential energy of a particle and 

its displacement from the centre of force is called potential energy 

curve.  

Figure shows a graph of potential energy function U(x) for one 

dimensional motion. 

As we know that negative gradient of the potential energy gives 

force. 

 F
dx

dU
  

(4) Nature of force :  

(i) Attractive force : On increasing x, if U increases positive
dx

dU
  

then F is negative in direction i.e. force is attractive in nature. In graph this is represented 

in region BC. 

(ii) Repulsive force : On increasing x, if U decreases negative
dx

dU
  

U(x) 

A 

B 

C D 

O x 
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then F is positive in direction i.e. force is repulsive in nature. In graph this is represented 

in region AB. 

(iii) Zero force : On increasing x, if U does not changes  0
dx

dU
  

then F is zero i.e. no force works on the particle. Point B, C and D represents the point of 

zero force or these points can be termed as position of equilibrium. 

(5) Types of equilibrium : If net force acting on a particle is zero, it is said to be in 

equilibrium. 

For equilibrium 0
dx

dU
, but the equilibrium of particle can be of three types : 

Stable Unstable Neutral 

When a particle is displaced 

slightly from a position, then a 

force acting on it brings it back 

to the initial position, it is said 

to be in stable equilibrium 

position. 

When a particle is displaced 

slightly from a position, then a 

force acting on it tries to 

displace the particle further 

away from the equilibrium 

position, it is said to be in 

unstable equilibrium. 

When a particle is slightly 

displaced from a position then 

it does not experience any force 

acting on it and continues to be 

in equilibrium in the displaced 

position, it is said to be in 

neutral equilibrium. 

Potential energy is minimum. Potential energy is maximum. Potential energy is constant. 

 0
dx

dU
F  0

dx

dU
F  0

dx

dU
F  

 positive
2

2


dx

Ud
  

i.e. rate of change of 
dx

dU
 is 

positive. 

      negative
2

2


dx

Ud
 

i.e. rate of change of 
dx

dU
 is 

negative. 

      0
2

2


dx

Ud
 

 i.e. rate of change of 
dx

dU
 is 

zero. 

Example :  

 

 

 

 

A marble placed at the bottom 

of a hemispherical bowl. 

Example : 

 

 

 

 

A marble balanced on top of a 

hemispherical bowl. 

Example : 

 

 

 

 

A marble placed on horizontal 

table. 

 
 

Sample problems based on potential energy 
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Problem 31.  A particle which is constrained to move along the x-axis, is subjected to a force in the same 

direction which varies with the distance x of the particle from the origin as 3)( axkxxF  . 

Here k and a are positive constants. For 0x , the functional from of the potential energy 

)(xU  of the particle is   [IIT-JEE (Screening) 2002] 

 

(a)  (b)  (c)  (d)  

 

 

Solution : (d) 
dx

dU
F    dxFdU .    

x

dxaxkxU
0

3 )(   
42

42 axkx
U   

 We get 0U  at x = 0 and 
a

k
x

2
  

Also we get U  negative for 
a

k
x

2
  

From the given function we can see that F = 0 at x = 0 i.e. slope of U-x graph is zero at x = 

0.  

Problem 32.  The potential energy of a body is given by 2BxA   (where x is the displacement). The 

magnitude of force acting on the particle is        [BHU 2002] 

(a) Constant    (b) Proportional to x 

(c) Proportional to 2x    (d)  Inversely proportional 
to x 

Solution : (b) BxBxA
dx

d

dx

dU
F 2)( 2 


     F  x . 

Problem 33. The potential energy of a system is represented in the first figure. The force acting on the 

system will be represented by   

 

 

 

 

 

(a)  (b)  (c)   (d) 

 

 

 

Solution : (c) As slope of problem graph is positive and constant upto distance a then it becomes zero. 

Therefore from 
dx

dU
F   we can say that upto distance a force will be constant (negative) 

and suddenly it becomes zero. 

Problem 34.  A particle moves in a potential region given by 40048 2  xxU  J. Its state of equilibrium 

will be  

(a) mx 25  (b) mx 25.0  (c) mx 025.0  (d)  mx 5.2   

U(x) 

x 

U(x) 

x 

U(x) 

x 

U(x) 

x 

a O x 

U(x

) 

a 

x 

F(x

) 

a 

x 

F(x
) 

a 

x 

F(x

) 

a x 

F(x
) 
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Solution : (b) )40048( 2  xx
dx

d

dx

dU
F   

For the equilibrium condition 0
dx

dU
F   0416 x   16/4x  mx 25.0 . 
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 6.13 Elastic Potential Energy. 

(1) Restoring force and spring constant : When a spring is stretched or compressed from its 

normal position (x = 0) by a small distance x, then a restoring force is produced in the spring to 

bring it to the normal position. 

According to Hooke’s law this restoring force is 

proportional to the displacement x and its direction is 

always opposite to the displacement. 

i.e.   xF    

or   xkF    …..(i) 

where k is called spring constant. 

If x = 1, F = k (Numerically) 

or   k = F  

Hence spring constant is numerically equal to force required to produce unit displacement 

(compression or extension) in the spring. If required force is more, then spring is said to be 

more stiff and vice-versa. 

Actually k is a measure of the stiffness/softness of the spring. 

Dimension : As 
x

F
k          

L

MLT

x

F
k

][

][

][
][

2

 ][ 2 MT  

Units :  S.I. unit Newton/metre, C.G.S unit Dyne/cm. 

Note :  Dimension of force constant is similar to surface tension. 

(2) Expression for elastic potential energy : When a spring is stretched or compressed 

from its normal position (x = 0), work has to be done by external force against restoring force. 

xkFF restoring ext  

Let the spring is further stretched through the distance dx, then work done  

   odxFxdFdW 0cos.. extext  dxkx  [As cos 0o = 1] 

Therefore total work done to stretch the spring through a distance x from its mean position 

is given by 

   2

0

2

00 2

1

2
kx

x
kdxkxdWW

x
xx









   

This work done is stored as the potential energy of the stretched spring. 

 Elastic potential energy 2

2

1
kxU   

    FxU
2

1
     










x

F
k As  

m 

m 

F 

F 

Fext 

Fext 

– x 

m 

x = 0 

+x 
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k

F
U

2

2

     









k

F
x As  

  Elastic potential energy 
k

F
FxkxU

22

1

2

1 2
2   

Note :  If spring is stretched from initial position 1x  to final position 2x  then work done  

  = Increment in elastic potential energy )(
2

1 2
1

2
2 xxk   

(3) Energy graph for a spring : If the mass attached with spring performs simple 

harmonic motion about its mean position then its potential energy at any position (x) can be 

given by  

   2

2

1
kxU     ….(i) 

So for the extreme position 

   2

2

1
kaU   [As x =  a for extreme] 

This is maximum potential energy or the total energy of mass. 

 Total energy 2

2

1
kaE    ….(ii) 

[Because velocity of mass = 0 at extreme  0
2

1 2  mvK ] 

Now kinetic energy at any position UEK  22

2

1

2

1
xkak   

   )(
2

1 22 xakK   ….(iii) 

From the above formula we can check that 

 2
max

2

1
kaU    [At extreme x =  a]   and    0min U   [At mean x = 0] 

 2
max

2

1
kaK    [At mean x = 0] and    0min K   [At extreme x =  a] 

  2

2

1
kaE  constant (at all positions) 

It mean kinetic energy changes parabolically w.r.t. position but total energy remain always 

constant irrespective to position of the mass 

Sample problems based on elastic potential energy 

m 

x = 0 

m 

x = – a 

O 

m 

x = + a 
A 

B 

E 

E
n

e
rg

y
 

x = +a x = 0 x =– a 

U 

K 

Position 

O A B 
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Problem 35.  A long spring is stretched by 2 cm, its potential energy is U. If the spring is stretched by 10 

cm, the potential energy stored in it will be       [CPMT 1976, 86, 96; MP PMT 2002; CBSE PMT 2003] 

(a) U / 25 (b) U / 5 (c) 5 U (d)  25 U 

Solution : (d) Elastic potential energy of a spring 2

2

1
kxU     2xU   

 So  

2

1

2

1

2













x

x

U

U
  

2

2

2

10












cm

cm

U

U
  UU 252   

Problem 36.  A spring of spring constant mN /105 3  is stretched initially by 5 cm from the unstretched 

position. Then the work required to stretch it further by another 5 cm is      [AIEEE 2003] 

(a) 6.25 N-m (b) 12.50 N-m (c) 18.75 N-m (d)  25.00 N-m 

Solution : (c) Work done to stretch the spring from 1x  to 2x  

 )(
2

1 2
1

2
2 xxkW   mN.75.181075105

2

1
])105()1010[(105

2

1 4322223   . 

Problem 37.  Two springs of spring constants mN /1500  and mN /3000  respectively are stretched with 

the same force. They will have potential energy in the ratio    [MP PET/PMT 1998; Pb. PMT 2002] 

(a) 4 : 1 (b) 1 : 4 (c) 2 : 1 (d)  1 : 2 

Solution : (c) Potential energy of spring 
k

F
U

2

2

      
1

2

2

1

k

k

U

U
 1:2

1500

3000
              [If F = constant] 

Problem 38.  A body is attached to the lower end of a vertical spiral spring and it is gradually lowered to 

its equilibrium position. This stretches the spring by a length x. If the same body attached 

to the same spring is allowed to fall suddenly, what would be the maximum stretching in 

this case   

(a) x (b) 2x (c) 3x (d)  x/2 

Solution : (b) When spring is gradually lowered to it's equilibrium position 

   kx = mg   
k

mg
x  . 

When spring is allowed to fall suddenly it oscillates about it's mean position  

Let y is the amplitude of vibration then at lower extreme, by the conservation of energy 

  mgyky 2

2

1
 

k

mg
y

2
 = 2x. 

Problem 39.  Two equal masses are attached to the two ends of a spring of spring constant k. The masses 

are pulled out symmetrically to stretch the spring by a length x over its natural length. The 
work done by the spring on each mass is   

(a) 2

2

1
kx  (b) 2

2

1
kx  (c) 2

4

1
kx  (d)  2

4

1
kx  

Solution : (d) If the spring is stretched by length x, then work done by two equal masses = 2

2

1
kx  



 
 

 
 Work, Energy, Power and Collision 55 

55

 So work done by each mass on the spring = 2

4

1
kx     Work done by spring on each mass = 

2

4

1
kx . 

 6.14 Electrical Potential Energy. 

It is the energy associated with state of separation between charged particles that interact 

via electric force. For two point charge 1q  and 2q , separated by distance r.  

   
r

qq
U 21

0

.
4

1


  

While for a point charge q at a point in an electric field where the potential is V  

   U = qV 

As charge can be positive or negative, electric potential energy can be positive or negative. 

Sample problems based on electrical potential energy 

Problem 40.  A proton has a positive charge. If two protons are brought near to one another, the 

potential energy of the system will  

(a) Increase   (b) Decrease 

(c) Remain the same    (d)  Equal to the kinetic 

energy  

Solution : (a) As the force is repulsive in nature between two protons. Therefore potential energy of the 

system increases. 

Problem 41.  Two protons are situated at a distance of 100 fermi from each other. The potential energy 

of this system will be in eV  

(a) 1.44 (b) 31044.1   (c) 21044.1   (d)  41044.1   

Solution : (d) eVeVJ
r

qq
U 4

19

15
15

15

2199
21

0

1044.1
106.1

10304.2
10304.2

10100

)106.1(109

4

1






















 

Problem 42.  208
80 Hg  nucleus is bombarded by  -particles with velocity 710 m/s. If the  -particle is 

approaching the Hg nucleus head-on then the distance of closest approach will be   

(a) m1310115.1   (b) m131015.11   (c) m13105.111   (d)  Zero 

Solution : (a) When  particle moves towards the mercury nucleus its kinetic energy gets converted in 

potential energy of the system. At the distance of closest approach 
r

qq
mv 21

0

2

4

1

2

1


  

  
r

ee )80)(.2(
109)10)(106.1(

2

1 92727     1310115.1 r m. 

Problem 43.  A charged particle A moves directly towards another charged particle B. For the 

)( BA  system, the total momentum is P and the total energy is E   

(a) P and E are conserved if both A and B are free to move 

(b) (a) is true only if A and B have similar charges 

(c) If B is fixed, E is conserved but not P  
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(d)  If B is fixed, neither E nor P is conserved 

Solution : (a, c) If A and B are free to move, no external forces are acting and hence P and E both are 

conserved but when B is fixed (with the help of an external force) then E is conserved but P 

is not conserved.  

 6.15 Gravitational Potential Energy. 

It is the usual form of potential energy and is the energy associated with the state of 

separation between two bodies that interact via gravitational force.  

For two particles of masses m1 and m2 separated by a distance r 

Gravitational potential energy 
r

mmG
U 21  

(1) If a body of mass m at height h relative to surface of earth then  

Gravitational potential energy 

R

h

mgh
U





1

 

Where R = radius of earth, g = acceleration due to gravity at the surface of the earth. 

(2) If h << R then above formula reduces to U = mgh. 

(3) If V is the gravitational potential at a point, the potential energy of a particle of mass m 

at that point will be  

    U = mV  

(4) Energy height graph : When a body projected vertically upward from the ground level 

with some initial velocity then it possess kinetic energy but its 

potential energy is zero. 

As the body moves upward its potential energy increases due to 

increase in height but kinetic energy decreases (due to decrease in 

velocity). At maximum height its kinetic energy becomes zero and 

potential energy maximum but through out the complete motion 

total energy remains constant as shown in the figure. 

 

Sample problems based on gravitational potential energy 

Problem 44.  The work done in pulling up a block of wood weighing 2kN for a length of 10 m on a smooth 

plane inclined at an angle of o15 with the horizontal is (sin 15o = 0.259)      [AFMC 1999] 

(a) 4.36 k J (b) 5.17 k J (c) 8.91 k J (d)  9.82 k J 

Solution : (b) Work done = mg  h 

                   sin102 3 l  

                  kJJo 17.5517615sin10102 3   

 

F12 

m1 m1 
F21 

r 

E
n

e
rg

y
 

E 

Height 

U 

K 

h 

 = 15o 

l 
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Problem 45.  Two identical cylindrical vessels with their bases at same level each contains a liquid of 

density d. The height of the liquid in one vessel is 1h  and that in the other vessel is 2h . The 

area of either vases is A. The work done by gravity in equalizing the levels when the two 

vessels are connected, is    [SCRA 1996] 

(a) gdhh )( 21   (b) gAdhh )( 21   (c) gAdhh 2
21 )(

2

1
  (d)  gAdhh 2

21 )(
4

1
  

Solution : (d) Potential energy of liquid column is given by 
222

h
Ahdg

h
Vdg

h
mg  2

2

1
Adgh  

Initial potential energy 2
2

2
1

2

1

2

1
AdghAdgh    

Final potential energy = 222

2

1

2

1
AdghgAdhAdgh   

Work done by gravity = change in potential energy  

                             W 22
2

2
1

2

1

2

1
AdghAdghAdgh 








  

                            

2

21
2
2

2
1

222 






 















hh
Adg

hh
Adg         [As 

2

21 hh
h


 ] 

                                  


























 


4

2

22

21
2
2

2
1

2
2

2
1 hhhhhh

Adg  2
21 )(

4
hh

Adg
  

Problem 46.  If g is the acceleration due to gravity on the earth’s surface, the gain in the potential energy 

of an abject of mass m raised from the surface of earth to a height equal to the radius of the 

earth R, is  [IIT-JEE1983] 

(a) mgR
2

1
 (b) mgR2  (c) mgR  (d)  mgR

4

1
 

Solution : (a) Work done = gain in potential energy 
Rh

mgh

/1 
 mgR

RR

mgR

2

1

/1



         [As h = R (given)] 

Problem 47.  The work done in raising a mass of 15 gm from the ground to a table of 1m height is   

(a) 15 J (b) 152 J (c) 1500 J (d)  0.15 J 

Solution : (d) W = mgh .15.01101015 3 J 
 

Problem 48.  A body is falling under gravity. When it loses a gravitational potential energy by U, its 

speed is v. The mass of the body shall be   

(a) 
v

U2
 (b) 

v

U

2
 (c) 

2

2

v

U
 (d)  

22v

U
 

Solution : (c) Loss in potential energy = gain in kinetic energy    2

2

1
mvU    

2

2

v

U
m  . 

Problem 49.  A liquid of density d is pumped by a pump P from situation (i) to situation (ii) as shown in 

the diagram. If the cross-section of each of the vessels is a, then the work done in pumping 

(neglecting friction effects) is     

h h h1 h2 
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(a) 2dgh  

(b) dgha  

(c) 2dgh2a  

(d)  dgh2a 

Solution : (d) Potential energy of liquid column in first situation 
22

h
Vdg

h
Vdg   = ahdghVdgh   adgh 2  

[As centre of mass of liquid column lies at height 
2

h
] 

Potential energy of the liquid column in second situation adghdghhA
h

Vdg 22)2(
2

2









  

Work done pumping = Change in potential energy = adghadghadgh 2222  . 

Problem 50.  The mass of a bucket containing water is 10 kg. What is the work done in pulling up the 

bucket from a well of depth 10 m if water is pouring out at a uniform rate from a hole in it 

and there is loss of 2kg of water from it while it reaches the top )sec/10( 2mg    

(a) 1000 J (b) 800 J (c) 900 J (d)  500 J 

Solution : (c) Gravitational force on bucket at starting position = mg = 10  10 = 100 N 

 Gravitational force on bucket at final position = 8  10 = 80 N  

 So the average force through out the vertical motion N90
2

80100



  

  Work done = Force  displacement = 90  10 = 900 J.  

Problem 51.  A rod of mass m and length l is lying on a horizontal table. The work done in making it stand 

on one end will be  

(a) mgl  (b) 
2

mgl
 (c) 

4

mgl
 (d)  2mgl  

Solution : (b) When the rod is lying on a horizontal table, its potential energy = 0 

 But when we make its stand vertical its centre of mass rises upto high 
2

l
. So it's potential 

energy 
2

mgl
  

 Work done = charge in potential energy 
2

0
2

mgll
mg  . 

Problem 52.  A metre stick, of mass 400 g, is pivoted at one end displaced through an angle o60 . The 

increase in its potential energy is   
 

(a) 1 J  

(b) 10 J  

(c) 100 J  

h h 

(i) 

2h 

(ii) 

60o 



 
 

 
 Work, Energy, Power and Collision 59 

59
(d)  1000 J  

Solution : (a) Centre of mass of a stick lies at the mid point and when the stick is displaced through an 

angle 60o it rises upto height ‘h’ from the initial position. 

 From the figure cos
22

ll
h   )cos1(

2


l
 

 Hence the increment in potential energy of the stick = mgh 

  J
l

mg o 1)60cos1(
2

1
104.0)cos1(

2
   

Problem 53.  Once a choice is made regarding zero potential energy reference state, the changes in 

potential energy  

(a) Are same  

(b) Are different 

(c) Depend strictly on the choice of the zero of potential energy  

(d) Become indeterminate   

Solution : (a) Potential energy is a relative term but the difference in potential energy is absolute term. If 

reference level is fixed once then change in potential energy are same always. 

 6.16 Work Done in Pulling the Chain Against Gravity. 

A chain of length L and mass M is held on a frictionless table with (1/n)th of its length 

hanging over the edge. 

Let 
L

M
m  mass per unit length of the chain and y is the 

length of the chain hanging over the edge. So the mass of the chain 

of length y will be ym and the force acting on it due to gravity will 

be mgy. 

The work done in pulling the dy length of the chain on the 

table.  

   dW = F(– dy)  [As y is decreasing] 

i.e.   dW = mgy (– dy) 

So the work done in pulling the hanging portion on the table. 

   

0

/

20

/ 2
nL

nL

y
mgdymgyW 








  2

2

2n

Lmg
  

   
22n

MgL
W    [As m = M/L] 

Alternative method :  

If point mass m is pulled through a height h then work done   W = mgh  

L/

n 

P 
Q h 

 
l/2 l/2 cos 
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Similarly for a chain we can consider its centre of mass at the middle point of the hanging 

part i.e. at a height of L/(2n) from the lower end and mass of the hanging part of chain 
n

M
  

So work done to raise the centre of mass of the chain on the table is given by 

   
n

L
g

n

M
W

2
  [As W = mgh] 

or    
22n

MgL
W   

 6.17 Velocity of Chain While Leaving the Table. 

 

 

 

 

 

Taking surface of table as a reference level (zero potential energy) 

Potential energy of chain when 1/nth length hanging from the edge 
22n

MgL
  

Potential energy of chain when it leaves the table 
2

MgL
  

Kinetic energy of chain = loss in potential energy  

           
2

2

222

1

n

MgLMgL
Mv   

           









2

2 1
1

22

1

n

MgL
Mv  

 Velocity of chain 









2

1
1

n
gLv  

Sample problem based on chain 

Problem 54.  A uniform chain of length L and mass M is lying on a smooth table and one third of its 

length is hanging vertically down over the edge of the table. If g is acceleration due to 

gravity, the work required to pull the hanging part on to the table is    [IIT-JEE 1985; MNR 1990; MP PMT 1994, 97, 2000; JIMPER 2000; AIEEE 2002] 

(a) MgL  (b) 
3

MgL  (c) 
9

MgL
 (d)  

18

MgL
 

Solution : (d) As 1/3 part of the chain is hanging from the edge of the table. So by substituting n = 3 in 

standard expression 

L/2

n 
Centre of 

mass 

(L/n) 

L 
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22n

MgL
W 

18)3(2 2

MgLMgL
 . 

Problem 55.  A chain is placed on a frictionless table with one fourth of it hanging over the edge. If the 

length of the chain is 2m and its mass is 4kg, the energy need to be spent to pull it back to 

the table is   

(a)  32 J (b) 16 J (c) 10 J (d)  2.5 J 

Solution : (d) 
22n

MgL
W  .5.2

)4(2

2104
2

J



  

Problem 56.  A uniform chain of length 2m is held on a smooth horizontal table so that half of it hangs 

over the edge. If it is released from rest, the velocity with which it leaves the table will be 

nearest to   

(a) 2 m/s (b) 4 m/s (c) 6 m/s (d)  8 m/s 

Solution : (b) 









2

1
1

n
gLv
















2)2(

1
1210 87.315   ≃ 4 m/s (approx.) 

 6.18 Law of Conservation of Energy. 

(1) Law of conservation of energy  

For a body or an isolated system by work-energy theorem we have  rdFKK


.12  

 …..(i) 

But according to definition of potential energy in a conservative field  rdFUU


.12

 …..(ii) 

So from equation (i) and (ii) we have  

   )( 1212 UUKK    

or   1122 UKUK   

i.e.   K + U = constant. 

For an isolated system or body in presence of conservative forces the sum of kinetic and 

potential energies at any point remains constant throughout the motion. It does not depends 

upon time. This is known as the law of conservation of mechanical energy. 

   0)(  EUK   [As E is constant in a conservative field] 

   0 UK  

i.e. if the kinetic energy of the body increases its potential energy will decrease by an equal 

amount and vice-versa. 
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(2) Law of conservation of total energy : If some non-conservative force like friction is 

also acting on the particle, the mechanical energy is no more constant. It changes by the amount 

of work done by the frictional force. 

   fWEUK  )(    [where fW  is the work done against friction] 

The lost energy is transformed into heat and the heat energy developed is exactly equal to loss in 

mechanical energy. 

We can, therefore, write E + Q = 0  [where Q is the heat produced] 

This shows that if the forces are conservative and non-conservative both, it is not the 

mechanical energy alone which is conserved, but it is the total energy, may be heat, light, sound 

or mechanical etc., which is conserved. 

In other words : “Energy may be transformed from one kind to another but it cannot be 

created or destroyed. The total energy in an isolated system is constant". This is the law of 

conservation of energy. 

Sample problems based on conservation of energy 

Problem 57.  Two stones each of mass 5kg fall on a wheel from a height of 10m. The wheel stirs 2kg 

water. The rise in temperature of water would be      [RPET 1997] 

(a) 2.6° C (b) 1.2° C (c) 0.32° C (d)  0.12° C 

Solution : (d) For the given condition potential energy of the two masses will convert into heat and 

temperature of water will increase W = JQ    2m  g  h = J(mw S t)  )102(2.4101052 3 t  

 CCt oo 12.0119.0
104.8

1000
3




 . 

Problem 58.  A boy is sitting on a swing at a maximum height of 5m above the ground. When the swing 

passes through the mean position which is 2m above the ground its velocity is 
approximately    [MP PET 1990] 

(a) 7.6 m/s  (b) 9.8 m/s (c) 6.26 m/s (d)  None of these 

Solution : (a) By the conservation of energy Total energy at point A = Total energy at point B 

   2
21

2

1
mvmghmgh   

  2

2

1
28.958.9 v  

    8.582 v    smv /6.7  

Problem 59.  A block of mass M slides along the sides of a bowl as shown in the figure. The walls of the 

bowl are frictionless and the base has coefficient of friction 0.2. If the block is released 

from the top of the side, which is 1.5 m high, where will the block come to rest ? Given that 

the length of the base is 15 m  

 

(a) 1 m from P  

(b) Mid point 

M 

15 m 

1.5 m 

R 

Q P 

h2 = 2m 
h1 = 5m 

A 

B 
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(c) 2 m from P   

(d)  At Q  

Solution : (b) Potential energy of block at starting point = Kinetic energy at point P = Work done against 
friction in traveling a distance s from point P. 

             mgh =  mgs    m
h

s 5.7
2.0

5.1



 

i.e. block come to rest at the mid point between P and Q.   

Problem 60.  If we throw a body upwards with velocity of 14 ms  at what height its kinetic energy 

reduces to half of the initial value ? Take 2/10 smg     

(a) 4m (b) 2 m (c) 1 m (d)  None of these 

Solution : (d) We know kinetic energy 2

2

1
mvK     Kv   

 When kinetic energy of the body reduces to half its velocity becomes v = sm
u

/22
2

4

2
  

 From the equation ghuv 222    h102)4()22( 22       mh 4.0
20

816



 . 

Problem 61.  A 2kg block is dropped from a height of 0.4 m on a spring of force constant 11960  NmK . 

The maximum compression of the spring is   

(a) 0.1 m (b) 0.2 m (c) 0.3 m (d)  0.4 m 

Solution : (a) When a block is dropped from a height, its potential energy gets converted into kinetic 

energy and finally spring get compressed due to this energy. 

  Gravitational potential energy of block = Elastic potential energy of spring 

  2

2

1
Kxmgh     

1960

4.010222 


K

mgh
x mm 1.0–~09.0 . 

Problem 62.  A block of mass 2kg is released from A on the track that is one quadrant of a circle of radius 

1m. It slides down the track and reaches B with a speed of 14 ms  and finally stops at C at a 

distance of 3m from B. The work done against the force of friction is    

 

(a) 10 J  

(b) 20 J 

(c) 2 J 

(d)  6 J 

Solution : (b) Block possess potential energy at point A = mgh J201102   

Finally block stops at point C. So its total energy goes against friction i.e. work done against 

friction is 20 J.  

Problem 63.  A stone projected vertically upwards from the ground reaches a maximum height h. When it 

is at a height ,
4

3h
 the ratio of its kinetic and potential energies is  

2kg 

1m 

B 

A 

C 
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(a) 3 : 4 (b) 1 : 3 (c) 4 : 3 (d)  3 : 1 

Solution : (b) At the maximum height,  Total energy = Potential energy = mgh 

 At the height 
4

3h
, Potential energy = mgh

h
mg

4

3

4

3
   

and  Kinetic energy = Total energy – Potential energy mgh
mgh

mgh
4

1

4
3   

  
3

1

energyPotential 

energyKinetic 
 . 

 6.19 Power. 

Power of a body is defined as the rate at which the body can do the work. 

Average power 
t

W

t

W
P 




)( av.  

Instantaneous power 
dt

dW
P )( inst.

dt

sdF


.
  [As sdFdW


. ] 

          vFP


.inst    [As 
dt

sd
v



 ] 

i.e. power is equal to the scalar product of force with velocity. 

      Important points 

(1) Dimension :  ][][][][][ 12  LTMLTvFP  

   ][][ 32  TMLP  

(2) Units : Watt or Joule/sec [S.I.] 

   Erg/sec [C.G.S.] 

  Practical units :  Kilowatt (kW), Mega watt (MW) and Horse power (hp)  

Relations between different units : sec/10sec/11 7 ergJoulewatt   

       Watthp 7461   

      WattMW 6101   

      WattkW 3101   

(3) If work done by the two bodies is same then power
time

1
   

i.e. the body which perform the given work in lesser time possess more power and vice-

versa. 

(4) As power = work/time, any unit of power multiplied by a unit of time gives unit of work 

(or energy) and not power, i.e. Kilowatt-hour or watt-day are units of work or energy. 
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   Joulesec
sec

J
KWh 63 106.3)6060(101   

(5) The slope of work time curve gives the instantaneous power. As P = dW/dt = tan   

 

 

 

 

 

 

(6) Area under power time curve gives the work done as 
dt

dW
P   

     dtPW  

    W = Area under P-t curve 

 6.20 Position and Velocity of an Automobile w.r.t Time. 

An automobile of mass m accelerates, starting from rest, while the engine supplies constant 

power P, its position and velocity changes w.r.t time. 

(1) Velocity : As Fv = P = constant  

i.e.   Pv
dt

dv
m      










dt

mdv
F As  

or     dt
m

P
dvv  

By integrating both sides we get 1

2

2
Ct

m

Pv
  

As initially the body is at rest i.e. v = 0 at t = 0, so 01 C  

    
2/1

2










m

Pt
v  

(2) Position : From the above expression 
2/1

2










m

Pt
v   

or       
2/1

2










m

Pt

dt

ds
  










dt

ds
v As  

i.e.       







 dt

m

Pt
ds

2/1
2

 

By integrating both sides we get  2
2/3

2/1

3

2
.

2
Ct

m

P
s 








  

Work 

Time 

 
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Now as at t = 0, s = 0, so 02 C  

     2/3

2/1

9

8
t

m

P
s 








  

Sample problems based on power 

Problem 64.  A car of mass ‘m’ is driven with acceleration ‘a’ along a straight level road against a 

constant external resistive force ‘R’. When the velocity of the car is ‘v’, the rate at which 

the engine of the car is doing work will be    

[MP PMT/PET 1998; JIMPER 2000] 

 (a) Rv (b) mav (c) vmaR )(   (d) vRma )(   

Solution : (c) The engine has to do work against resistive force R as well as car is moving with 

acceleration a. 

Power = Force  velocity = (R+ma)v.  

Problem 65.  A wind-powered generator converts wind energy into electrical energy. Assume that the 

generator converts a fixed fraction of the wind energy intercepted by its blades into 

electrical energy. For wind speed v, the electrical power output will be proportional to       [IIT-JEE 2000] 

(a) v (b) 2v  (c) 3v  (d)  4v  

Solution : (c) Force )(  V
dt

d
v

dt

dm
v ][ lA

dt

d
v  

dt

dl
Av 2Av  

Power = F  v = vAv 2 3Av       3vP  . 

Problem 66.  A pump motor is used to deliver water at a certain rate from a given pipe. To obtain twice 

as much water from the same pipe in the same time, power of the motor has to be 

increased to   [JIPMER 2002] 

(a) 16 times (b) 4 times (c) 8 times (d)  2 times 

Solution : (d) 
t

mgh
P 

time

donework 
    P  m 

 i.e. To obtain twice water from the same pipe in the same time, the power of motor has to be 

increased to 2 times. 

Problem 67.  A force applied by an engine of a train of mass kg61005.2   changes its velocity from 5 m/s 

to 25 m/s in 5 minutes. The power of the engine is      [EAMCET 2001] 

(a) 1.025 MW (b) 2.05 MW (c) 5MW (d)  5 MW 

Solution : (b) 
605

]525[1005.2
2

1
)(

2

1

time

energykinetic  in Increase

time

doneWork 
Power

2262
1

2
2










t

vvm

 

      MWwatt 05.21005.2 6   

Problem 68.  From a water fall, water is falling at the rate of 100 kg/s on the blades of turbine. If the 

height of the fall is 100m then the power delivered to the turbine is approximately equal to   [BHU 1997] 

(a) 100kW (b) 10 kW (c) 1kW (d)  1000 kW 
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Solution : (a) 10010100
doneWork 

Power 
t

mgh

t
kWwatt 10010 5         








 )given(

sec
100 As

kg

t

m
 

Problem 69.  A particle moves with a velocity 1ˆ6ˆ3ˆ5  mskjiv


 under the influence of a constant force 

.ˆ20ˆ10ˆ10 NkjiF 


 The instantaneous power applied to the particle is  

(a) 200 J-s–1 (b) 40 J-s–1 (c) 140 J-s–1 (d)  170 J-s–1  

Solution : (c) vFP


. 1-1401203050)ˆ6ˆ3ˆ5).(ˆ20ˆ10ˆ10(  sJkjikji  

Problem 70.  A car of mass 1250 kg experience a resistance of 750 N when it moves at 30ms–1. If the 

engine can develop 30kW at this speed, the maximum acceleration that the engine can 

produce is 

(a) 28.0 ms  (b) 22.0 ms  (c) 14.0 ms  (d)  25.0 ms  

Solution : (b) Power = Force  velocity = (Resistive force + Accelerating force)  velocity 

  30)750(1030 3  ma   7501000 ma   22.0
1250

250  msa . 

Problem 71.  A bus weighing 100 quintals moves on a rough road with a constant speed of 72km/h. The 

friction of the road is 9% of its weight and that of air is 1% of its weight. What is the 

power of the engine. Take g = 10m/s2  

(a) 50 kW (b) 100 kW (c) 150 kW (d)  200 kW 

Solution : (d) Weight of a bus = mass  g  Nsmkg 52 10/10100100   

 Total friction force = 10% of weight = 104 N 

  Power = Force  velocity   kWwattwatthkmN 2001022010/7210 544  . 

Problem 72.  Two men with weights in the ratio 5 : 3 run up a staircase in times in the ratio 11 : 9. The 

ratio of power of first to that of second is   

(a) 
11

15
 (b) 

15

11
 (c) 

9

11
 (d)  

11

9
 

Solution : (a) Power (P) = 
t

mgh
 or 

t

m
P    

1

2

2

1

2

1

t

t

m

m

P

P


11

15

33

45

11

9

3

5

















          (g and h are constants) 

Problem 73.  A dam is situated at a height of 550 metre above sea level and supplies water to a power 

house which is at a height of 50 metre above sea level. 2000 kg of water passes through the 
turbines per second. The maximum electrical power output of the power house if the whole 
system were 80% efficient is   

(a) 8 MW (b) 10 MW (c) 12.5 MW (d)  16 MW 

Solution : (a) MW
t

hmg
10

1

)50550(102000

time

donework 
Power 





  

 But the system is 80% efficient   Power output = 10  80% = 8 MW.  

Problem 74.  A constant force F is applied on a body. The power (P) generated is related to the time 

elapsed (t) as  

(a) 2tP   (b) tP   (c) tP   (d)  2/3tP   

Solution : (b) 
dt

mdv
F    F dt = mdv    t

m

F
v   
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 Now P = F  v t
m

F
F 

m

tF 2

  

If force and mass are constants then P  t. 

 6.21 Collision. 

Collision is an isolated event in which a strong force acts between two or more bodies for a 

short time as a result of which the energy and momentum of the interacting particle change. 

In collision particles may or may not come in real touch e.g. in collision between two 
billiard balls or a ball and bat there is physical contact while in collision of alpha particle by a 

nucleus (i.e. Rutherford scattering experiment) there is no physical contact. 

(1) Stages of collision : There are three distinct identifiable stages in collision, namely, 

before, during and after. In the before and after stage 

the interaction forces are zero. Between these two 

stages, the interaction forces are very large and often 

the dominating forces governing the motion of 

bodies. The magnitude of the interacting force is 

often unknown, therefore, Newton’s second law 

cannot be used, the law of conservation of momentum 

is useful in relating the initial and final velocities. 

(2) Momentum and energy conservation in collision : 

(i) Momentum conservation : In a collision the effect of external forces such as gravity or 
friction are not taken into account as due to small duration of collision (t) average impulsive 
force responsible for collision is much larger than external force acting on the system and since 

this impulsive force is 'Internal' therefore the total momentum of system always remains 

conserved. 

(ii) Energy conservation : In a collision 'total energy' is also always conserved. Here total 

energy includes all forms of energy such as mechanical energy, internal energy, excitation 

energy, radiant energy or even mass energy. 

These laws are the fundamental laws of physics and applicable for any type of collision but 

this is not true for conservation of kinetic energy. 

(3) Types of collision : (i)  On the basis of conservation of kinetic energy. 
 

Perfectly elastic collision Inelastic collision Perfectly inelastic collision 

If in a collision, kinetic energy 
after collision is equal to 
kinetic energy before collision, 
the collision is said to be 

perfectly elastic. 

If in a collision kinetic energy 
after collision is not equal to 
kinetic energy before collision, 
the collision is said to 

inelastic. 

If in a collision two bodies 
stick together or move with 
same velocity after the 
collision, the collision is said 

to be perfectly inelastic. 

Coefficient of restitution e = 1 Coefficient of restitution 0 < e < 
1 

Coefficient of restitution e = 0 

 Here kinetic energy appears in 
other forms. In some cases 

The term 'perfectly inelastic' 
does not necessarily mean that 

m2 m1 
u2 u1 

m1 m2 
m2 m1 

v2 v1 

m1 m2 

F 

Before collision After collision During collision 

t 

Fext 

t 
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(KE)final = (KE)initial  

(KE)final < (KE)initial such as  
when initial KE is converted 
into internal energy of the 
product (as heat, elastic or 

excitation) while in other cases 
(KE)final > (KE)initial  such as 
when internal energy stored in 
the colliding particles is 
released 

all the initial kinetic energy is 
lost, it implies that the loss in 
kinetic energy is as large as it 
can be. (Consistent with 

momentum conservation). 

Examples : (1) Collision 

between atomic particles 

(2) Bouncing of ball with same 
velocity after the collision with 
earth. 

Examples : (1) Collision 

between two billiard balls. 

(2) Collision between two 
automobile on a road. 

In fact all majority of collision 

belong to this category. 

Example : Collision between a 

bullet and a block of wood into 
which it is fired. When the 
bullet remains embeded in the 
block. 

 

(ii) On the basis of the direction of colliding bodies  

Head on or one dimensional collision Oblique collision 

In a collision if the motion of colliding particles 
before and after the collision is along the same 
line the collision is said to be head on or one 
dimensional. 

If two particle collision is ‘glancing’ i.e. such that 
their directions of motion after collision are not 
along the initial line of motion, the collision is 
called oblique. 

If in oblique collision the particles before and 
after collision are in same plane, the collision is 
called 2-dimensional otherwise 3-dimensional. 

Impact parameter b is zero for this type of 

collision. 

 

 

 

 

 

 

Impact parameter b lies between 0 and 
)( 21 rr   i.e. 

0 < b < )( 21 rr   where 1r  and 2r  are radii of 

colliding bodies. 

 

 

 

 

 

Example : collision of two gliders on an air 

track. 

Example : Collision of billiard balls. 

 

 6.22 Perfectly Elastic Head on Collision. 

Let two bodies of masses 1m  and 2m  moving with initial velocities 1u  and 2u  in the same 

direction and they collide such that after collision their final velocities are 1v  and 2v  

respectively. 

 

Before 

collision 

After collision 

m2 

m1 
u1 

 

v1 

v2 

u2  

b 

m2 

m1 

Before 

collision 

After collision 

m1 

u1 u2 
m2 m1 

v1 v2 
m2 

Before 

collision 

After collision 

m1 

u1 u2 
m2 m1 

v1 v2 
m2 
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According to law of conservation of momentum  

   22112211 vmvmumum     ……(i) 

   )()( 222111 uvmvum     ……(ii) 

According to law of conservation of kinetic energy 

   2
22

2
11

2
22

2
11

2

1

2

1

2

1

2

1
vmvmumum    …..(iii) 

   )()( 2
2

2
22

2
1

2
11 uvmvum     ..…(iv) 

Dividing equation (iv) by equation (ii) 

   2211 uvuv      …..(v) 

   1221 vvuu      …..(vi) 

Relative velocity of approach = Relative velocity of separation  

Note :  The ratio of relative velocity of separation and relative velocity of approach is defined as 

coefficient of restitution.    
21

12

uu

vv
e




     or   )( 2112 uuevv   

 For perfectly elastic collision   e = 1   2112 uuvv   (As shown in eq. (vi) 

 For perfectly inelastic collision  e = 0   012  vv  or 12 vv   

 It means that two body stick together and move with same velocity. 

 For inelastic collision   0 < e < 1  )( 2112 uuevv    

In short we can say that e is the degree of elasticity of collision and it is dimension less 

quantity. 
 

Further from equation (v) we get 2112 uuvv   

Substituting this value of 2v  in equation (i) and rearranging we get  

   
21

22
1

21

21
1

2

mm

um
u

mm

mm
v

















   ……(vii) 

Similarly we get 
21

11
2

21

12
2

2

mm

um
u

mm

mm
v

















   ……(viii) 

  (1) Special cases of head on elastic collision  

(i) If projectile and target are of same mass i.e. m1 = m2  
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Since 2

21

2
1

21

21
1

2
u

mm

m
u

mm

mm
v

















          and  

21

11
2

21

12
2

2

mm

um
u

mm

mm
v

















  

Substituting 21 mm   we get   

21 uv     and   12 uv    

It means when two bodies of equal masses undergo head on elastic collision, their 

velocities get interchanged. 

Example : Collision of two billiard balls 

 

 

 

(ii) If massive projectile collides with a light target i.e. m1 >> m2 

Since 
21

22
1

21

21
1

2

mm

um
u

mm

mm
v

















      and    

21

11
2

21

12
2

2

mm

um
u

mm

mm
v

















  

Substituting 02 m , we get 

11 uv   and 212 2 uuv   

Example : Collision of a truck with a cyclist 

 

 

 

 

 Before collision        After collision 

(iii) If light projectile collides with a very heavy target i.e. m1 << m2  

Since 
21

22
1

21

21
1

2

mm

um
u

mm

mm
v

















        and         

21

11
2

21

12
2

2

mm

um
u

mm

mm
v

















  

Substituting 01 m , we get  

211 2uuv   and 22 uv   

Example : Collision of a ball with a massive wall. 

 

 

 

 

 
 

(2) Kinetic energy transfer during head on elastic collision 

Sub case : 02 u  i.e. target is at 

rest 

01 v  and 12 uv   

Sub case : 02 u  i.e. target is at 

rest 

v1 = u1 and v2 = 2u1  

Sub case : 02 u  i.e. target is at 

rest 

v1 = – u1 and v2 = 0 

i.e. the ball rebounds with same 

speed in opposite direction when 
it collide with stationary and very 
massive wall. 

u1 = 
50m/s 

10 
kg 

Before 
collision 

u2 = 
20m/s 

10 
kg 

After collision 

v1 = 20 
m/s 

10 
kg 

v2 = 50 m/s 

10 
kg 

m1 = 50gm 

u1 = 30 m/s 

Before collision 

v2 = 2 m/s u2 = 2 m/s 

m2 = 100 

kg 

v1 = – 26 m/s 

After collision 

v1 = 120 km/hr 

v2 = 230 km/hr 

m1 = 103 kg m2 = 60 

kg 

u1 = 120 km/hr 

u2 = 10 
km/hr 
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Kinetic energy of projectile before collision 2
11

2

1
umKi   

Kinetic energy of projectile after collision 2
11

2

1
vmK f   

Kinetic energy transferred from projectile to target K = decrease in kinetic energy in 

projectile 

       2
11

2
11

2

1

2

1
vmumK    )(

2

1 2
1

2
11 vum   

Fractional decrease in kinetic energy 
2
11

2
1

2
11

2

1

)(
2

1

um

vum

K

K





2

1

11 











u

v
 …..(i) 

We can substitute the value of 1v  from the equation 
21

22
1

21

21
1

2

mm

um
u

mm

mm
v

















  

If the target is at rest i.e. u2 = 0 then 1

21

21
1 u

mm

mm
v 














  

From equation (i) 

2

21

211 

















mm

mm

K

K
     …..(ii) 

or   
2

21

21

)(

4

mm

mm

K

K





     …..(iii)  

or   
21

2
21

21

4)(

4

mmmm

mm

K

K





    …..(iv) 

Note :  Greater the difference in masses less will be transfer of kinetic energy and 

vice versa 

  Transfer of kinetic energy will be maximum when the difference in masses is 

minimum 

i.e.  021 mm  or  21 mm   then    %1001 


K

K
 

So the transfer of kinetic energy in head on elastic collision (when target is at rest) 

is maximum when the masses of particles are equal i.e. mass ratio is 1 and the 

transfer of kinetic energy is 100%. 

  If 12 mnm   then from equation (iii) we get   
2)1(

4

n

n

K

K





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  Kinetic energy retained by the projectile  






 
1

RetainedK

K
 kinetic energy 

transferred by projectile 

           






 

RetainedK

K































2

21

2111
mm

mm
2

21

21

















mm

mm
 

(3) Velocity, momentum and kinetic energy of stationary target after head on elastic 

collision 

(i) Velocity of target : We know 
21

11
2

21

12
2

2

mm

um
u

mm

mm
v

















  

  
21

11
2

2

mm

um
v




12

1

/1

2

mm

u


  [As 02 u  and Let n

m

m


1

2 ] 

    
n

u
v




1

2 1
2  

(ii) Momentum of target : 222 vmP 
n

unm




1

2 11   











n

u
vnmm

1

2
 and  As 1

212  

   
)/1(1

2 11
2

n

um
P


  

(iii) Kinetic energy of target : 2
222

2

1
vmK 

2

1
1

1

2

2

1












n

u
mn

2

2
11

)1(

2

n

num


  

       
nn

nK

4)1(

)(4
2

1


    








 2

111
2

1
 As umK  

(iv) Relation between masses for maximum velocity, momentum and kinetic energy 

Velocity 

n

u
v




1

2 1
2  

For 2v  to be maximum n must be minimum 

i.e.  0
1

2 
m

m
n  12 mm   

 

Target should be very 

light. 

Momentu

m 

)/11(

2 11
2

n

um
P


  

For 2P  to be maximum, (1/n) must be 

minimum or n must be maximum. 

i.e.  
1

2

m

m
n  12 mm   

 

Target should be 

massive. 

Kinetic 

energy 

nn

nK
K

4)1(

4
2

1
2


  

For 2K  to be maximum 2)1( n  must be 

minimum. 

i.e.  
1

2101
m

m
nn   12 mm   

 

Target and projectile 

should be of equal 

mass. 

 

Before 
collision 

After collision 

m1 

u1 u2 
m2 m1 

v1 v2 
m2 
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Sample problem based on head on elastic collision 

Problem 75.  n small balls each of mass m impinge elastically each second on a surface with velocity u. 

The force experienced by the surface will be    [MP PMT/PET 1998; RPET 2001; BHU 2001; MP PMT 2003] 

(a) mnu (b) 2 mnu (c) 4 mnu (d)  mnu
2

1
 

Solution : (b) As the ball rebounds with same velocity therefore change in velocity = 2u and the mass 

colliding with the surface per second = nm  

Force experienced by the surface  
dt

dv
mF     F = 2 mnu. 
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Problem 76.  A particle of mass m moving with horizontal speed 6 m/sec. If m<<M then for one 

dimensional elastic collision, the speed of lighter particle after collision will be     [MP PMT 2003] 

(a) 2 m/sec in original direction (b) 2 m/sec opposite to the original direction 

(c) 4 m/sec opposite to the original direction  (d)  4 m/sec in original 

direction 

Solution : (a) 
21

22
1

21

21
1

2

mm

um
u

mm

mm
v

















  

Substituting m1 = 0,  211 2uuv   

 )4(261 v  sm/2  

i.e. the lighter particle will move in original direction with the speed of 2 m/s. 

Problem 77.  A body of mass m moving with velocity v makes a head-on collision with another body of mass 

2m which is initially at rest. The loss of kinetic energy of the colliding body (mass m) is[MP PMT 1996; RPET 1999; AIIMS 2003] 

(a) 
2

1
 of its initial kinetic energy  (b) 

9

1
 of its initial kinetic energy  

(c) 
9

8
 of its initial kinetic energy  (d)  

4

1
 of its initial kinetic 

energy 

Solution : (c) Loss of kinetic energy of the colliding body 
222

21

21

3

1
1

2

2
11 








































mm

mm

mm

mm

K

K
 

 KKK
9

8

9

1
1 








     Loss of kinetic energy is 

9

8
 of its initial kinetic energy. 

Problem 78.  A ball of mass m moving with velocity V, makes a head on elastic collision with a ball of the 

same mass moving with velocity 2V towards it. Taking direction of V as positive velocities 

of the two balls after collision are         [MP PMT 2002] 

(a) – V and 2V (b) 2V and – V (c) V and – 2V (d) – 2V and V 

Solution : (d) Initial velocities of balls are +V and – 2V respectively and we know that for given condition 

velocities get interchanged after collision. So the velocities of two balls after collision are – 

2V and V respectively. 

Problem 79.  Consider the following statements 

Assertion (A) : In an elastic collision of two billiard balls, the total kinetic energy is 

conserved during the short time of collision of the balls (i.e., when they are in contact) 

Reason (R) : Energy spent against friction does not follow the law of conservation of 

energy of these statements        [AIIMS 2002]  

(a) Both A and R are true and the R is a correct explanation of A 

(b) Both A and R are true but the R is not a correct explanation of the A   

(c) A is true but the R is false  

m M 

u1 = 6 

m/s 

u2 = 4 

m/s 
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(d)  Both A and R are false 

Solution : (d) (i) When they are in contact some part of kinetic energy may convert in potential energy so 

it is not conserved during the short time of collision. (ii) Law of conservation of energy is 

always true. 

Problem 80.  A big ball of mass M, moving with velocity u strikes a small ball of mass m, which is at rest. 

Finally small ball attains velocity u and big ball v. Then what is the value of v      [RPET 2001] 

(a) u
mM

mM




 (b) u

mM

m


 (c) u

mM

m



2
 (d)  u

mM

M


 

Solution : (a) From the standard equation u
mM

mM
u

mm

mm
v 



























 1

21

21
1 . 

Problem 81.  A car of mass kg400  and travelling at 72 kmph crashes into a truck of mass kg4000  and 

travelling at 9 kmph, in the same direction. The car bounces back at a speed of 18 kmph. 

The speed of the truck after the impact is        [EAMCET (Engg.) 1997] 

(a) 9 kmph (b) 18 kmph (c) 27 kmph (d) 36 kmph 

Solution : (b) By the law of conservation of linear momentum 22112211 vmvmumum   

  24000)18(4009400072400 v     hkmv /182  . 

Problem 82.  A smooth sphere of mass M moving with velocity u directly collides elastically with another 

sphere of mass m at rest. After collision their final velocities are V and v respectively. The 

value of v is    [MP PET 1995] 

(a) 
m

uM2
 (b) 

M

um2
 (c) 

M

m

u

1

2
 (d)  

m

M

u

1

2
 

Solution : (c) Final velocity of the target 
21

11
2

21

12
2

2

mm

um
u

mm

mm
v

















  

 As initially target is at rest so by substituting 02 u  we get 

M

m

u

mM

Mu
v








1

22
2 . 

Problem 83.  A sphere of mass 0.1 kg is attached to a cord of 1m length. Starting from the height of its 

point of suspension this sphere hits a block of same mass at rest on a frictionless table, If 

the impact is elastic, then the kinetic energy of the block after the collision is      [RPET 1991] 

 

(a) 1 J 

(b) 10 J 

(c) 0.1 J 

(d)  0.5 J 

Solution : (a) As two blocks are of same mass and the collision is perfectly elastic therefore their 

velocities gets interchanged i.e. the block A comes into rest and complete kinetic energy 

transferred to block B. 

 Now kinetic energy of block B after collision = Kinetic energy of block A before collision 

A 

m 

m m 
B 
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                      = Potential energy of block A at the original height 

                      = mgh = 0.1  10  1 = 1 J. 

Problem 84.  A ball moving horizontally with speed v strikes the bob of a simple pendulum at rest. The 

mass of the bob is equal to that of the ball. If the collision is elastic the bob will rise to a 

height   

(a) 
g

v 2

 (b) 
g

v

2

2

 (c) 
g

v

4

2

 (d) 
g

v

8

2

 

Solution : (b) Total kinetic energy of the ball will transfer to the bob of simple pendulum. Let it rises to 

height ‘h’ by the law of conservation of energy. 

 mghmv 2

2

1
 

  
g

v
h

2

2

  

Problem 85.  A moving body with a mass m1 strikes a stationary body of mass m2. The masses 1m  and 2m  

should be in the ratio 
2

1

m

m
 so as to decrease the velocity of the first body 1.5 times assuming 

a perfectly elastic impact. Then the ratio 
2

1

m

m
 is    

(a) 1/ 25 (b) 1/5 (c) 5 (d)  25 

Solution : (c) 
21

22
1

21

21
1

2

mm

um
u

mm

mm
v

















 1

21

21 u
mm

mm

















  [As u2 = 0 and 










5.1

1
1

u
v  given] 

 1
21

211

5.1
u

mm

mmu














   )(5.1 2121 mmmm    5

2

1 
m

m
. 

Problem 86. Six identical balls are lined in a straight groove made on a horizontal frictionless surface as 

shown. Two similar balls each moving with a velocity v collide with the row of 6 balls from 

left. What will happen   

 

 

 

 
 

(a) One ball from the right rolls out with a speed 2v and the remaining balls will remain at 

rest 

(b) Two balls from the right roll out with speed v each and the remaining balls will remain 

stationary  

(c) All the six balls in the row will roll out with speed v/6 each and the two colliding balls 

will come to rest  

(d)  The colliding balls will come to rest and no ball rolls out from right 

v 
 

h v 
m m 

m 
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Solution : (b) Only this condition satisfies the law of conservation of linear momentum. 

Problem 87.  A moving mass of 8 kg collides elastically with a stationary mass of 2 kg. If E be the initial 

kinetic energy of the mass, the kinetic energy left with it after collision will be  

(a) 0.80 E (b) 0.64 E (c) 0.36 E (d)  0.08 E 

Solution : (c) Kinetic energy retained by projectile 

2

21

21



















mm

mm

K

K
  EK

2

28

28












 = EE 36.0

25

9
 . 

Problem 88.  A neutron travelling with a velocity v and K.E. E collides perfectly elastically head on with 

the nucleus of an atom of mass number A at rest. The fraction of total energy retained by 

neutron is    

(a) 
2

1

1













A

A
 (b) 

2

1

1













A

A
 (c) 

2
1







 

A

A
 (d)  

2
1







 

A

A
 

Solution : (a) Fraction of kinetic energy retained by projectile 

2

21

21



















mm

mm

K

K
 

 Mass of neutron (m1) = 1 and Mass of atom (m2) = A      
2

1

1
















A

A

K

K
 or 

2

1

1













A

A
. 

Problem 89.  A neutron with 0.6MeV kinetic energy directly collides with a stationary carbon nucleus 

(mass number 12). The kinetic energy of carbon nucleus after the collision is    

(a) 1.7 MeV (b) 0.17 MeV (c) 17 MeV (d)  Zero 

Solution : (b) Kinetic energy transferred to stationary target (carbon nucleus) 































2

21

211
mm

mm

K

K
 

 




























2

121

121
1

K

K










169

121
1

169

48
                .17.0)6.0(

169

48
MeVMeVK   

Problem 90.  A body of mass m moving along a straight line collides with a body of mass nm which is 

also moving with a velocity kv in the same direction. If the first body comes to rest after 
the collision, then the velocity of second body after the collision would be  

(a) 
)1( nk

nv


 (b) 

)1( nk

nv


 (c) 

n

vnk)1( 
 (d)  

n

vnk)1( 
 

Solution : (d) Initial momentum = )(kvnmmv         and       final momentum Vnm 0  

 By the conservation of momentum, Vnmkvnmmv  0)(  

 nVnkvv    vnknV )1(    
n

vnk
V

)1( 
  

Problem 91.  Which one of the following statement does not hold good when two balls of masses 1m  and 

2m  undergo elastic collision    

(a) When 21 mm   and 2m  at rest, there will be maximum transfer of momentum  

(b) When 21 mm   and m2 at rest, after collision the ball of mass m2 moves with four times 

the velocity of m1  

(c) When 21 mm   and 2m  at rest, there will be maximum transfer of kinetic energy   
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(d)  When collision is oblique and 2m  at rest with ,21 mm   after collision 

the balls move in opposite directions 

Solution : (b, d) We know that transfer of momentum will be maximum when target is massive and 

transfer of kinetic energy will be maximum when target and projectile are having same 

mass. It means statement (a) and (c) are correct, but statement (b) and (d) are incorrect 

because when target is very light, then after collision it will move with double the velocity 

of projectile and when collision is oblique and m2 at rest with ,21 mm   after collision the 

ball move perpendicular to each other.  

 6.23 Perfectly Elastic Oblique Collision. 

Let two bodies moving as shown in figure. 

By law of conservation of momentum 

Along x-axis,  coscos 22112211 vmvmumum    .....(i) 

Along y-axis,  sinsin0 2211 vmvm              .....(ii)  

By law of conservation of kinetic energy  

  2
22

2
11

2
22

2
11

2

1

2

1

2

1

2

1
vmvmumum            .....(iii) 

In case of oblique collision it becomes difficult to solve problem when some experimental 

data are provided as in these situations more unknown variables are involved than equations 

formed. 

Special condition : If 21 mm   and 02 u  substituting these values in equation (i), (ii) and 

(iii) we get 

   coscos 211 vvu               .....(iv) 

   sinsin0 21 vv                .....(v) 

and  2
2

2
1

2
1 vvu                 .....(vi) 

Squaring (iv) and (v) and adding we get  

  )cos(2 21
2
2

2
1

2
1   uvvvu             .....(vii) 

Using (vi) and (vii) we get 0)cos(   

  2/   

i.e. after perfectly elastic oblique collision of two bodies of equal masses (if the second 

body is at rest), the scattering angle    would be o90 . 

Sample problems based on oblique elastic collision 

Problem 92.  A ball moving with velocity of sm /9  collides with another similar stationary ball. After the 

collision both the balls move in directions making an angle of o30  with the initial direction. 

After the collision their speed will be 

Before 

collision 

After collision 

m2 

m1 
u1 

 

v1 

v2 

u2  

m2 

m1 
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(a) sm /6.2  (b) sm /2.5  (c) sm /52.0  (d) sm /52  

Solution : (b) Initial horizontal momentum of the system = m  9 

 Final horizontal momentum of the system = 2mv cos 30o 

According to law of conservation of momentum, m  9 = 2mv cos 30o  

   v = 5.2 m/s 

 

Problem 93.  A ball of mass kg1 , moving with a velocity of sm /4.0  collides with another stationary ball. 

After the collision, the first ball moves with a velocity of sm /3.0  in a direction making an 

angle of o90  with its initial direction. The momentum of second ball after collision will be 

(in kg-m/s) 

(a) 0.1 (b) 0.3 (c) 0.5 (d) 0.7 

Solution : (c) Let second ball moves with momentum P making an angle  from the horizontal (as shown 

in the figure). 

By the conservation of horizontal momentum cos4.01 P  ......(i)  

By the conservation of vertical momentum       0.3 = sinP      ......(ii) 

From (i) and (ii) we get P = 0.5 kg-m/s 

 

 
 

Problem 94. Keeping the principle of conservation of momentum in mind which of the following collision 

diagram is not correct   

 

(a)  (b)  (c)  (d)   

 

 

Solution : (d) In this condition the final resultant momentum makes some angle with x-axis. Which is not 

possible because initial momentum is along the x-axis and according to law of conservation 

of momentum initial and final momentum should be equal in magnitude and direction both. 

Problem 95.  Three particles A, B and C of equal mass are moving with the same velocity v along the 

medians of an equilateral triangle. These particle collide at the centre G of triangle. After 

collision A becomes stationary, B retraces its path with velocity v then the magnitude and 

direction of velocity of C will be 

 

(a) v and opposite to B  

(b) v and in the direction of A 

(c) v and in the direction of C  

M1 

 

 

M2 

M2 M1 

M2 

 

 

M1 

M2 M1 

M1 

90o 

 

M2 

M2 M1 

M1 

90o 

M2 M2 M1 

m 

9 m/s 

m 

At 
rest 

v 

v 

30o 

m 

m 

30o 

v 

v 

v 

B 

C 

A 

Before 
collision 

1 kg 
0.4 m/s 

 

1 kg 

0.3 m/s 

P 
 
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(d)  v and in the direction of B 

Solution : (d) From the figure (I) it is clear that before collision initial momentum of the system = 0 

After the collision, A becomes stationary, B retraces its path with velocity v. Let C moves 

with velocity V making an angle  from the horizontal. As the initial momentum of the 

system is zero, therefore horizontal and vertical momentum after the collision should also 

be equal to zero. 

 

 

 

 

 

From figure (II) Horizontal momentum 030coscos  ovv       …..(i) 

                   Vertical momentum 030sinsin  ovv              …..(ii) 

 By solving (i) and (ii) we get o30  and V = v i.e. the C will move with velocity v in the 

direction of B. 

Problem 96.  A ball 1B  of mass M moving northwards with velocity v collides elastically with another 

ball 2B  of same mass but moving eastwards with the same velocity v. Which of the 

following statements will be true 

(a) 1B  comes to rest but 2B  moves with velocity v2  

(b) 1B  moves with velocity v2  but 2B  comes to rest 

(c) Both move with velocity 2/v  in north east direction 

(d)  1B  moves eastwards and 2B  moves north wards 

Solution : (d) Horizontal momentum and vertical momentum both should remain conserve before and 

after collision. This is possible only for the (d) option. 

 6.24 Head on Inelastic Collision. 

(1) Velocity after collision : Let two bodies A and B collide inelastically and coefficient of 

restitution is e. 

Where   
approachof   velocityRelative

separationof   velocityRelative

21

12 





uu

vv
e  

   )( 2112 uuevv    

   )( 2112 uuevv     ……(i) 

From the law of conservation of linear momentum 

   22112211 vmvmumum    ……(ii) 

By solving (i) and (ii) we get 

mv 

mv 

mv 

C 

B 

120o 

120o 

120o 

A 
V 

B 

C 

v 

 
A 

30o 
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   2
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2
1

21
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1
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u
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u
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v 


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

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





















  

Similarly   2

21

12
1

21

1
2

)1(
u

mm
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u
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me
v 














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










  

By substituting e = 1, we get the value of 1v  and 2u  for perfectly elastic head on collision. 

(2) Ratio of velocities after inelastic collision : A sphere of mass m moving with velocity 

u hits inelastically with another stationary sphere of same mass. 

   
0

12

21

12











u

vv

uu

vv
e   

   euvv  12    ……(i) 

By conservation of momentum : 

Momentum before collision = Momentum after collision 

   21 mvmvmu   

   uvv  21    ……(ii) 

Solving equation (i) and (ii) we get )1(
2

1 e
u

v   and )1(
2

2 e
u

v    

   
e

e

v

v






1

1

2

1  

(3) Loss in kinetic energy  

  Loss (K) = Total initial kinetic energy – Total final kinetic energy 

        = 
















 2

22
2
11

2
22

2
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2

1

2

1

2

1

2

1
vmvmumum  

Substituting the value of 1v  and 2v  from the above expression  

  Loss (K) = 2
21

2

21

21 )()1(
2

1
uue

mm

mm













 

By substituting e = 1 we get K = 0 i.e. for perfectly elastic collision loss of kinetic energy 
will be zero or kinetic energy remains constant before and after the collision. 

Sample problems based on inelastic collision 

Problem 97.  A body of mass kg40  having velocity sm /4  collides with another body of mass kg60  having 

velocity sm /2 . If the collision is inelastic, then loss in kinetic energy will be [CPMT 1996; UP PMT 1996; Pb. PMT 2001] 

(a) 440 J (b) 392 J (c) 48 J (d) 144 J 

Solution : (c) Loss of K.E. in inelastic collision 

484
100

2400

2

1
)24(

)6040(

6040

2

1
)(

)(2

1 22
21

21

21 






 uu

mm

mm
K J.  

Before 

collision 

After collision 

m 

u1 = u u2 = 
0 m1 

v1 v2 
m m 
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Problem 98.  One sphere collides with another sphere of same mass at rest inelastically. If the value of 

coefficient of restitution is 
2

1
, the ratio of their speeds after collision shall be     [RPMT 1998] 

(a) 1 : 2 (b) 2 : 1 (c) 1 : 3 (d) 3 : 1 

Solution : (c) 
3

1

2/3

2/1

2/11

2/11

1

1

2

1 










e

e

v

v
. 

Problem 99.  The ratio of masses of two balls is 2 : 1 and before collision the ratio of their velocities is 1 : 

2 in mutually opposite direction. After collision each ball moves in an opposite direction to 

its initial direction. If e = (5/6), the ratio of speed of each ball  before and after collision 

would be  

(a) (5/6) times   (b) Equal 

(c) Not related   (d) Double for the first ball and half for the 

second ball 

Solution : (a) Let masses of the two ball are 2m and m, and their speeds are u and 2u respectively. 

 

 

 

 

 

By conservation of momentum 22112211 vmvmumum    12 222 mvmvmumu   v2 = 

2v1  

Coefficient of restitution = 
6

5

3

3

)2(

)2(

)(

)( 1111

12

12 















u

v

u

v

uu

vv

uu

vv
               [As 

6

5
e  given] 

 
6

5

1

1

u

v
 ratio of the speed of first ball before and after collision. 

Similarly we can calculate the ratio of second ball before and after collision, 

6

5

2

2 11

2

2 
u

v

u

v

u

v
. 

Problem 100. Two identical billiard balls are in contact on a table. A third identical ball strikes them 

symmetrically and come to rest after impact. The coefficient of restitution is  

(a) 
3

2
 (b) 

3

1
 (c) 

6

1
 (d)  

2

3
 

Solution : (a) 
2

1

2
sin 

r

r
     = 30o  

2m m 

u1 = u u2 = 2u 

Before 

collision 

2m m 

v1 v2 

After collision 

v 

v 

 
u 
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From conservation of linear momentum omvmu 30cos2  or  
3

u
v    

Now 
approachof   velocityRelative

separationof   velocityRelative
e  in common normal direction. 

Hence, 
3

2

2/3

3/

30cos


u

u

u

v
e

o
 

Problem 101.  A body of mass kg3 , moving with a speed of 14 ms , collides head on with a stationary body 

of mass kg2 . Their relative velocity of separation after the collision is 12 ms . Then  

(a) The coefficient of restitution is 0.5 (b) The impulse of the collision is 7.2 N-s 

(c) The loss of kinetic energy due to collision is 3.6 J (d) The loss of kinetic energy due to collision is 7.2 J 

Solution: (a,b,c) kgm 31  , kgm 22  , smu /41  , 02 u  

 Relative velocity of approach smuu /421   

 Relative velocity of separation smvv /212   (given) 

 Coefficient of restitution 
approachof   velocityrelative

separationof   velocityrelative
e 5.0

2

1

4

2
  

 Loss in kinetic energy Juue
mm

mm
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 Final velocity of m1 mass,   2
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 Impulse of collision = change in momentum of mass m1 (or m2) = m1v1 – m1u1  

                         sN  -2.7128.412
5

24
43

5

8
3  .  

Problem 102.  Two cars of same mass are moving with same speed v on two different roads inclined at 

an angle   with each other, as shown in the figure. At the junction of these roads the two 

cars collide inelastically and move simultaneously with the same speed. The speed of these 
cars would be  

(a) 
2

cos


v  

(b) cos
2

v
 

(c) 
2

cos
2

v
 

(d) cos2v  

Solution : (a) Initial horizontal momentum of the system .
2

cos
2

cos


mvmv   

If after the collision cars move with common velocity V then final horizontal momentum of 

the system = 2mV. 

By the law of conservation of momentum,  2mV .
2

cos
2

cos
2

cos


vVmvmv   

m 

m 

 v 

v 
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 6.25 Rebounding of Ball After Collision With Ground. 

If a ball is dropped from a height h on a horizontal floor, then it strikes with the floor with 

a speed. 

  00 2ghv    [From ]222 ghuv   

and it rebounds from the floor with a speed 

  01 vev  02ghe  









collision  beforevelocity

collisionafter  velocity
 Ase  

(1) First height of rebound : 0
2

2
1

1
2

he
g

v
h   

  h1 = e2h0  

(2) Height of the ball after nth rebound : Obviously, the velocity of ball after nth rebound 

will be 

   0vev n
n   

Therefore the height after nth rebound will be 0
2

2

2
he

g

v
h nn

n   

   0
2 heh n

n   

(3) Total distance travelled by the ball before it stops bouncing 
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(4) Total time taken  by the ball to stop bouncing 

  ....222 3210  ttttT ....
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Sample problems based on rebound of ball after collision with ground 

Problem 103.  The change of momentum in each ball of mass gm60 , moving in opposite directions with 

speeds sm /4  collide and rebound with the same speed, is      [AFMC 2001] 

(a) smkg /-98.0  (b) smkg /-73.0  (c) smkg /-48.0  (d) smkg /-22.0  

Solution : (c) Momentum before collision = mv,     Momentum after collision = – mv 

  Change in momentum smkgsmkgmv /-48.0/-104804106022 33    

Problem 104.  A body falling from a height of 20m rebounds from hard floor. If it loses 20% energy in 

the impact, then coefficient of restitution is        [AIIMS 2000] 

(a) 0.89 (b) 0.56 (c) 0.23 (d) 0.18 

Solution : (a) It loses 20% energy in impact and only 80% energy remains with the ball 

 So ball will rise upto height mhh 1620
100

80
of  %80 12    

 Now coefficient of restitution 
1

2

h

h
e  .89.08.0

20

16
  

Problem 105.  A rubber ball is dropped from a height of m5  on a planet where the acceleration due to 

gravity is not known. On bouncing, it rises to m8.1 . The ball loses its velocity on bouncing 

by a factor of   [CBSE PMT 1998] 

(a) 16/25 (b) 2/5 (c) 3/5 (d) 9/25 

Solution : (c) If ball falls from height h1, then it collides with ground with speed 11 2ghv                …..(i) 

 and if it rebound with velocity v2, then it goes upto height h2 from ground, 22 2ghv     

…..(ii) 

 From (i) and (ii) 
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 6.26 Perfectly Inelastic Collision. 

 In such types of collisions the bodies move independently before collision but after collision as 

a one single body. 

(1) When the colliding bodies are moving in the same direction   

By the law of conservation of momentum  

  comb212211 )( vmmumum   

  
21

2211
comb

mm

umum
v




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After collision 
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m2 m2 m1 

vcomb 
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Loss in kinetic energy 2
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   [By substituting the value of vcomb] 

(2) When the colliding bodies are moving in the opposite direction  

By the law of conservation of momentum 

comb212211 )()( vmmumum   (Taking left to right as positive) 

 
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mm
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when 2211 umum   then 0comb v  (positive)  

i.e. the combined body will move along the direction of motion of mass 1m . 

when 2211 umum   then 0comb v  (negative)  

i.e. the combined body will move in a direction opposite to the motion of mass 1m . 

(3) Loss in kinetic energy  

  K = Initial kinetic energy – Final kinetic energy 
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Sample problems based on perfectly inelastic collision 

Problem 106.  Which of the following is not a perfectly inelastic collision  [BHU 1998; JIPMER 2001, 2002] 

(a) Striking of two glass balls  (b) A bullet striking a bag of 

sand 

(c) An electron captured by a proton  (d) A man jumping onto a moving cart 

Solution : (a) For perfectly elastic collision relative velocity of separation should be zero i.e. the colliding 

body should move together with common velocity. 

Problem 107.  A metal ball of mass kg2  moving with a velocity of hkm /36  has an head-on collision 

with a stationary ball of mass kg3 . If after the collision, the two balls move together, the 

loss in kinetic energy due to collision is 

[CBSE 1997; AIIMS 2001] 

(a) J40  (b) J60  (c) J100  (d) J140  

Solution : (b) Loss in kinetic energy .60)010(
32

32

2

1
)(

2

1 22
21

21

21 Juu
mm

mm
K 







  

Before 

collision 

m1 

u1 
m1 

u2 
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Problem 108.  A mass of kg20  moving with a speed of sm /10  collides with another stationary mass of 

5 kg. As a result of the collision, the two masses stick together. The kinetic energy of the 

composite mass will be  [MP PMT 2000] 

(a) 600 J (b) 800 J (c) 1000 J (d) 1200 J 

Solution : (b) By conservation of momentum  Vmmumum )( 212211   

Velocity of composite mass 
520

051020

21

2211











mm

umum
V sm/8  

  Kinetic energy of composite mass .8008)520(
2

1
)(

2

1 22
21 JVmm   

Problem 109.  A neutron having mass of kg271067.1   and moving at sm /10 8  collides with a deutron at 

rest and sticks to it. If the mass of the deutron is kg271034.3  ; the speed of the 

combination is    [CBSE PMT 2000] 

(a) sm /1056.2 3  (b) sm /1098.2 5  (c) sm /1033.3 7  (d) sm /1001.5 9  

Solution : (c) kgm 27
1 1067.1  , smu /10 8

1  , kgm 27
2 1034.3   and 02 u  

 Speed of the combination ./1033.3
1034.31067.1

0101067.1 7

2727

827

21

2211 sm
mm

umum
V 















 

Problem 110.  A particle of mass m  moving eastward with a speed v  collides with another particle of the 

same mass moving northward with the same speed v . The two particles coalesce on 

collision. The new particle of mass m2  will move in the north-easterly direction with a 

velocity   [NCERT 1980; CPMT 1991; MP PET 1999; DPMT 1999] 

(a) 2/v  (b) v2  (c) 2/v  (d)  v  

Solution : (c) Initially both the particles are moving perpendicular to each other with momentum mv. 

 So the net initial momentum mvmvmv 2)()( 22  . 

After the inelastic collision both the particles (system) 

moves with velocity V, so linear momentum = 2mV 

By the law of conservation of momentum mVmv 22   

 .2/vV   

Problem 111.  A particle of mass '' m  moving with velocity ''v  collides inelastically with a stationary 

particle of mass '2' m . The speed of the system after collision will be      [AIIMS 1999] 

(a) 
2

v
 (b) v2  (c) 

3

v
 (d) v3  

Solution : (c) By the conservation of momentum mVmmv 302    .
3

v
V   

Problem 112.  A ball moving with speed v hits another identical ball at rest.  The two balls stick together 

after collision. If specific heat of the material of the balls is S, the temperature rise 
resulting from the collision is     [Roorkee 1999] 

m 

m 

v 

V 2m 

v 
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(a) 
S

v

8

2

 (b) 
S

v

4

2

 (c) 
S

v

2

2

 (d)  
S

v2

 

Solution : (b) Kinetic energy of ball will raise the temperature of the system tSmmv  )2(
2

1 2   
S

v
t

4

2

 . 

Problem 113.  A bullet of mass a is fired with velocity b in a large block of mass c. The final velocity of the 

system will be 

(a) 
ca

c


 (b) 

ca

ab


 (c) 

c

ba )( 
 (d)  b

a

ca )( 
 

Solution : (b) Initially bullet moves with velocity b and after collision bullet get embedded in block and 

both move together with common velocity. 

 By the conservation of momentum a  b + 0 = (a + c) V 

  
ca

ab
V


  

 

Problem 114.  A particle of mass 1g having velocity ji ˆ2ˆ3   has a glued impact with another particle of 

mass 2g and velocity as kj ˆ6ˆ4  . Velocity of the formed particle is  

(a) 16.5 ms  (b) 0 (c) 14.6 ms  (d) 16.4 ms  

Solution : (d) By conservation of momentum Vmmumum


)( 21221   

  
21

2211

mm

umum
V







 

21

)ˆ64(2)ˆ23(1

mm

kjji




  

)21(

ˆ1263






kji
kji ˆ4ˆ2ˆ   

 1222 6.41641)4()2()1(||  smV


. 

Problem 115.  A body of mass 2kg is placed on a horizontal frictionless surface. It is connected to one end 

of a spring whose force constant is mN /250 . The other end of the spring is joined with the 

wall. A particle of mass 0.15kg  moving horizontally with speed v  sticks to the body after 

collision. If it compresses the spring by cm10 , the velocity of the particle is  

(a) sm /3  (b) sm /5  (c) sm /10  (d) sm /15  

Solution : (d) By the conservation of momentum  

Initial momentum of particle = Final momentum of system  m  v = (m + M) V 

 velocity of system 
)( Mm

mv
V


  

Now the spring compresses due to kinetic energy of the 

system so by the conservation of energy  

                  22 )(
2

1

2

1
VMmkx 

2
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2

1

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




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Mm  

 
Mm
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
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 )( Mmk
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Putting m = 0.15 kg, M = 2 kg, k = 250 N/m, x = 0.1 m we get v = 15 m/s. 

 6.27 Collision Between Bullet and Vertically Suspended Block. 

A bullet of mass m is fired horizontally with velocity u in block of mass M suspended by 

vertical thread. 

After the collision bullet gets embedded in block. Let the combined system raised upto 

height h and the string makes an angle  with the vertical.  

(1) Velocity of system 

Let v be the velocity of the system (block + bullet) just after the collision. 

 Momentumbullet + Momentumblock = Momentumbullet and block system 

        vMmmu )(0   

                 
)( Mm

mu
v


   ……(i) 

(2) Velocity of bullet : Due to energy which remains in the bullet block system, just after 

the collision, the system (bullet + block) rises upto height h. 

By the conservation of mechanical energy ghMmvMm )()(
2

1 2    ghv 2  

Now substituting this value in the equation (i) we get 
Mm

mu
gh


2  

           










 


m

ghMm
u

2)(
 

(3) Loss in kinetic energy : We know the formula for loss of kinetic energy in perfectly 

inelastic collision 

   2
21

21

21 )(
2

1
uu

mm

mm
K 


   

   2

2

1
u

Mm

mM
K


   [As uu 1 , 02 u , mm 1  and Mm 2 ] 

(4) Angle of string from the vertical  

From the expression of velocity of bullet 










 


m

ghMm
u

2)(
 we can get 
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

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u
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From the figure 
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h
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Problems based on collision between bullet and block 
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Problem 116.  A bullet of mass m  moving with velocity v  strikes a block of mass M  at rest and gets 

embeded into it. The kinetic energy of the composite block will be      [MP PET 2002] 

(a) 
)(2

1 2

Mm
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mv


  (b) 

)(2

1 2

Mm

M
mv
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  (c) 
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)(

2

1 2 
  (d) 

)(2

1 2

Mm

m
Mv


  

Solution : (a) By conservation of momentum,  

 Momentum of the bullet (mv) = momentum of the composite block (m + M)V 

 Velocity of composite block 
Mm

mv
V


  

  Kinetic energy .
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MmVMm  

Problem 117. A mass of gm10 , moving horizontally with a velocity of sec/100 cm , strikes the bob of a 

pendulum and strikes to it. The mass of the bob is also gm10  (see fig.) The maximum height 

to which the system can be raised is ( 2sec/10 mg  )      [MP PET 1993; RPMT 1997] 

 

(a) Zero 

(b) cm5  

(c) cm5.2  

(d) cm25.1  

Solution : (d) By the conservation of momentum,  

 Momentum of the bullet = Momentum of system  v )1010(110   smv /
2

1
  

 Now maximum height reached by system cmm
g

v
H 25.1

102

)2/1(

2

22

max 


 . 

Problem 118.  A bullet of mass m moving with a velocity v strikes a suspended wooden block of mass M as 

shown in the figure and sticks to it. If the block rises to a height h the initial velocity of the 

bullet is   [MP PMT 1997] 

(a) gh
m

Mm
2


 

(b) gh2  

(c) gh
M

mM
2


 

(d) gh
mM

m
2


 

Solution : (a) By the conservation of momentum VMmmv )(   

 and if the system goes upto height h then ghV 2  

  ghMmmv 2)(       gh
m

Mm
v 2


 . 
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(m+M) 

h m 
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1 m/s 10 gm 
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Problem 119.  A bag P (mass M) hangs by a long thread and a bullet (mass m) comes horizontally with 

velocity v and gets caught in the bag. Then for the combined (beg + bullet) system the    [CPMT 1989] 

(a) Momentum is 
mM

mvM


   (b) Kinetic energy 

2

2mV
 

(c) Momentum is 
M

mMmv )( 
  (d) Kinetic energy is 

)(2

22

mM

Vm


 

Solution : (d) Velocity of combined system 
Mm

mv
V


  

Momentum for combined system 
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mv
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Kinetic energy for combined system 
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Problem 120. A wooden block of mass M is suspended by a cord and is at rest. A bullet of mass m, moving 

with a velocity v pierces through the block and comes out with a velocity 2/v  in the same 

direction. If there is no loss in kinetic energy, then upto what height the block will rise  

(a) gMvm 222 2/  (b) gMvm 222 8/  (c) Mgvm 4/22  (d) Mgvm 2/22  

Solution : (b) By the conservation of momentum 

 Initial momentum = Final momentum 

 VM
v

mMmv 
2

0   v
M

m
V

2
  

 If block rises upto height h then 
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g

V
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2
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