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6.1  INTRODUCTION

Electricity and magnetism were considered separate and unrelated

phenomena for a long time. In the early decades of the nineteenth century,

experiments on electric current by Oersted, Ampere and a few others
established the fact that electricity and magnetism are inter-related. They

found that moving electric charges produce magnetic fields. For example,

an electric current deflects a magnetic compass needle placed in its vicinity.
This naturally raises the questions like: Is the converse effect possible?

Can moving magnets produce electric currents? Does the nature permit

such a relation between electricity and magnetism? The answer is
resounding yes! The experiments of Michael Faraday in England and

Joseph Henry in USA, conducted around 1830, demonstrated

conclusively that electric currents were induced in closed coils when
subjected to changing magnetic fields. In this chapter, we will study the

phenomena associated with changing magnetic fields and understand

the underlying principles. The phenomenon in which electric current is
generated by varying magnetic fields is appropriately called

electromagnetic induction.

When Faraday first made public his discovery that relative motion
between a bar magnet and a wire loop produced a small current in the

latter, he was asked, “What is the use of it?” His reply was: “What is the
use of a new born baby?” The phenomenon of electromagnetic induction
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is not merely of theoretical or academic interest but also
of practical utility. Imagine a world where there is no
electricity – no electric lights, no trains, no telephones and
no personal computers. The pioneering experiments of
Faraday and Henry have led directly to the development
of modern day generators and transformers. Today’s
civilisation owes its progress to a great extent to the
discovery of electromagnetic induction.

6.2 THE EXPERIMENTS OF FARADAY AND

HENRY

The discovery and understanding of electromagnetic
induction are based on a long series of experiments carried
out by Faraday and Henry. We shall now describe some
of these experiments.

Experiment 6.1

Figure 6.1 shows a coil C
1
* connected to a galvanometer

G. When the North-pole of a bar magnet is pushed
towards the coil, the pointer in the galvanometer deflects,
indicating  the presence of electric  current in the coil. The
deflection lasts as long as the bar magnet is in motion.
The galvanometer does not show any deflection when the
magnet is held stationary. When the magnet is pulled
away from the coil, the galvanometer shows deflection in
the opposite direction, which indicates reversal of the
current’s direction. Moreover, when the South-pole of
the bar magnet is moved towards or away from the
coil, the deflections in the galvanometer are opposite
to that observed with the North-pole for similar
movements. Further, the deflection (and hence current)
is found to be larger when the magnet is pushed
towards or pulled away from the coil faster. Instead,
when the bar magnet is held fixed and the coil C

1
 is

moved towards or away from the magnet, the same
effects are observed. It shows that it is the relative

motion between the magnet and the coil that is

responsible for generation (induction) of electric

current in the coil.

Experiment 6.2

In Fig. 6.2 the bar magnet is replaced by a second coil
C

2
 connected to a battery. The steady current in the

coil C
2
 produces a steady magnetic field. As coil C

2
 is

* Wherever the term ‘coil’ or ‘loop’ is used, it is assumed that they are made up of

conducting material and are prepared using wires which are coated with insulating

material.

FIGURE 6.1 When the bar magnet is
pushed towards the coil, the pointer in

the galvanometer G deflects.

Josheph Henry [1797 –
1878] American experimental
physicist, professor at
Princeton University and first
director of the Smithsonian
Institution. He made important
improvements in electro-
magnets by winding coils of
insulated wire around iron
pole pieces and  invented an
electromagnetic motor and a
new, efficient telegraph. He
discoverd self-induction and
investigated how currents in
one circuit induce currents in
another.
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moved towards the coil C
1
, the galvanometer shows a

deflection. This indicates that electric current is induced in
coil C

1
. When C

2
 is moved away, the galvanometer shows a

deflection again, but this time in the opposite direction. The
deflection lasts as long as coil C

2
 is in motion. When the coil

C
2 
is held fixed and C

1
 is moved, the same effects are observed.

Again, it is the relative motion between the coils that induces

the electric current.

Experiment 6.3

The above two experiments involved relative motion between
a magnet and a coil and between two coils, respectively.
Through another experiment, Faraday showed that this
relative motion is not an absolute requirement. Figure 6.3
shows two coils C

1
 and C

2
 held stationary. Coil C

1
 is connected

to galvanometer G while the second coil C
2
 is connected to a

battery through a tapping key K.

FIGURE 6.2  Current is
induced in coil C

1
 due to motion

of the current carrying coil C
2
.

FIGURE 6.3 Experimental set-up for Experiment 6.3.

It is observed that the galvanometer shows a momentary deflection
when the tapping key K is pressed. The pointer in the galvanometer returns
to zero immediately. If the key is held pressed continuously, there is no
deflection in the galvanometer. When the key is released, a momentory
deflection is observed again, but in the opposite direction. It is also observed
that the deflection increases dramatically when an iron rod is inserted
into the coils along their axis.

6.3  MAGNETIC FLUX

Faraday’s great insight lay in discovering a simple mathematical relation
to explain the series of experiments he carried out on electromagnetic
induction. However, before we state and appreciate his laws, we must get
familiar with the notion of magnetic flux, F 

B
. Magnetic flux is defined in

the same way as electric flux is defined in Chapter 1. Magnetic flux through
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a plane of area A placed in a uniform magnetic field B (Fig. 6.4) can
be written as

F 
B
  = B . A = BA cos q (6.1)

where q   is angle between B and A. The notion of the area as a vector
has been discussed earlier in Chapter 1. Equation (6.1) can be
extended to curved surfaces and nonuniform fields.

If the magnetic field has different magnitudes and directions at
various parts of a surface as shown in Fig. 6.5, then the magnetic
flux through the surface is given by

1 1 2 2
d dΦ = + +B A B A. .

B
... = B A.i id

all

∑ (6.2)

where ‘all’ stands for summation over all the area elements dA
i

comprising the surface and B
i
 is the magnetic field at the area element

dA
i
. The SI unit of magnetic flux is weber (Wb) or tesla meter

squared (T m2). Magnetic flux is a scalar quantity.

6.4  FARADAY’S LAW OF INDUCTION

From the experimental observations, Faraday arrived at a

conclusion that an emf is induced in a coil when magnetic flux

through the coil changes with time. Experimental observations

discussed in Section 6.2 can be explained using this concept.

The motion of a magnet towards or away from coil C
1
 in

Experiment 6.1 and moving a current-carrying coil C
2
 towards

or away from coil C
1
 in Experiment 6.2, change the magnetic

flux associated with coil C
1
.  The change in magnetic flux induces

emf in coil C
1
. It was this induced emf which caused electric

current to flow in coil C
1 

and through the galvanometer. A

plausible explanation for the observations of Experiment 6.3 is

as follows: When the tapping key K is pressed, the current in

coil C
2
 (and the resulting magnetic field) rises from zero to a

maximum value in a short time. Consequently, the magnetic

flux through the neighbouring coil C
1
 also increases. It is the change in

magnetic flux through coil C
1
 that produces an induced emf in coil C

1
.

When the key is held pressed, current in coil C
2
 is constant. Therefore,

there is no change in the magnetic flux through coil C
1
 and the current in

coil C
1
 drops to zero. When the key is released, the current in C

2
 and the

resulting magnetic field decreases from the maximum value to zero in a

short time. This results in a decrease in magnetic flux through coil C
1

and hence again induces an electric current in coil C
1
*. The common

point in all these observations is that the time rate of change of magnetic

flux through a circuit induces emf in it. Faraday stated experimental

observations in the form of a law called Faraday’s law of electromagnetic

induction. The law is stated below.

FIGURE 6.4 A plane of
surface area A placed in a
uniform magnetic field B.

FIGURE 6.5 Magnetic field B
i

at the i th area element. dA
i

represents area vector of the
i th area element.

* Note that sensitive electrical instruments in the vicinity of an electromagnet

can be damaged due to the induced emfs (and the resulting currents)  when the

electromagnet is turned on or off.
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The magnitude of the induced emf in a circuit is equal

to the time rate of change of magnetic flux through the

circuit.

Mathematically, the induced emf is given by

d
–

d
B

t

Φε = (6.3)

The negative sign indicates the direction of e  and hence

the direction of current in a closed loop. This will be

discussed in detail in the next section.
In the case of a closely wound coil of N turns, change

of flux associated with each turn, is the same. Therefore,

the expression for the total induced emf is given by

d
–

d
BN
t

Φε = (6.4)

The induced emf can be increased by increasing the

number of turns N of a closed coil.

From Eqs. (6.1) and (6.2), we see that the flux can be

varied by changing any one or more of the terms B, A and

q. In Experiments 6.1 and 6.2 in Section 6.2, the flux is
changed by varying B. The flux can also be altered by

changing the shape of a coil (that is, by shrinking it or

stretching it) in a magnetic field, or rotating a coil in a
magnetic field such that the angle q  between B and A

changes. In these cases too, an emf is induced in the

respective coils.

Example 6.1  Consider Experiment 6.2. (a) What would you do to obtain

a large deflection of the galvanometer? (b) How would you demonstrate

the presence of an induced current in the absence of a galvanometer?

Solution

(a) To obtain a large deflection, one or more of the following steps can

be taken:  (i) Use a rod made of soft iron inside the coil C
2
, (ii) Connect

the coil to a powerful battery, and (iii) Move the arrangement rapidly

towards the test coil C
1
.

(b) Replace the galvanometer by a small bulb, the kind one finds in a
small torch light. The relative motion between the two coils will cause

the bulb to glow and thus demonstrate the presence of an induced

current.

In experimental physics one must learn to innovate. Michael Faraday

who is ranked as one of the best experimentalists ever, was legendary

for his innovative skills.

Example 6.2 A square loop of side 10 cm and resistance 0.5 W is
placed vertically in the east-west  plane. A uniform magnetic field of

0.10 T is set up across the plane in the north-east direction. The

magnetic field is decreased to zero in 0.70 s at a steady rate. Determine
the magnitudes of induced emf and current during this time-interval.

Michael Faraday  [1791–
1867] Faraday made
numerous contributions to
science, viz., the discovery
of electromagnetic
induction, the laws of
electrolysis, benzene, and
the fact that the plane of
polarisation is rotated in an
electric field. He is also
credited with the invention
of the electric motor, the
electric generator and the
transformer. He is widely
regarded as the greatest
experimental scientist of
the nineteenth century.
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Solution The angle q made by the area vector of the coil with the

magnetic field is 45°. From Eq. (6.1), the initial magnetic flux is

F
 
= BA cos q

–20.1 10
Wb

2

×
=

Final flux, F
min 

= 0

The change in flux is brought about in 0.70 s. From Eq. (6.3), the

magnitude of the induced emf is given by

( )– 0
B

t t

ΦΦ
ε

∆
= =

∆ ∆
 

–310
= 1.0 mV

2 0.7
=

×
And the magnitude of the current is

–310 V
2mA

0.5
I

R

ε
= = =

Ω
Note that the earth’s magnetic field also produces a flux through the

loop. But it is a steady field (which does not change within the time
span of the experiment) and hence does not induce any emf.

Example 6.3

A circular coil of radius 10 cm, 500 turns and resistance 2 W is placed

with its plane perpendicular to the horizontal component of the earth’s
magnetic field. It is rotated about its vertical diameter through 180°

in 0.25 s. Estimate the magnitudes of the emf and current induced in

the coil. Horizontal component of the earth’s magnetic field at the
place is 3.0 × 10–5 T.

Solution

Initial flux through the coil,

F
B (initial)

= BA cos q

= 3.0 × 10–5 × (p ×10–2) × cos 0°

= 3p × 10–7 Wb

Final flux after the rotation,

F
B (final)    

= 3.0 × 10–5 × (p ×10–2) × cos 180°

= –3p × 10–7 Wb

Therefore, estimated value of the induced emf is,

N
t

Φε ∆=
∆

   = 500 × (6p × 10–7)/0.25

   = 3.8  × 10–3  V

I = e/R = 1.9 × 10–3 A

Note that the magnitudes of e and I are the estimated values. Their
instantaneous values are different and depend upon the speed of

rotation at the particular instant.
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6.5  LENZ’S LAW AND CONSERVATION OF ENERGY

In 1834, German physicist Heinrich Friedrich Lenz (1804-1865) deduced

a rule, known as Lenz’s law which gives the polarity of the induced emf

in a clear and concise fashion. The statement of the law is:

The polarity of induced emf is such that it tends to produce a current

which opposes the change in magnetic flux that produced it.

The negative sign shown in Eq. (6.3) represents this effect. We can

understand Lenz’s law by examining Experiment 6.1 in Section 6.2.1. In

Fig. 6.1, we see that the North-pole of a bar magnet is being pushed

towards the closed coil. As the North-pole of the bar magnet moves towards

the coil, the magnetic flux through the coil increases. Hence current is

induced in the coil in such a direction that it opposes the increase in flux.

This is possible only if the current in the coil is in a counter-clockwise

direction with respect to an observer situated on the side of the magnet.

Note that magnetic moment associated with this current has North polarity

towards the North-pole of the approaching magnet. Similarly, if the North-

pole of the magnet is being withdrawn from the coil, the magnetic flux

through the coil will decrease. To counter this decrease in magnetic flux,

the induced current in the coil flows in clockwise direction and its South-

pole faces the receding North-pole of the bar magnet. This would result in

an attractive force which opposes the motion of the magnet and the

corresponding decrease in flux.

What will happen if an open circuit is used in place of the closed loop

in the above example? In this case too, an emf is induced across the open

ends of the circuit. The direction of the induced emf can be found

using Lenz’s law. Consider Figs. 6.6 (a) and (b). They provide an easier

way to understand the direction of induced currents. Note that the

direction shown by  and  indicate the directions of the induced

currents.

A little reflection on this matter should convince us on the

correctness of Lenz’s law. Suppose that the induced current was in

the direction opposite to the one depicted in Fig. 6.6(a). In that case,

the South-pole due to the induced current will face the approaching

North-pole of the magnet. The bar magnet will then be attracted

towards the coil at an ever increasing acceleration. A gentle push on

the magnet will initiate the process and its velocity and kinetic energy

will continuously increase without expending any energy. If this can

happen, one could construct a perpetual-motion machine by a

suitable arrangement. This violates the law of conservation of energy

and hence can not happen.

Now consider the correct case shown in Fig. 6.6(a). In this situation,

the bar magnet experiences a repulsive force due to the induced

current. Therefore, a person has to do work in moving the magnet.

Where does the energy spent by the person go? This energy is

dissipated by Joule heating produced by the induced current.

FIGURE 6.6

Illustration of

Lenz’s law.
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Example 6.4

Figure 6.7 shows planar loops of different shapes moving out of or
into a region of a magnetic field which is directed normal to the plane

of the loop away from the reader. Determine the direction of induced

current in each loop using Lenz’s law.

FIGURE 6.7

Solution

(i) The magnetic flux through the rectangular loop abcd increases,

due to the motion of the loop into the region of magnetic field, The

induced current must flow along the path bcdab so that it opposes
the increasing flux.

(ii) Due to the outward motion, magnetic flux through the triangular

loop abc decreases due to which the induced current flows along
bacb, so as to oppose the change in flux.

(iii) As the magnetic flux decreases due to motion of the irregular

shaped loop abcd out of the region of magnetic field, the induced
current flows along cdabc, so as to oppose change in flux.

Note that there are no induced current as long as the loops are

completely inside or outside the region of the magnetic field.

Example 6.5
(a) A closed loop is held stationary in the magnetic field between the

north and south poles of two permanent magnets held fixed. Can
we hope to generate current in the loop by using very strong
magnets?

(b) A closed loop moves normal to the constant electric field between
the plates of a large capacitor. Is a current induced in the loop
(i) when it is wholly inside the region between the capacitor plates
(ii) when it is partially outside the plates of the capacitor? The
electric field is normal to the plane of the loop.

(c) A rectangular loop and a circular loop are moving out of a uniform
magnetic field region (Fig. 6.8) to a field-free region with a constant
velocity v. In which loop do you expect the induced emf to be
constant during the passage out of the field region?  The field is
normal to the loops.
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FIGURE 6.8

(d) Predict the polarity of the capacitor in the situation described by

Fig. 6.9.

FIGURE 6.9

Solution

(a) No. However strong the magnet may be, current can be induced
only by changing the magnetic flux through the loop.

(b) No current is induced in either case. Current can not be induced

by changing the electric flux.
(c) The induced emf is expected to be constant only in the case of the

rectangular loop. In the case of circular loop, the rate of change of

area of the loop during its passage out of the field region is not
constant, hence induced emf will vary accordingly.

(d) The polarity of plate ‘A’ will be positive with respect to plate ‘B’ in

the capacitor.

6.6  MOTIONAL ELECTROMOTIVE FORCE

Let us consider a straight conductor moving in a uniform and time-

independent magnetic field.  Figure 6.10 shows a rectangular conductor
PQRS in which the conductor PQ is free to move. The rod PQ is moved

towards the left with a constant velocity v as

shown in the figure. Assume that there is no
loss of energy due to friction. PQRS forms a

closed circuit enclosing an area that changes

as PQ moves. It is placed in a uniform magnetic
field B which is perpendicular to the plane of

this system. If the length RQ = x and RS = l, the

magnetic flux F
B 

enclosed  by the loop PQRS
will be

F
B
 = Blx

Since x is changing with time, the rate of change
of flux F

B 
will induce an emf given by:

( )– d d
–

d d
B Blx

t t

Φε = =

   = 
d

–
d

x
Bl Blv

t
= (6.5)

FIGURE 6.10  The arm PQ is moved to the left
side, thus decreasing the area of the

rectangular loop. This movement

induces a current I as shown.

Reprint 2025-26



Electromagnetic

Induction

163

where we have used dx/dt = –v  which is the speed of the conductor PQ.

The induced emf Blv is called motional emf. Thus, we are able to produce

induced emf by moving a conductor instead of varying the magnetic field,
that is, by changing the magnetic flux enclosed by the circuit.

It is also possible to explain the motional emf expression in Eq. (6.5)

by invoking the Lorentz force acting on the free charge carriers of conductor
PQ. Consider any arbitrary charge q in the conductor PQ. When the rod

moves with speed v, the charge will also be moving with speed v in the

magnetic field B. The Lorentz force on this charge is qvB in magnitude,
and its direction is towards Q. All charges experience the same force, in

magnitude and direction, irrespective of their position in the rod PQ.

The work done in moving the charge from P to Q is,

W = qvBl

Since emf is the work done per unit charge,

W

q
ε =

    = Blv

This equation gives emf induced across the rod PQ and is identical

to Eq. (6.5). We stress that our presentation is not wholly rigorous. But

it does help us to understand the basis of Faraday’s law when
the conductor is moving in a uniform and time-independent

magnetic field.

On the other hand, it is not obvious how an emf is induced when a
conductor is stationary and the magnetic field is changing – a fact which

Faraday verified by numerous experiments. In the case of a stationary

conductor, the force on its charges is given by

F = q (E + v ´́́́́ B) = qE (6.6)

since v = 0. Thus, any force on the charge must arise from the electric

field term E alone. Therefore, to explain the existence of induced emf or
induced current, we must assume that a time-varying magnetic field

generates an electric field. However, we hasten to add that electric fields

produced by static electric charges have properties different from those
produced by time-varying magnetic fields. In Chapter 4, we learnt that

charges in motion (current) can exert force/torque on a stationary magnet.

Conversely, a bar magnet in motion (or more generally, a changing
magnetic field) can exert a force on the stationary charge. This is the

fundamental significance of the Faraday’s discovery. Electricity and

magnetism are related.

Example 6.6  A metallic rod of 1 m length is rotated with a frequency
of 50 rev/s, with one end hinged at the centre and the other end at the

circumference of a circular metallic ring of radius 1 m, about an axis

passing through the centre and perpendicular to the plane of the ring
(Fig. 6.11). A constant and uniform magnetic field of 1 T parallel to the

axis is present everywhere. What is the emf between the centre and

the metallic ring?
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FIGURE 6.11

Solution

Method I

As the rod is rotated, free electrons in the rod move towards the outer
end due to Lorentz force and get distributed over the ring. Thus, the

resulting separation of charges produces an emf across the ends of

the rod. At a certain value of emf, there is no more flow of electrons
and a steady state is reached. Using Eq. (6.5), the magnitude of the

emf generated across a length dr of the rod as it moves at right angles

to the magnetic field is given by

d dBv rε = . Hence,

ε ε= = ∫∫ d dBv r
R

0

 = =∫ B r r
B R

R

ω
ω

d
2

0
2

Note that we have used v = w r. This gives

e 
21

1.0 2 50 (1 )
2

= × × π × ×

= 157 V

Method II

To calculate the emf, we can imagine a closed loop OPQ in which

point O and P are connected with a resistor R and OQ is the rotating
rod. The potential difference across the resistor is then equal to the

induced emf and equals B × (rate of change of area of loop). If q is the

angle between the rod and the radius of the circle at P at time t, the
area of the sector OPQ is given by

2 21

2 2
R R

θ θπ × =
π

where R is the radius of the circle. Hence, the induced emf is

e = B
t

R× 





d

d

1

2

2θ  = 
2

21 d

2 d 2

θ ω
=

B R
BR

t

[Note: 
d

2
dt

θ ω ν= = π ]

This expression is identical to the expression obtained by Method I
and we get the same value of e.
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Example 6.7

A wheel with 10 metallic spokes each 0.5 m long is rotated with a
speed of 120 rev/min in a plane normal to the horizontal component
of earth’s magnetic field H

E
 at a place. If H

E
 = 0.4 G at the place, what

is the induced emf between the axle and the rim of the wheel? Note
that 1 G = 10–4 T.

Solution

Induced emf = (1/2) ω B R2

= (1/2) × 4π × 0.4 × 10–4
 × (0.5)2

= 6.28 × 10–5 V

The number of spokes is immaterial because the emf’s across the
spokes are in parallel.

6.7  INDUCTANCE

An electric current can be induced in a coil by flux change produced by
another coil in its vicinity or flux change produced by the same coil. These

two situations are described separately in the next two sub-sections.
However, in both the cases, the flux through a coil is proportional to the
current. That is,  Φ

B
 α I.

Further, if the geometry of the coil does not vary with time then,

d d

d d

B
I

t t

Φ ∝

For a closely wound coil of N turns, the same magnetic flux is linked
with all the turns. When the flux Φ

B
 through the coil changes, each turn

contributes to the induced emf. Therefore, a term called flux linkage is
used which is equal to NΦ

B
 for a closely wound coil and in such a case

NΦ
B ∝  I

The constant of proportionality, in this relation, is called inductance.
We shall see that inductance depends only on the geometry of the coil
and intrinsic material properties. This aspect is akin to capacitance which

for a parallel plate capacitor depends on the plate area and plate separation
(geometry) and the dielectric constant K of the intervening medium
(intrinsic material property).

Inductance is a scalar quantity. It has the dimensions of [M L2 T–2 A–2]
given by the dimensions of flux divided by the dimensions of current. The
SI unit of inductance is henry and is denoted by H. It is named in honour

of Joseph Henry who discovered electromagnetic induction in USA,
independently of Faraday in England.

6.7.1  Mutual inductance

Consider Fig. 6.12 which shows two long co-axial solenoids each of length

l. We denote the radius of the inner solenoid S
1
 by r

1
 and the number of

turns per unit length by n
1
. The corresponding quantities for the outer

solenoid S
2 
are r

2 
and n

2
, respectively. Let N

1
 and N

2
 be the total number

of turns of coils S
1
 and S

2
, respectively.
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When a current I
2
 is set up through S

2
, it in turn sets

up a magnetic flux through S
1
. Let us denote it by Φ

1
.

The corresponding flux linkage with  solenoid S
1
 is

N
1 1 12 2

M IΦ = (6.7)

M
12

 is called the mutual inductance of solenoid S
1
 with

respect to solenoid S
2
. It is also referred to as the

coefficient of mutual induction.
For these simple co-axial solenoids it is possible to

calculate M
12

. The magnetic field due to the current I
2 
in

S
2
 is µ

0
n

2
I
2
. The resulting flux linkage with coil S

1 
is,

( ) ( ) ( )2

1 1 1 1 0 2 2
N n l r n IΦ µ= π

         2

0 1 2 1 2
n n r l Iµ= π (6.8)

where n
1
l is the total number of turns in solenoid S

1
.

Thus, from Eq. (6.7) and Eq. (6.8),

M
12

 = µ
0
n

1
n

2
πr

2
1
l (6.9)

Note that we neglected the edge effects and considered

the magnetic field µ
0
n

2
I
2
 to be uniform throughout the

length and width of the solenoid S
2
. This is a good approximation keeping

in mind that the solenoid is long, implying l  >> r
2
.

We now consider the reverse case. A current I
1 
is passed through the

solenoid S
1 
and the flux linkage with coil S

2 
is,

N
2
Φ

2
 = M

21
 I

1
(6.10)

M
21

 is called the mutual inductance of solenoid S
2
 with respect to

solenoid S
1
.

The flux due to the current I
1
 in S

1 
can be assumed to be confined

solely inside S
1
 since the solenoids are very long. Thus, flux linkage with

solenoid S
2
 is

( ) ( ) ( )2

2 2 2 1 0 1 1
N n l r n IΦ µ= π

where n
2
l is the total number of turns of S

2
. From Eq. (6.10),

M
21

 = µ
0
n

1
n

2
πr

2

1
l (6.11)

Using Eq. (6.9) and Eq. (6.10), we get

M
12 

= M
21

= M (say) (6.12)

We have demonstrated this equality for long co-axial solenoids.
However, the relation is far more general. Note that if the inner solenoid
was much shorter than (and placed well inside) the outer solenoid, then

we could still have calculated the flux linkage N
1
Φ

1
 because the inner

solenoid is effectively immersed in a uniform magnetic field due to the
outer solenoid. In this case, the calculation of M

12
 would be easy. However,

it would be extremely difficult to calculate the flux linkage with the outer
solenoid as the magnetic field due to the inner solenoid would vary across
the length as well as cross section of the outer solenoid. Therefore, the

calculation of M
21

 would also be extremely difficult in this case. The
equality M

12
=M

21
 is very useful in such situations.

FIGURE 6.12 Two long co-axial

solenoids of same
length l .
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We explained the above example with air as the medium within the
solenoids. Instead, if a medium of relative permeability µ

r
 had been present,

the mutual inductance would be

M =µ
r 
µ

0 
n

1
n

2
π r2

1 
l

It is also important to know that the mutual inductance of a pair of
coils, solenoids, etc., depends on their separation as well as their relative
orientation.

Example 6.8 Two concentric circular coils, one of small radius r
1
 and

the other of large radius r
2
, such that r

1
 << r

2
,
 
 are placed co-axially

with centres coinciding. Obtain the mutual inductance of the

arrangement.

Solution  Let a current I
2
 flow through the outer circular coil. The

field at the centre of the coil is B
2
 = µ

0
I
2
 / 2r

2
. Since the other

co-axially placed coil has a very small radius, B
2
 may be considered

constant over its cross-sectional area. Hence,
Φ

1
 = πr 2

1
B

2

     

2

0 1

2

2
2

r
I

r

µ π
=

     = M
12 

I
2

Thus,

2

0 1

12

2
2

r
M

r

µ π
=

From Eq. (6.12)

2

0 1

12 21

2
2

r
M M

r

µ π
= =

Note that we calculated M
12

 from an approximate value of Φ
1
, assuming

the magnetic field B
2
 to be uniform over the area π r

1
2. However, we

can accept this value because r
1 

<< r
2
.

Now, let us recollect Experiment 6.3 in Section 6.2. In that experiment,
emf is induced in coil C

1
 wherever there was any change in current through

coil C
2
. Let Φ

1
 be the flux through coil C

1
 (say of N

1
 turns) when current in

coil C
2
 is I

2
.

Then, from Eq. (6.7), we have
N

1
Φ

1
 = MI

2

For currents varrying with time,

( ) ( )1 1 2
d d

d d

N MI

t t

Φ
=

Since induced emf in coil C
1
 is given by

( )1 1
d

–
d

N

t

Φ
ε1 =

We get,

2
d

–
d

I
M

t
ε1 =
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It shows that varying current in a coil can induce emf in a neighbouring
coil. The magnitude of the induced emf depends upon the rate of change

of current and mutual inductance of the two coils.

6.7.2  Self-inductance

In the previous sub-section, we considered the flux in one solenoid due
to the current in the other.  It is also possible that emf is induced in a

single isolated coil due to change of flux through the coil by means of
varying the current through the same coil. This phenomenon is called
self-induction. In this case, flux linkage through a coil of N turns is

proportional to the current through the coil and is expressed as

B
N IΦ ∝

B
LN IΦ = (6.13)

where constant of proportionality L is called self-inductance of the coil. It

is also called the coefficient of self-induction of the coil. When the current
is varied, the flux linked with the coil also changes and an emf is induced
in the coil. Using Eq. (6.13), the induced emf is given by

( )B
d

–
d

N

t

Φ
ε =

d
–

d

I
L

t
ε = (6.14)

Thus, the self-induced emf always opposes any change  (increase or
decrease) of current in the coil.

It is possible to calculate the self-inductance for circuits with simple

geometries. Let us calculate the self-inductance of a long solenoid of cross-
sectional area A and length l, having n turns per unit length. The magnetic
field due to a current I flowing in the solenoid is B = µ

0
 n I  (neglecting edge

effects, as before). The total flux linked with the solenoid is

( )( )( )0B
N nl n I AΦ µ=

IAln
2

0
µ=

where nl is the total number of turns. Thus, the self-inductance is,

L
I

ΒΝΦ=

   2

0
n Alµ= (6.15)

If we fill the inside of the solenoid with a material of relative permeability

µ
r
 (for example soft iron, which has a high value of relative permeability),

then,

2

0r
L n Alµ µ= (6.16)

The self-inductance of the coil depends on its geometry and on the

permeability of the medium.

The self-induced emf is also called the back emf  as it opposes any

change in the current in a circuit. Physically, the self-inductance plays
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the role of inertia. It is the electromagnetic analogue of mass in mechanics.

So, work needs to be done against the back emf (ε ) in establishing the

current. This work done is stored as magnetic potential energy. For the

current I at an instant in a circuit, the rate of work done is

d

d

W
I

t
ε=

If we ignore the resistive losses and consider only inductive effect,

then using Eq. (6.14),

d d

d d

W I
L I

t t
=

Total amount of work done in establishing the current I is

W W L I I

I

= =∫ ∫d d

0

Thus, the energy required to build up the current I is,

21

2
W LI= (6.17)

This expression reminds us of mv
2/2 for the (mechanical) kinetic energy

of a particle of mass m, and shows that L is analogous to m (i.e., L is

electrical inertia and opposes growth and decay of current in the circuit).

Consider the general case of currents flowing simultaneously in two

nearby coils. The flux linked with one coil will be the sum of two fluxes

which exist independently. Equation (6.7) would be modified into

N
1 1 11 1 12 2

M I M IΦ = +

where M
11

 represents inductance due to the same coil.

Therefore, using Faraday’s law,

1 2

1 11 12

d d

d d

I I
M M

t t
ε = − −

M
11 

is the self-inductance and is written as L
1
. Therefore,

1 2

1 1 12

d d

d d

I I
L M

t t
ε = − −

Example 6.9 (a) Obtain the expression for the magnetic energy stored
in a solenoid in terms of magnetic field B, area A and length l of the

solenoid. (b) How does this magnetic energy compare with the
electrostatic energy stored in a capacitor?

Solution

(a) From Eq. (6.17), the magnetic energy is

21

2
B

U LI=

=






=( )1

2

2

L
B

n
nI

µ
µ

0

0
Bsince  for a solenoid,

 E
X

A
M

P
L
E
 6

.9
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=






1

2
0

2

0

2

( )µ
µ

n Al
B

n
        [from Eq. (6.15)]

2

0

1

2
B Al

µ
=

(b) The magnetic energy per unit volume is,

B
B

U
u

V
=             (where V is volume that contains flux)

      
BU

Al
=

      

2

02

B

µ
= (6.18)

We have already obtained the relation for the electrostatic energy

stored per unit volume in a parallel plate capacitor (refer to Chapter 2,
Eq. 2.73),

2
0

1

2
u EΕ ε= (2.73)

In both the cases energy is proportional to the square of the field

strength. Equations (6.18) and (2.73) have been derived for special
cases: a solenoid and a parallel plate capacitor, respectively. But they
are general and valid for any region of space in which a magnetic field

or/and an electric field exist.

FIGURE 6.13 AC Generator
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6.8  AC GENERATOR

The phenomenon of electromagnetic induction
has been technologically exploited in many ways.

An exceptionally important application is the
generation of alternating currents (ac). The
modern ac generator with a typical output

capacity of 100 MW is a highly evolved machine.
In this section, we shall describe the basic
principles behind this machine. The Yugoslav

inventor Nicola Tesla is credited with the
development of the machine. As was pointed out
in Section 6.3, one method to induce an emf or

current in a loop is through a change in the
loop’s orientation or a change in its effective area.
As the coil rotates in a magnetic field B, the

effective area of the loop (the face perpendicular
to the field) is A cos q, where q is the angle
between A and B. This method of producing a

flux change is the principle of operation of a
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simple ac generator. An ac generator converts mechanical energy into
electrical energy.

The basic elements of an ac generator are shown in Fig. 6.13. It consists
of a coil mounted on a rotor shaft. The axis of rotation of the coil is
perpendicular to the direction of the magnetic field. The coil (called

armature) is mechanically rotated in the  uniform magnetic field by some
external means. The rotation of the coil causes the magnetic flux through
it to change, so an emf is induced in the coil. The ends of the

coil are connected to an external circuit by means of slip rings
and brushes.

When the coil is rotated with a constant angular speed w, the angle q

between the magnetic field vector B and the area vector A of the coil at any
instant t is q  = wt (assuming q = 0° at t = 0). As a result, the effective area
of the coil exposed to the magnetic field lines changes with time, and from

Eq. (6.1), the flux at any time t is

F
B
 = BA cos q = BA cos wt

From Faraday’s law, the induced emf for the rotating coil of N turns

is then,

d d
– – (cos )

dt d
BN NBA t

t

Φε ω= =

Thus, the instantaneous value of the emf is

ε ω ω= NBA sin t (6.19)

where NBAw is the maximum value of the emf, which occurs when

sin wt = ±1. If we denote NBAw as e
0
, then

e = e
0
 sin wt (6.20)

Since the value of the sine fuction varies between +1 and –1, the sign, or

polarity of the emf changes with time. Note from Fig. 6.14 that the emf
has its extremum value when q = 90° or q = 270°, as the change of flux is
greatest at these points.

The direction of the current changes periodically and therefore the current
is called alternating current (ac). Since w = 2pn, Eq (6.20) can be written as

e = e
0
sin 2p n t (6.21)

where n is the frequency of revolution of the generator’s coil.
Note that Eq. (6.20) and (6.21) give the instantaneous value of the emf

and e varies between +e
0
 and –e

0
 periodically. We shall learn how to

determine the time-averaged value for the alternating voltage and current
in the next chapter.

In commercial generators, the mechanical energy required for

rotation of the armature is provided by water falling from a height, for
example, from dams. These are called hydro-electric generators.
Alternatively, water is heated to produce steam using coal or other

sources. The steam at high pressure produces the rotation of the
armature. These are called thermal generators. Instead of coal, if a
nuclear fuel is used, we get nuclear power generators. Modern day

generators produce electric power as high as 500 MW, i.e., one can light

Reprint 2025-26



Physics

172

 E
X

A
M

P
L
E
 6

.1
0

Example 6.10 Kamla peddles a stationary bicycle. The pedals of the
bicycle are attached to a 100 turn coil of area 0.10 m2. The coil rotates

at half a revolution per second and it is placed in a uniform magnetic
field of 0.01 T perpendicular to the axis of rotation of the coil. What is
the maximum voltage generated in the coil?

Solution  Here n = 0.5 Hz; N =100, A = 0.1 m2 and B = 0.01 T. Employing
Eq. (6.19)

e
0
 = NBA (2 p n)

   = 100 × 0.01 × 0.1 × 2 × 3.14 × 0.5

   = 0.314 V

The maximum voltage is 0.314 V.

We urge you to explore such alternative possibilities for power

generation.

FIGURE 6.14 An alternating emf is generated by a loop of wire rotating in a magnetic field.

up 5 million 100 W bulbs! In most generators, the coils are held
stationary and it is the electromagnets which are rotated. The frequency
of rotation is 50 Hz in India. In certain countries such as USA, it is

60 Hz.
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SUMMARY

1. The magnetic flux through a surface of area A placed in a uniform magnetic
field B is defined as,

F
B
 = B.A = BA cos q

where q is the angle between B and A.

2. Faraday’s laws of induction imply that the emf induced in a coil of N

turns is directly related to the rate of change of flux through it,

Bd

d
N

t

Φε = −

Here F
B
 is the flux linked with one turn of the coil. If the circuit is

closed, a current I = e/R is set up in it, where R is the resistance of the

circuit.

3. Lenz’s law states that the polarity of the induced emf is such that it

tends to produce a current which opposes the change in magnetic flux
that produces it. The negative sign in the expression for Faraday’s law

indicates this fact.

4. When a metal rod of length l is placed normal to a uniform magnetic

field B and moved with a velocity v perpendicular to the field, the

induced emf (called motional emf) across its ends is

e = Bl v

5. Inductance is the ratio of the flux-linkage to current. It is equal to NF/I.

6. A changing current in a coil (coil 2) can induce an emf in a nearby coil
(coil 1). This relation is given by,

2
1 12

d

d

I
M

t
ε = −

The quantity M
12 

is called mutual inductance of coil 1 with respect to

coil 2. One can similarly define M
21

. There exists a general equality,

M
12

 = M
21

7. When a current in a coil changes, it induces a back emf in the same

coil. The self-induced emf is given by,

d

d

I
L

t
ε = −

L is the self-inductance of the coil. It is a measure of the inertia of the
coil against the change of current through it.

8. The self-inductance of a long solenoid, the core of which consists of a

magnetic material of relative permeability m
r
, is given by

L = m
r  

m
0 
n2 Al

where A is the area of cross-section of the solenoid, l its length and n

the number of turns per unit length.
9. In an ac generator, mechanical energy is converted to electrical energy

by virtue of electromagnetic induction. If coil of N turn and area A is

rotated at n revolutions per second in a uniform magnetic field B, then
the motional emf produced is

e = NBA (2pn) sin (2pnt)

where we have assumed that at time t = 0 s, the coil is perpendicular to
the field.
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POINTS TO PONDER

1. Electricity and magnetism are intimately related. In the early part of the

nineteenth century, the experiments of Oersted, Ampere and others

established that moving charges (currents) produce a magnetic field.

Somewhat later, around 1830, the experiments of Faraday and Henry

demonstrated that a moving magnet can induce electric current.

2. In a closed circuit, electric currents are induced so as to oppose the

changing magnetic flux. It is as per the law of conservation of energy.

However, in case of an open circuit, an emf is induced across its ends.

How is it related to the flux change?

3. The motional emf discussed in Section 6.5 can be argued independently

from Faraday’s law using the Lorentz force on moving charges. However,

even if the charges are stationary [and the q (v × B) term of the Lorentz

force is not operative], an emf is nevertheless induced in the presence of a

time-varying magnetic field. Thus, moving charges in static field and static

charges in a time-varying field seem to be symmetric situation for Faraday’s

law. This gives a tantalising hint on the relevance of the principle of

relativity for Faraday’s law.

EXERCISES

6.1 Predict the direction of induced current in the situations described
by the following Figs. 6.15(a) to (f ).

Quantity Symbol Units Dimensions Equations

Magnetic Flux F
B

Wb (weber) [M L2 T –2 A–1] F
B
 = B Ai

EMF e V (volt) [M L2 T –3 A–1] e = Bd( )/dN tΦ−

Mutual Inductance M H (henry) [M L2 T –2 A–2] e
1
 ( )12 2d /dM I t= −

Self Inductance L H (henry) [M L2 T –2 A–2] ( )d /dL I tε = −
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FIGURE 6.15

6.2 Use Lenz’s law to determine the direction of induced current in the

situations described by Fig. 6.16:

(a) A wire of irregular shape turning into a circular shape;
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(b) A circular loop being deformed into a narrow straight wire.

FIGURE 6.16

6.3 A long solenoid with 15 turns per cm has a small loop of area 2.0 cm2

placed inside the solenoid normal to its axis. If the current carried

by the solenoid changes steadily from 2.0 A to 4.0 A in 0.1 s, what is

the induced emf in the loop while the current is changing?

6.4 A rectangular wire loop of sides 8 cm and 2 cm with a small cut is

moving out of a region of uniform magnetic field of magnitude 0.3 T
directed normal to the loop. What is the emf developed across the

cut if the velocity of the loop is 1 cm s–1 in a direction normal to the

(a) longer side, (b) shorter side of the loop? For how long does the
induced voltage last in each case?

6.5 A 1.0 m long metallic rod is rotated with an angular frequency of
400 rad s–1

 
about an axis normal to the rod passing through its one

end. The other end of the rod is in contact with a circular metallic

ring. A constant and uniform magnetic field of 0.5 T parallel to the
axis exists everywhere. Calculate the emf developed between the

centre and the ring.

6.6 A horizontal straight wire 10 m long extending from east to west is

falling with a speed of 5.0 m s–1, at right angles to the horizontal

component of the earth’s magnetic field, 0.30 ´ 10–4 Wb m–2.
(a) What is the instantaneous value of the emf induced in the wire?

(b) What is the direction of the emf?

(c) Which end of the wire is at the higher electrical potential?

6.7 Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf

of 200 V induced, give an estimate of  the self-inductance of the circuit.

6.8 A pair of adjacent coils has a mutual inductance of 1.5 H. If the

current in one coil changes from 0 to 20 A in 0.5 s, what is the
change of flux linkage with the other coil?
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