
4.1  INTRODUCTION

Both Electricity and Magnetism have been known for more than 2000

years. However, it was only about 200 years ago, in 1820, that it was

realised that they were intimately related. During a lecture demonstration
in the summer of 1820, Danish physicist Hans Christian Oersted noticed

that a current in a straight wire caused a noticeable deflection in a nearby

magnetic compass needle. He investigated this phenomenon. He found
that the alignment of the needle is tangential to an imaginary circle which

has the straight wire as its centre and has its plane perpendicular to the

wire. This situation is depicted in Fig.4.1(a). It is noticeable when the
current is large and the needle sufficiently close to the wire so that the

earth’s magnetic field may be ignored. Reversing the direction of the

current reverses the orientation of the needle [Fig. 4.1(b)]. The deflection
increases on increasing the current or bringing the needle closer to the

wire. Iron filings sprinkled around the wire arrange themselves in

concentric circles with the wire as the centre [Fig. 4.1(c)]. Oersted
concluded that moving charges or currents produced a magnetic field

in the surrounding space.

Following this, there was intense experimentation. In 1864, the laws
obeyed by electricity and magnetism were unified and formulated by
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James Maxwell who then realised that light was electromagnetic waves.

Radio waves were discovered by Hertz, and produced by  J.C.Bose and

G. Marconi by the end of the 19th century. A  remarkable scientific and
technological progress took place in the 20th century. This was due to

our increased understanding of electromagnetism and the invention of

devices for production, amplification, transmission and detection of
electromagnetic waves.

In this chapter, we will see how magnetic field exerts

forces on moving charged particles, like electrons, protons,

and current-carrying wires. We shall also learn how

currents produce magnetic fields. We shall see how

particles can be accelerated to very high energies in a

cyclotron. We shall study how currents and voltages are

detected by a galvanometer.

In this and subsequent Chapter on magnetism,
we adopt the following convention: A current or a

field (electric or magnetic) emerging out of the plane of the

paper is depicted by a dot (¤). A current or a field going
into the plane of the paper is depicted by a cross ( )*.
Figures. 4.1(a) and 4.1(b) correspond to these two

situations, respectively.

4.2  MAGNETIC FORCE

4.2.1  Sources and fields

Before we introduce the concept of a magnetic field B, we

shall recapitulate what we have learnt in Chapter 1 about

the electric field E. We have seen that the interaction

between two charges can be considered in two stages.

The charge Q, the source of the field, produces an electric

field E, where

FIGURE 4.1 The magnetic field due to a straight long current-carrying
wire. The wire is perpendicular to the plane of the paper. A ring of

compass needles surrounds the wire. The orientation of the needles is

shown when (a) the current emerges out of the plane of the paper,
(b) the current moves into the plane of the paper. (c) The arrangement of

iron filings around the wire. The darkened ends of the needle represent

north poles. The effect of the earth’s magnetic field is neglected.

* A dot appears like the tip of an arrow pointed at you, a cross is like the feathered

tail of an arrow moving away from you.

Hans Christian Oersted
(1777–1851) Danish

physicist and chemist,
professor at Copenhagen.

He observed that a

compass needle suffers a
deflection when placed

near a wire carrying an

electric current. This
discovery gave the first

empirical evidence of a

connection between electric
and magnetic phenomena.
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E = Q r̂ / (4pe
0
)r2 (4.1)

where r̂  is unit vector along r,  and  the field E is a vector
field. A charge q interacts with this field and experiences

a force F given by

F  =  q  E   = q Q r̂   / (4pe
0
) r 2 (4.2)

As pointed out in the Chapter 1, the field E is not just

an artefact but has a physical role. It can  convey  energy

and momentum and is not established instantaneously

but takes finite time to propagate. The concept of a field

was specially stressed by Faraday  and was incorporated

by Maxwell in his unification of electricity and magnetism.

In addition to depending on each point in space, it can

also vary with time, i.e., be a function of time.  In our

discussions in this chapter, we will assume that the fields

do not change with time.

The field at a particular point can be due to one or

more charges. If there are more charges the fields add

vectorially. You have already learnt in Chapter 1 that this

is called the principle of superposition. Once the field is

known, the force on a test charge is given by Eq. (4.2).

Just as static charges produce an electric field, the

currents or moving charges produce (in addition) a

magnetic field, denoted by B (r), again a vector field. It

has several basic properties identical to the electric field.

It is defined at each point in space (and can in addition

depend on time). Experimentally, it is found to obey the

principle of superposition: the magnetic field of several

sources is the vector addition of magnetic field of each

individual source.

4.2.2  Magnetic Field,  Lorentz  Force

Let us suppose that there is  a point charge q (moving

with a velocity v and, located at r at a given time t ) in
presence of both the electric field E (r) and the magnetic
field B (r).  The force on an electric charge q due to both

of them can be written as

F   = q [ E (r) +  v × B (r)] º F
electric

 +F
magnetic

(4.3)

This force was given first  by H.A. Lorentz based on the extensive

experiments of Ampere and others. It is called the Lorentz force. You
have already studied in detail the force due to the electric field. If we
look at the interaction with the magnetic field, we find the following

features.
(i) It depends on q, v and B (charge of the particle, the velocity and the

magnetic field). Force on a negative charge is opposite to that on a

positive charge.

(ii) The magnetic force q [ v × B ] includes a vector product of velocity
and magnetic field. The vector product makes the force due to magnetic
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Hendrik Antoon Lorentz
(1853 – 1928) Dutch
theoretical physicist,

professor at Leiden. He
investigated the
relationship between

electricity, magnetism, and
mechanics. In order to
explain the observed effect

of magnetic fields on
emitters of light (Zeeman
effect), he postulated the
existence of electric charges

in the atom, for which he
was awarded the Nobel Prize
in 1902. He derived a set of

transformation equations
(known after him, as
Lorentz transformation

equations) by some tangled
mathematical arguments,
but he was not aware that

these equations hinge on a
new concept of space and
time.
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field vanish (become zero) if  velocity and magnetic field are parallel
or anti-parallel. The force acts in a (sideways) direction perpendicular

to both the velocity and the magnetic field. Its
direction  is given by the screw rule or right hand
rule  for vector (or cross) product as illustrated
in Fig. 4.2.
(iii) The magnetic force is zero if  charge is not

moving (as then |v|= 0).  Only a moving
charge feels the magnetic force.

The expression for the magnetic force helps
us to define the unit of the magnetic field, if one
takes q, F and v, all to be unity in the force
equation F = q [ v × B] =q v B sin q n̂ ,  where q is
the angle between v and B [see  Fig. 4.2 (a)]. The
magnitude of magnetic field B is 1 SI unit, when
the force acting on a unit charge (1 C), moving
perpendicular to B with a speed 1m/s, is one
newton.
Dimensionally, we have [B] = [F/qv] and the unit

of B are Newton second / (coulomb metre).  This unit is called tesla (T )
named after Nikola Tesla (1856 – 1943). Tesla is a rather large unit. A
smaller  unit (non-SI) called gauss (=10–4 tesla) is also often used. The
earth’s magnetic field is about 3.6 × 10–5 T.

4.2.3  Magnetic force on a current-carrying conductor

We can extend the analysis for force due to magnetic field on a single
moving charge to a straight rod carrying current. Consider a rod of a
uniform cross-sectional area A and length l. We shall assume one kind
of mobile carriers as in a conductor (here electrons). Let the number
density of these mobile charge carriers in it be n. Then the total number
of mobile charge carriers in it is nlA. For a steady current I in this
conducting rod, we may assume that each mobile carrier has an average
drift velocity v

d
 (see Chapter 3). In the presence of an external magnetic

field B, the force on these carriers is:
F = (nlA)q v

d
 ´́́́́ B

where q is the value of the charge on  a carrier.  Now nq v
d
 is the current

density j and |(nq v
d
)|A is the current I (see Chapter 3 for the discussion

of current and current density). Thus,
F = [(nq v

d 
)lA] × B = [ jAl ] ´́́́́ B

   = Il ´́́́́ B (4.4)
where l is a vector of magnitude l, the length of the rod, and with a direction
identical to the current I. Note that the current I is not a vector. In the last
step leading to Eq. (4.4), we have transferred the vector sign from  j to l.

Equation (4.4) holds for a straight rod. In this equation, B is the
external magnetic field. It is not the field produced by the current-carrying
rod. If the wire has an arbitrary shape we can calculate the Lorentz force
on it by considering it as a collection of linear strips dl

j
 and summing

j
j

Id × F Bl

This summation can be converted to an integral in most cases.

FIGURE 4.2 The direction of the magnetic
force acting on a charged particle. (a) The

force on a positively charged particle with

velocity v and making an angle q with the
magnetic field B is given by the right-hand

rule. (b) A moving charged particle q is

deflected in an opposite sense to –q in the
presence of magnetic field.
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Example 4.1 A straight wire of mass 200 g and length 1.5 m carries

a current of 2 A. It is suspended in mid-air by a uniform horizontal
magnetic field B (Fig. 4.3). What is the magnitude of the magnetic
field?

FIGURE 4.3

Solution  From Eq. (4.4), we find that there is an upward force F, of
magnitude IlB,. For mid-air suspension, this must be balanced by

the force due to gravity:
m g = I lB

  
m g

B
I l

=

     
0.2 9.8

0.65 T
2 1.5

×= =
×

Note that it would have been sufficient to specify m/l, the mass per
unit length of the wire. The earth’s magnetic field is approximately
4 × 10–5 T and we have ignored it.

Example 4.2 If the magnetic field is parallel to the positive y-axis

and the charged particle is moving along the positive x-axis (Fig. 4.4),
which way would the Lorentz force be for (a) an electron (negative
charge), (b) a proton (positive charge).

FIGURE 4.4

Solution   The velocity v of particle is along the x-axis, while B, the
magnetic field is along the y-axis, so v × B is along the z-axis (screw
rule or right-hand thumb rule). So, (a) for electron it will be along –z

axis. (b) for a positive charge (proton) the force is along +z axis.
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4.3  MOTION IN A MAGNETIC FIELD

We will now consider, in greater detail, the motion of a charge moving in

a  magnetic field.  We have learnt  in Mechanics (see Class XI book, Chapter

5) that a force on a particle does work if  the force has a component along

(or opposed to) the direction of motion of the particle. In the case of motion
of a charge in a magnetic field, the magnetic force is perpendicular to the
velocity of the particle. So no work is done and no change in the magnitude
of the velocity is produced (though the direction of momentum may be
changed). [Notice that this is unlike the force due to an electric field, qE,
which can have a component parallel (or antiparallel) to motion and thus
can transfer energy in addition to momentum.]

We shall consider motion of a charged particle in a uniform magnetic
field. First consider the case of v perpendicular to B.  The
perpendicular force, q v × B, acts as a centripetal force and
produces a circular motion perpendicular to the magnetic field.
The particle will describe a circle if v and B are  perpendicular

to each other (Fig. 4.5).
If velocity has a component along B, this component

remains unchanged as the motion along the magnetic field will
not be affected by the magnetic field. The motion in a plane
perpendicular to B is as before a circular one, thereby producing
a helical motion (Fig. 4.6).

You have already learnt in earlier classes (See Class XI,
Chapter 3) that if r is the radius of the circular path of a particle,
then a force of  m v

2 / r, acts perpendicular to the path towards
the centre of the circle, and is called the  centripetal force. If the
velocity v is perpendicular to the magnetic field   B, the  magnetic
force is  perpendicular to both v and B and acts like a

centripetal force. It has a magnitude q v B.
Equating the two expressions for centripetal
force,

m v 2/r = q v B, which gives

r =  m v / qB (4.5)

for the radius of the circle described by the
charged particle. The larger the  momentum,  the
larger is the radius and bigger the circle
described. If w is the angular frequency, then   v
= w  r. So,

w  = 2p n =  q B/ m [4.6(a)]

which is independent of the velocity or energy .
Here n is the frequency of rotation. The
independence of n from energy has important
application in the design of a cyclotron.

The time taken for one revolution is T= 2p/
w  º 1/n. If there is a  component of the velocity
parallel to the magnetic field (denoted by v

||
),

it will make the particle move along the field and the path of the

FIGURE 4.5 Circular motion

FIGURE 4.6 Helical motion
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Example  4.3   What is the radius of the path of an electron (mass
9 × 10-31 kg and charge 1.6 × 10–19 C) moving at a speed of 3 ×107 m/s in
a magnetic field of 6 × 10–4 T perpendicular to it?  What is its
frequency?  Calculate its energy in  keV. ( 1 eV = 1.6 × 10–19 J).

Solution Using Eq. (4.5) we find
r  = m v / (qB )  = 9 ×10–31 kg × 3 × 107  m s–1 / ( 1.6 × 10–19 C × 6 × 10–4 T )

                      = 28 × 10–2 m = 28 cm

n = v / (2 pr) = 17×106 s–1   = 17×106  Hz   =17 MHz.

E = (½ )mv
 2   = (½ ) 9 × 10–31 kg × 9 × 1014 m2/s2  = 40.5 ×10–17 J

  ≈  4×10–16 J = 2.5 keV.

particle would be a helical one (Fig. 4.6). The distance moved along
the magnetic field  in one rotation is called pitch p.  Using Eq. [4.6 (a)],
we have

p =   v
||
T  =  2pm v

||
 / q B [4.6(b)]

The radius of the circular component of motion is called the radius

of the helix.

4.4 MAGNETIC F IELD DUE TO A CURRENT

ELEMENT, BIOT-SAVART LAW

All magnetic fields that we know are due to currents (or moving
charges) and due to intrinsic magnetic moments of particles.
Here, we shall study the relation between current and the
magnetic field it produces. It is given by the Biot-Savart’s  law.
Fig. 4.7 shows a finite conductor XY carrying current I. Consider
an infinitesimal element dl of the conductor. The magnetic field
dB due to this element is to be determined at a point P which is at
a distance r from it. Let q be the angle between dl and the
displacement vector r. According to Biot-Savart’s law, the
magnitude of the magnetic field dB is proportional to the current
I, the element length |dl|, and inversely proportional to the square
of the distance r. Its direction* is perpendicular to the plane
containing dl and r . Thus, in vector notation,

d
I d

r
B

r
∝

×l

3

           =
×µ

0

3
4π

I d

r

l r
 [4.7(a)]

where m
0
/4p is a constant of proportionality. The above expression

holds when the medium is vacuum.

FIGURE 4.7 Illustration of
the Biot-Savart law. The

current element I dl

produces a field dB at a
distance r. The Ä sign

indicates that the
field is perpendicular

to the plane of this
page and directed

into it.
* The sense of  dl × r is also given by the Right Hand Screw rule : Look at the

plane containing vectors dl and r. Imagine moving from the first vector towards
second vector. If the movement is anticlockwise, the resultant is towards you.
If it is clockwise, the resultant is away from you.
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The magnitude of this field is,

µ θ=
π
0

2

d sin
d

4

I l

r
B [4.7(b)]

where we have used the property of cross-product. Equation [4.7 (a)]
constitutes our basic equation for the magnetic field.  The proportionality

constant in SI units has the exact value,

70 10 Tm/A
4

µ −=
π [4.7(c)]

We call µ
0
 the permeability of free space (or vacuum).

The Biot-Savart law for the magnetic field has certain similarities, as
well as, differences with the Coulomb’s law for the electrostatic field. Some

of these are:
(i) Both are long range, since both depend inversely on the square of

distance from the source to the point of interest. The principle of

superposition applies to both fields. [In this connection, note that
the magnetic field is linear in the source I dl just as the electrostatic
field is linear in its source: the electric charge.]

(ii) The electrostatic field is produced by a scalar source, namely, the electric
charge. The magnetic field is produced by a vector source I dl.

(iii) The electrostatic field is along the displacement vector joining the

source and the field point. The magnetic field is perpendicular to the
plane containing the displacement vector r and the current element I dl.

(iv) There is an angle dependence in the Biot-Savart law which is not

present  in the electrostatic case. In Fig. 4.7, the magnetic field at any
point in  the direction of dl (the dashed line) is zero. Along this line,
θ = 0, sin θ = 0 and from Eq. [4.7(a)], |dB| = 0.

There is an interesting  relation between ε
0
, the permittivity of free

space; µ
0
, the permeability of free space; and c, the speed of light in vacuum:

( ) 0
0 0 04

4

µε µ ε   = π     π  ( )7

9

1
10

9 10

−  =     × 8 2 2

1 1

(3 10 ) c
= =

×
We will discuss this connection further in Chapter 8 on the

electromagnetic waves. Since the speed of light in vacuum is constant,

the product µ
0
ε

0
 is fixed in magnitude. Choosing the value of either ε

0
 or

µ
0
, fixes the value of the other. In SI units, µ

0
 is fixed to be equal to

4π × 10–7
 in magnitude.

Example 4.4 An element ˆ∆ = ∆x il  is placed at the origin and carries

a large current I = 10 A (Fig. 4.8). What is the magnetic field on the y-

axis at a distance of 0.5 m. ∆x = 1 cm.

FIGURE 4.8
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Solution

 
0

2

d sin
|d |

4

I l

r

µ θ
=

π
B  [using Eq. (4.7)]

2d 10 ml x −= ∆ = , I = 10 A,  r = 0.5 m = y, 7
0

T m
/4 10

A
µ −π =

θ = 90° ; sin θ = 1

7 2

2

10 10 10
d

25 10

− −

−
× ×=

×
B = 4 × 10–8 T

The direction of the field is in the +z-direction. This is so since,

ˆ ˆd = ∆× i × jx yrl ( )ˆ ˆy x= ∆ i × j ˆy x= ∆ k

We remind you of the following cyclic property of cross-products,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ;× = × = × =i j k j k i k i j

Note that the field is small in magnitude.

In the next section, we shall use the Biot-Savart law to calculate the
magnetic field due to a circular loop.

4.5 MAGNETIC FIELD ON THE AXIS OF A CIRCULAR

CURRENT LOOP

In this section, we shall evaluate the magnetic field  due

to a circular coil along its axis. The evaluation entails
summing up the effect of infinitesimal current elements
(I dl) mentioned in the previous section. We assume that

the current I is steady and that the evaluation is carried
out in free space (i.e., vacuum).

Fig. 4.9 depicts a circular loop carrying a steady

current I. The loop is placed in the  plane with its
centre at the origin O and has a radius R. The x-axis is
the axis of the loop. We wish to calculate the magnetic

field at the point P on this axis. Let x be the distance of P
from the centre O of the loop.

Consider a conducting element dl of the loop. This is

shown in Fig. 4.9. The magnitude dB of the magnetic
field due to dl is given by the Biot-Savart law [Eq. 4.7(a)],

0

34
=

× rI d
dB

r

µ

π

l
(4.8)

Now r2
 = x

2
 + R

2 . Further, any element of the loop
will be perpendicular to the displacement vector from
the element to the axial point. For example, the element dl in Fig. 4.9 is

in the  plane, whereas, the displacement vector r from dl to the axial
point P is in the  plane. Hence |dl × r|=r dl. Thus,

 ( )π

0

2 2

d
d

4

I l
B

x R

µ
=

+ (4.9)

FIGURE 4.9 Magnetic field on the
axis of a current carrying circular

loop of radius R. Shown are the

magnetic field dB (due to a line
element dl ) and its

components along and

perpendicular to the axis.
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The direction of dB is shown in Fig. 4.9. It is perpendicular to the

plane formed by dl and r. It has an x-component dB
x
 and a component

perpendicular to x-axis, dB
⊥
. When the components perpendicular to

the x-axis are summed over, they cancel out and we obtain a null result.

For example, the dB
⊥
 component due to dl is cancelled by the

contribution due to the diametrically opposite dl element, shown in
Fig. 4.9. Thus, only the x-component survives. The net contribution along

x-direction can be obtained by integrating dB
x
  = dB cos θ over the loop.

For Fig. 4.9,

2 2 1/2
cos

( )

R

x R
θ =

+  (4.10)

From Eqs. (4.9) and (4.10),

( )π

0

3/22 2

d
d

4
x

I l R
B

x R

µ
=

+

The summation of elements dl over the loop yields 2πR, the
circumference of the loop. Thus, the magnetic field at P due to entire
circular loop is

( )
2

0

3/22 2

ˆ ˆ

2
x

I R
B

x R

µ
= =

+
B i i (4.11)

As a special case of the above result, we may obtain the field at the centre

of the loop. Here  x = 0, and we obtain,

0
0

ˆ
2

I

R

µ
=B i (4.12)

The magnetic field lines due to a circular wire form closed loops and
are shown in Fig. 4.10. The direction of the magnetic field is given by

(another) right-hand thumb rule stated below:
Curl the palm of your right hand around the circular wire with the

fingers pointing in the direction of the current. The right-hand thumb

gives the direction of the magnetic field.

FIGURE 4.10 The magnetic field lines for a current loop. The direction of
the field is given by the right-hand thumb rule described in the text. The

upper side of the loop may be thought of as the north pole and the lower
side as the south pole of a magnet.
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Example 4.5 A straight wire carrying a current of 12 A is bent into a
semi-circular arc of radius 2.0 cm as shown in Fig. 4.11(a). Consider

the magnetic field B at the centre of the arc. (a) What is the magnetic
field due to the straight segments? (b) In what way the contribution
to B from the semicircle differs from that of a circular loop and in

what way does it resemble? (c) Would your answer be different if the
wire were bent into a semi-circular arc of the same radius but in the
opposite way as shown in Fig. 4.11(b)?

FIGURE 4.11

Solution

(a) dl and r for each element of the straight segments are parallel.
Therefore, dl × r = 0. Straight segments do not contribute to
|B|.

(b) For all segments of the semicircular arc, dl × r are all parallel to
each other (into the plane of the paper). All such contributions
add up in magnitude. Hence direction of B for a semicircular arc

is given by the right-hand rule and magnitude is half that of a
circular loop. Thus B is 1.9 × 10–4 T normal to the plane of the
paper going into it.

(c) Same magnitude of B but opposite in direction to that in (b).

Example 4.6 Consider a tightly wound 100 turn coil of radius 10

cm, carrying a current of 1 A. What is the magnitude of the magnetic
field at the centre of the coil?

Solution Since the coil is tightly wound, we may take each circular

element to have the same radius R = 10 cm = 0.1 m. The number of
turns N = 100. The magnitude of the magnetic field is,

–7 2
0

–1

4 10 10 1

2 2 10

NI
B

R

µ π × × ×
= =

×
42 10−= π × 46 28 10 T. −= ×

4.6  AMPERE’S CIRCUITAL LAW

There is an alternative and appealing way in which the

Biot-Savart law may be expressed. Ampere’s circuital law

considers an open surface with a boundary (Fig. 4.12).

The surface has current passing through it. We consider

the boundary to be made up of a number of small line

elements. Consider one such element of length dl. We

take the value of the tangential component of the

magnetic field, B
t
,
 
at this element and multiply it by the FIGURE 4.12
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length of that element dl [Note: B
t
dl=B.d l]. All such

products are added together. We consider the limit as the

lengths of elements get smaller and their number gets

larger. The sum then tends to an integral. Ampere’s   law

states that this integral is  equal to µ
0
 times the total

current passing through  the surface,  i.e.,

“B.dl = µ
0
I [4.13(a)]

where I  is the total current through the surface. The

integral is taken over the closed loop coinciding with the

boundary C of the surface. The relation above involves a

sign-convention, given by the right-hand rule. Let the

fingers of the right-hand be curled in the sense the

boundary is traversed in the loop integral “B.dl. Then

the direction of the thumb gives the sense in which the

current I  is regarded as positive.

For several applications, a much simplified version of

Eq. [4.13(a)] proves sufficient. We shall assume that, in

such cases, it is possible to choose the loop (called

an amperian loop) such that at each point of the

loop, either

(i) B is tangential to the loop and is a non-zero constant
B, or

(ii) B is normal to the loop, or

(iii) B vanishes.
Now, let L be the length (part) of the  loop for which B

is tangential. Let I
e
  be the current enclosed by the loop.

Then, Eq. (4.13) reduces to,

BL =µ
0
I
e

[4.13(b)]

When there is a system with a symmetry such as for

a straight infinite current-carrying wire in Fig. 4.13, the
Ampere’s law enables an easy evaluation of the magnetic
field, much the same way Gauss’ law helps in

determination of the electric field. This is exhibited in the
Example 4.8 below. The boundary of the loop chosen is
a circle and magnetic field is tangential to the

circumference of the circle. The law gives, for the left hand
side of Eq. [4.13 (b)], B. 2πr. We find that the magnetic
field at a distance r outside the wire is tangential and

given by

B × 2πr  =  µ
0 
I,

B = µ
0 
 I/ (2πr) (4.14)

The above result for the infinite wire  is interesting
from several points of view.

A
N

D
R

E
 A

M
P
E

R
E

 (
1
7
7
5
 –

1
8
3
6
)

Andre Ampere (1775 –

1836) Andre Marie Ampere
was a French physicist,
mathematician and chemist

who founded the science of
electrodynamics. Ampere
was a child prodigy

who mastered advanced
mathematics by the age of
12. Ampere grasped the

significance of Oersted’s
discovery. He carried out a
large series of experiments

to explore the relationship
between current electricity
and magnetism. These

investigations culminated
in 1827 with the
publication of the

‘Mathematical Theory of
Electrodynamic Pheno-
mena Deduced Solely from

Experiments’. He hypo-
thesised that all magnetic
phenomena are due to

circulating electric
currents. Ampere was
humble and absent-

minded. He once forgot an
invitation to dine with the
Emperor Napoleon. He died

of pneumonia at the age of
61. His gravestone bears
the epitaph: Tandem Felix

(Happy at last).

(i) It implies that the field at every point on a circle of
radius r, (with the wire along the axis), is same in

magnitude. In other words, the magnetic field
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possesses what is called a cylindrical symmetry. The field that
normally can depend on three coordinates depends only on one: r.

Whenever there is symmetry, the solutions simplify.
(ii) The field direction at any point on this circle is tangential to it.

Thus, the lines of constant magnitude of magnetic field form

concentric circles. Notice now, in Fig. 4.1(c), the iron filings form

concentric circles. These lines called magnetic field lines form closed
loops. This is unlike the electrostatic field lines which originate

from positive charges and end at negative charges. The expression

for the magnetic field of a straight wire provides a theoretical

justification to Oersted’s experiments.
(iii) Another interesting point to note is that even though the wire is

infinite, the field due to it at a non-zero distance is not infinite. It

tends to blow up only when we come very close to the wire. The

field is directly proportional to the current and inversely
proportional to the distance from the (infinitely long) current source.

(iv) There exists a simple rule to determine the direction of the magnetic
field due to a long wire. This rule, called the right-hand rule*, is:

Grasp the wire in your right hand with your extended thumb pointing
in the direction of the current. Your fingers will curl around in the
direction of the magnetic field.

Ampere’s circuital law is not new in content from Biot-Savart law.
Both relate the magnetic field and the current, and both express the same
physical consequences of a steady electrical current. Ampere’s law is to

Biot-Savart law, what Gauss’s law is to Coulomb’s law. Both, Ampere’s
and Gauss’s law relate a physical quantity on the periphery or boundary
(magnetic or electric field) to another physical quantity, namely, the source,

in the interior (current or charge). We also note that Ampere’s circuital
law holds for steady currents which do not fluctuate with time. The
following example will help us understand what is meant by the term

enclosed current.

Example 4.7 Figure 4.13 shows a long straight wire of a circular
cross-section (radius a) carrying steady current I. The current I is
uniformly distributed across this cross-section. Calculate the

magnetic field in the region r < a and r > a.

FIGURE 4.13

* Note that there are two distinct right-hand rules: One which gives the direction
of B on the axis of current-loop and the other which gives direction of B
for a straight conducting wire. Fingers and thumb play different roles in
the two.
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Solution (a) Consider the case r > a . The Amperian loop, labelled 2,
is a circle concentric with the cross-section. For this loop,

L  = 2 π r
I
e
 = Current enclosed by the loop = I

The result is the familiar expression for a long straight wire

B (2π r) = µ
0
I

π 

0

2

I
B

r

µ
= [4.15(a)]

1
B

r
∝ (r > a)

Now the current enclosed I
e
 is not I, but is less than this value.

Since the current distribution is uniform, the current enclosed is,

I I
r

a
e

=






π
π

2

2  
2

2

Ir

a
=

Using Ampere’s law, π

2

0 2
(2 )

I r
B r

a
µ=

B
I

a
r= 





µ
0

2
2π [4.15(b)]

B ∝ r      (r < a)

FIGURE 4.14

Figure (4.14) shows a plot of the magnitude of B with distance r

from the centre of the wire. The direction of the field is tangential to

the respective circular loop (1 or 2) and given by the right-hand

rule described earlier in this section.

This example possesses the required symmetry so that Ampere’s

law can be applied readily.

It should be noted that while Ampere’s circuital law holds for any

loop, it may not always facilitate an evaluation of the magnetic field in

every case. For example, for the case of the circular loop discussed in

Section 4.5, it cannot be applied to extract the simple expression

B = µ
0
I/2R [Eq. (4.12)] for the field at the centre of the loop. However,

there exists a large number of situations of high symmetry where the law

can be conveniently applied. We shall use  it in the next section to calculate
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the magnetic field produced by a commonly used and very useful

magnetic system: the solenoid.

4.7  THE SOLENOID

We shall discuss a long solenoid. By long solenoid we mean that the
solenoid’s length is large compared to its radius. It consists of a long wire
wound in the form of a helix where the neighbouring turns are closely
spaced. So each turn can be regarded as a circular loop.  The net magnetic
field is the vector sum of the fields due to all the turns. Enamelled wires
are used for winding so that turns are insulated from each other.

Figure 4.15 displays the magnetic field lines for a finite solenoid. We
show a section of this solenoid in an enlarged manner in Fig. 4.15(a).
Figure 4.15(b) shows the entire finite solenoid with its magnetic field. In
Fig. 4.15(a), it is clear from the circular loops that the field  between two
neighbouring turns vanishes. In Fig. 4.15(b), we see that the field at the
interior mid-point P is uniform, strong and along the axis of the solenoid.
The field at the exterior mid-point Q is weak and moreover is along the
axis of the solenoid with no perpendicular or normal component. As the

FIGURE 4.15 (a) The magnetic field due to a section of the solenoid which has been
stretched out for clarity. Only the exterior semi-circular part is shown. Notice

how the circular loops between neighbouring turns tend to cancel.
(b) The magnetic field of a finite solenoid.

FIGURE 4.16 The magnetic field of a very long solenoid. We consider a
rectangular Amperian loop abcd to determine the field.
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solenoid is made longer it appears like a long cylindrical metal sheet.
Figure 4.16 represents this idealised picture. The field outside the solenoid
approaches zero. We shall assume that the field outside is zero. The field
inside becomes everywhere parallel to the axis.

Consider a rectangular Amperian loop abcd. Along cd the field is zero

as argued above. Along transverse sections bc and ad, the field component
is zero. Thus, these two sections  make no contribution. Let the field along
ab be B. Thus, the relevant length of the Amperian loop is, L = h.

Let n be the number of turns per unit length, then the total number
of turns is  nh. The enclosed current is,  I

e
 = I (n h), where I is the current

in the solenoid. From Ampere’s circuital law [Eq. 4.13 (b)]

BL =  µ
0
I
e
,    B h = µ

0
I (n h)

B = µ
0
 n I (4.16)

The direction of the field is given by the right-hand rule. The solenoid
is commonly used to obtain a uniform magnetic field. We shall see in the

next chapter that a large field is possible by inserting a soft iron core
inside the solenoid.

Example 4.8 A solenoid of length 0.5 m has a radius of 1 cm and is
made up of 500 turns. It carries a current of 5 A. What is the

magnitude of the magnetic field inside the solenoid?

Solution  The number of turns per unit length is,

500
1000

0.5
n = =  turns/m

The length l = 0.5 m and radius r = 0.01 m. Thus, l/a = 50 i.e., l >> a .

Hence, we can use the long solenoid formula, namely, Eq. (4.20)
B = µ

0
n I

   = 4π × 10–7 × 103 × 5

   = 6.28 × 10–3 T

FIGURE 4.17 Two long straight

parallel conductors carrying steady

currents I
a
 and I

b
 and separated by a

distance d. B
a
 is the magnetic field

set up by conductor ‘a’ at conductor ‘b’.

4.8 FORCE BETWEEN TWO PARALLEL

CURRENTS, THE AMPERE

We have learnt that there exists a magnetic field due to a

conductor carrying a current which obeys the Biot-Savart

law. Further, we have learnt that an external magnetic field

will exert a force on a current-carrying conductor. This

follows from the Lorentz force formula. Thus, it is logical

to expect that two current-carrying conductors placed near

each other will exert (magnetic) forces on each other. In

the period 1820-25, Ampere studied the nature of this

magnetic force and its dependence on the magnitude of

the current, on the shape and size of the conductors, as

well as, the distances between the conductors. In this

section, we shall take the simple example of two parallel

current- carrying conductors, which will perhaps help us

to appreciate Ampere’s painstaking work.
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Figure 4.17 shows two long parallel conductors a and b separated

by a distance d and carrying (parallel) currents I
a
 and I

b
, respectively.

The conductor ‘a’ produces,  the same magnetic field B
a
 at all points

along the conductor ‘b’. The right-hand rule tells us that the direction of

this field is downwards (when the conductors are placed horizontally).

Its magnitude is given by Eq. [4.15(a)] or from Ampere’s circuital law,

0

2

a

a

I
B

d

µ
=

π

The conductor ‘b’ carrying a current I
b
 will experience a sideways

force due to the  field B
a
. The direction of this force is towards the

conductor ‘a’ (Verify this). We label this force as F
ba

, the force on a

segment L of ‘b’ due to ‘a’. The magnitude of this force is given by

Eq. (4.4),

=
ba b a

F I LB

      
µ

π
= 0

2
a bI I

L
d

(4.17)

It is of course possible to compute the force on ‘a’ due to ‘b’. From
considerations similar to above we can find the force F

ab
, on a segment of

length L of ‘a’ due to the current in ‘b’. It  is equal in magnitude to F
ba

,
and directed towards ‘b’. Thus,

F
ba

 = –F
ab

(4.18)

Note that this is consistent with Newton’s third Law. Thus, at least for

parallel conductors and steady currents, we have shown that the

Biot-Savart law and the Lorentz force yield results in accordance with

Newton’s third Law*.

We have seen from above that currents flowing in the same direction

attract each other. One can show that oppositely directed currents repel

each other. Thus,

Parallel currents attract, and antiparallel currents repel.

This rule is the opposite of what we find in electrostatics. Like (same

sign) charges repel each other, but like (parallel) currents attract each other.

Let f
ba

 represent the magnitude of the force F
ba

 per unit length. Then,

from Eq. (4.17),

π

0

2

a b

ba

I I
f

d

µ
= (4.19)

The above expression is used to define the ampere (A), which is one of

the seven SI base units.

* It turns out that when we have time-dependent currents and/or charges in

motion, Newton’s third law may not hold for forces between charges and/or

conductors. An essential consequence of the Newton’s third law in mechanics

is conservation of momentum of an isolated system. This, however, holds even

for the case of time-dependent situations with electromagnetic fields, provided
the momentum carried by fields is also taken into account.
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The ampere is the value of that steady current which, when maintained

in each of the two very long, straight, parallel conductors of negligible

cross-section, and placed one metre apart in vacuum, would produce

on  each of these conductors a force equal to  2 × 10–7 newtons per metre

of length.

This definition of the ampere was adopted in 1946. It is a theoretical

definition. In practice, one must eliminate the effect of the earth’s magnetic

field and substitute very long wires by multiturn coils of appropriate

geometries. An instrument called the current balance is used to measure

this mechanical force.

The SI unit of charge, namely, the coulomb, can now be defined in

terms of the ampere.

When a steady current of 1A is set up in a conductor, the quantity of

charge that flows through its cross-section in 1s is one coulomb (1C).

Example 4.9 The horizontal component of the earth’s magnetic field
at a certain place is 3.0 ×10–5 T and the direction of the field is from
the geographic south to the geographic north. A very long straight

conductor is carrying a steady current of 1A. What is the force per
unit length on it when it is placed on a horizontal table and the
direction of the current is (a) east to west; (b) south to north?

Solution  F = Il × B

F = IlB sinθ
The force per unit length is

f = F/l = I B sinθ
(a) When the current is flowing from east to west,

θ = 90°

Hence,
f = I B
  = 1 × 3 × 10–5 = 3 × 10–5 N m–1

This is larger than the value 2×10–7 Nm–1 quoted in the definition
of the ampere. Hence it is important to eliminate the effect of the
earth’s magnetic field and other stray fields while standardising

the ampere.
The direction of the force is downwards. This direction may be
obtained by the directional property of cross product of vectors.

(b) When the current is flowing from south to north,
θ = 0o

f = 0

Hence there is no force on the conductor.

4.9  TORQUE ON CURRENT LOOP, MAGNETIC DIPOLE

4.9.1 Torque on a rectangular current loop in a uniform

magnetic field

We now show that a rectangular loop carrying a steady current I and
placed in a uniform magnetic field experiences a torque. It does not

experience a net force. This behaviour is analogous to that of electric

dipole in a uniform electric field (Section 1.11).
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We first consider the simple case when the

rectangular loop is placed such that the uniform

magnetic field B is in the plane of the loop. This is

illustrated in Fig. 4.18(a).
The field exerts no force on the two arms AD and BC

of the loop. It is perpendicular to the arm AB of the loop

and exerts a force F
1
 on it which is directed into the

plane of the loop. Its magnitude is,

F
1
 = I b B

Similarly, it exerts a force F
2
 on the arm CD and F

2

is directed out of the plane of the paper.

F
2
 = I b B = F

1

Thus, the net force on the loop is zero. There is a

torque on the loop due to the pair of forces F
1
 and F

2
.

Figure 4.18(b) shows a view of the loop from the AD

end. It shows that the torque on the loop tends to rotate
it anticlockwise. This torque is (in magnitude),

1 2
2 2

a a
F Fτ = +

( )
2 2

a a
IbB IbB I ab B= + =

    = I A B (4.20)

where A = ab is the area of the rectangle.

We next consider the case when the plane of the loop,
is not along the magnetic field, but makes an angle with

it. We take the angle between the field and the normal to
the coil to be angle θ (The previous case corresponds to
θ = π/2). Figure 4.19 illustrates this general case.

The forces on the arms BC and DA are equal, opposite, and act along
the axis of the coil, which connects the centres of mass of BC and DA.
Being collinear along the axis they cancel each other, resulting in no net

force or torque. The forces on arms AB and CD are F
1
 and F

2
. They too

are equal and opposite, with magnitude,

F
1
 = F

2
 = I b B

But they are not collinear!  This results in a couple as before. The
torque is, however, less than the earlier case when plane of loop was
along the magnetic field. This is because the perpendicular distance

between the forces of the couple has decreased. Figure 4.19(b) is a view
of the arrangement from the AD end and it illustrates these two forces
constituting a couple. The magnitude of the torque on the loop is,

1 2sin sin
2 2

a a
F Fτ θ θ= +

= I ab B sin θ

   = I A B sin θ (4.21)

FIGURE 4.18 (a) A rectangular
current-carrying coil in uniform

magnetic field. The magnetic moment
m points downwards. The torque τττττ is
along the axis and tends to rotate the

coil anticlockwise. (b) The couple
acting on the coil.
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As θ à 0, the perpendicular distance between
the forces of the couple also approaches zero. This

makes the forces collinear and the net force and
torque zero. The torques in Eqs. (4.20) and (4.21)
can be expressed as vector product of the magnetic

moment of the coil and the magnetic field.
We define the magnetic moment of the current
loop as,

m = I A (4.22)

where the direction of the area vector A is given

by the right-hand thumb rule and is directed into
the plane of the paper in Fig. 4.18. Then as the
angle between m and B is θ ,  Eqs. (4.20) and (4.21)

can be expressed by one expression

(4.23)

This  is analogous to the electrostatic case

(Electric dipole of dipole moment p
e
 in an electric

field E).

τ = p E×
e

As is clear from Eq. (4.22), the dimensions of the
magnetic moment are [A][L2] and its unit is Am2.

From Eq. (4.23), we see that the torque τττττ

vanishes when m is either parallel or antiparallel
to the magnetic field B. This indicates a state of
equilibrium as there is no torque on the coil (this

also applies to any object with a magnetic moment
m). When m and B are parallel the equilibrium is
a stable one. Any small rotation of the coil

produces a torque which brings it back to its original position. When
they are antiparallel, the equilibrium is unstable as any rotation produces
a torque which increases with the amount of rotation. The presence of

this torque is also the reason why a small magnet or any magnetic dipole
aligns itself with the external magnetic field.

If the loop has N closely wound turns, the expression for torque, Eq.

(4.23), still holds, with

m = N I A (4.24)

Example 4.10 A 100 turn closely wound circular coil of radius 10
cm carries a current of 3.2 A. (a) What is the field at the centre of the

coil? (b) What is the magnetic moment of this coil?
The coil is placed in a vertical plane and is free to rotate about a

horizontal axis which coincides with its diameter. A uniform magnetic

field of 2T in the horizontal direction exists such that initially the axis
of the coil is in the direction of the field. The coil rotates through an
angle of 90° under the influence of the magnetic field. (c) What are the

magnitudes of the torques on the coil in the initial and final position?
(d) What is the angular speed acquired by the coil when it has rotated
by 90°? The moment of inertia of the coil is 0.1 kg m2.

FIGURE 4.19 (a) The area vector of the loop
ABCD makes an arbitrary angle θ with

the magnetic field. (b) Top view of

the loop. The forces F
1
 and F

2
 acting

on the arms AB and CD
are indicated.
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Solution

(a) From Eq. (4.12)

0

2

NI
B

R

µ
=

Here, N = 100; I = 3.2 A, and R = 0.1 m. Hence,

 =
× ×

×

−

−

4 10 10

2 10

5

1      (using π × 3.2 = 10)

    = 2 × 10–3 T
The direction is given by the right-hand thumb rule.

(b) The magnetic moment is given by Eq. (4.24),

m = N I A = N I π r2 = 100 × 3.2 × 3.14 × 10
–2

 = 10 A m
2

The direction is once again given by the right-hand thumb rule.

(c) τ = m × B    [from Eq. (4.23)]

   = m B sin θ

Initially, θ = 0. Thus, initial torque τ
i
 = 0. Finally, θ = π/2 (or 90º).

Thus, final torque τ
f
 = m B = 10 × 2 = 20 N m.

(d)  From Newton’s second law,

I  

where I  is the moment of inertia of the coil. From chain rule,

d d d d

d d d d
= =

t t

ω ω θ ω
ω

θ θ

Using this,

I  d sin d= m Bω ω θ θ

Integrating from θ = 0 to θ = π/2,

Example 4.11

(a) A current-carrying circular loop lies on a smooth horizontal plane.

Can a uniform magnetic field be set up in such a manner that
the loop turns around itself (i.e., turns about the vertical axis).

(b) A current-carrying circular loop is located in a uniform external

magnetic field. If the loop is free to turn, what is its orientation
of stable equilibrium? Show that in this orientation, the flux of
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the total field (external field + field produced by the loop) is

maximum.
 (c) A loop of irregular shape carrying current is located in an external

magnetic field. If the wire is flexible, why does it change to a

circular shape?

Solution

(a) No, because that would require τττττ to be in the vertical direction.

But τττττ = I A × B, and since A of the horizontal loop is in the vertical
direction, τ would be in the plane of the loop for any B.

(b) Orientation of stable equilibrium is one where the area vector A

of the loop is in the direction of external magnetic field. In this
orientation, the magnetic field produced by the loop is in the same
direction as external field, both normal to the  plane of the loop,

thus giving rise to maximum flux of the total field.
(c) It assumes circular shape with its plane normal to the field to

maximise flux, since for a given perimeter, a circle encloses greater

area than any other shape.

4.9.2  Circular current loop as a magnetic dipole

In this section, we shall consider the elementary magnetic element: the
current loop. We shall show that the magnetic field (at large distances)
due to current in a circular current loop is very similar in behaviour to
the electric field of an electric dipole. In Section 4.5, we have evaluated

the magnetic field on the axis of a circular loop, of a radius R, carrying a
steady current I. The magnitude of this field is [(Eq. (4.11)],

( )
µ

=
+

2

0

3/2
2 2

2

I R
B

x R

and its direction is along the axis and given by the right-hand thumb
rule (Fig. 4.10). Here, x is the distance along the axis from the centre of

the loop. For x >> R, we may drop the R2 term in the denominator. Thus,

µ
=

2

0

32

IR
B

x

Note that the area of the loop A = πR2. Thus,

µ
=

π
0

3
2

IA
B

x

As earlier, we define the magnetic moment m to have a magnitude IA,

m  = I A. Hence,

B
m

≃
µ

0

3
2 πx

    π
µ

= 0

3

2

4 x

m

[4.25(a)]

The expression of Eq. [4.25(a)] is very similar to an expression obtained
earlier for the electric field of a dipole. The similarity may be seen if we

substitute,

 µ ε→0 01/
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e→m p  (electrostatic dipole)

 →B E   (electrostatic field)

We then obtain,

3
0

2

4
e

xε
=

π
p

E

which is precisely the field for an electric dipole at a point on its axis.
considered in Chapter 1, Section 1.9 [Eq. (1.20)].

It can be shown that the above analogy can be carried further. We
had found in Chapter 1 that the electric field on the perpendicular bisector
of the dipole is given by [See Eq.(1.21)],

E ≃
p

e

x4
0

3
πε

where x is the distance from the dipole. If we replace p à m and 0 01/µ ε→
in the above expression, we obtain the result for B for a point in the
plane of the loop at a distance x  from the centre. For  x >>R,

B
m

≃
µ

0

3
4π x

x R; >> [4.25(b)]

The results given by Eqs. [4.25(a)] and [4.25(b)] become exact for a
point magnetic dipole.

The results obtained above can be shown to apply to any planar loop:
a planar current loop is equivalent to a magnetic dipole of dipole moment
m = I A, which is the analogue of electric dipole moment p. Note, however,
a fundamental difference: an electric dipole is built up of two elementary
units — the charges (or electric monopoles). In magnetism, a magnetic
dipole (or a current loop) is the most elementary element. The equivalent
of electric charges, i.e., magnetic monopoles, are not known to exist.

We have shown that a current loop (i) produces a magnetic field (see
Fig. 4.10) and behaves like a magnetic dipole at large distances, and
(ii) is subject to torque like a magnetic needle. This led Ampere to suggest
that all magnetism is due to circulating currents. This seems to be partly
true and no magnetic monopoles have been seen so far. However,
elementary particles such as an electron or a proton also carry an intrinsic
magnetic moment, not accounted by circulating currents.

4.10  THE MOVING COIL GALVANOMETER

Currents and voltages in circuits have been discussed extensively in
Chapters 3. But how do we measure them? How do we claim that
current in a circuit is 1.5 A or the voltage drop across a resistor is 1.2 V?
Figure 4.20 exhibits a very useful instrument for this purpose: the moving
coil galvanometer (MCG). It is a device whose principle can be understood
on the basis of our discussion in Section 4.9.

The galvanometer consists of a coil, with many turns, free to rotate
about a fixed axis (Fig. 4.20), in a uniform radial magnetic field. There is
a cylindrical soft iron core which not only makes the field radial but also
increases the strength of the magnetic field.  When a current flows through
the coil, a torque acts on it. This torque is given by Eq. (4.20) to be

τ = NI AB
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where the symbols have their usual meaning. Since
the field is radial by design, we have taken sin θ = 1 in

the above expression for the torque. The magnetic
torque NIAB tends to rotate the coil. A spring S

p

provides a counter torque kφ that balances the

magnetic torque NIAB; resulting in a steady angular
deflection φ. In equilibrium

kφ = NI AB

where k is the torsional constant of the spring; i.e. the
restoring torque per unit twist. The deflection φ is
indicated on the scale by a pointer attached to the

spring. We have

φ = 





NAB

k
I (4.26)

The quantity in brackets is a constant for a given
galvanometer.

The galvanometer can be used in a number of ways.
It can be used as a detector to check if a current is
flowing in the circuit. We have come across this usage

in the Wheatstone’s bridge arrangement. In this usage
the neutral position of the pointer (when no current is
flowing through the galvanometer) is in the middle of

the scale and not at the left end as shown in Fig.4.20.
Depending on the direction of the current, the pointer’s
deflection is either to the right or the left.

The galvanometer cannot as such be used as an

ammeter to measure the value of the current in a given circuit. This is for
two reasons: (i) Galvanometer is a very sensitive device, it gives a full-

scale deflection for a current of the order of µA. (ii) For measuring currents,

the galvanometer has to be connected in series, and as it has a large

resistance, this will change the value of the current in the circuit. To
overcome these difficulties, one attaches a small resistance r

s
, called shunt

resistance, in parallel with the galvanometer coil; so that most of the

current passes through the shunt. The resistance of this arrangement is,

R
G
 r

s 
/ (R

G
  + r

s
)   ≃  r

s
         if    R

G
 >>  r

s

If r
s 
has small value, in relation to the resistance of the rest of the

circuit R
c
, the effect of introducing the measuring instrument is also small

and negligible. This arrangement is schematically shown in Fig. 4.21.
The scale of this ammeter is calibrated and then graduated to read off

the current value with ease. We define the current sensitivity of the
galvanometer as the deflection per unit current. From Eq. (4.26) this
current sensitivity is,

NAB

I k

φ = (4.27)

A convenient way for the manufacturer  to increase the sensitivity is
to increase the number of turns N. We choose galvanometers having

sensitivities of value, required by our experiment.

FIGURE 4.20 The moving coil

galvanometer. Its elements are
described in the text. Depending on
the requirement, this device can be

used as a current detector or for
measuring the value of the current

(ammeter) or voltage (voltmeter).

FIGURE 4.21
Conversion of a

galvanometer (G) to

an ammeter by the
introduction of a

shunt resistance r
s
 of

very small value in
parallel.
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The galvanometer can also be used as a voltmeter to measure the
voltage across a given section of the circuit. For this it must be connected

in parallel with that section of the circuit. Further, it must draw a very
small current, otherwise the voltage measurement will disturb the original
set up by an amount which is very large. Usually we like to keep the

disturbance due to the measuring device below one per cent.  To ensure
this, a large resistance R is connected in series with the galvanometer.
This arrangement is schematically depicted in Fig.4.22. Note that the

resistance of the voltmeter is now,

R
G
 + R ≃ R :  large

The scale of the voltmeter is calibrated to read off the voltage value
with ease. We define the voltage sensitivity as the deflection per unit

voltage. From Eq. (4.26),

φ

V

NAB

k

I

V

NAB

k R
= 





= 





1
(4.28)

An interesting point to note is that increasing the current sensitivity
may not necessarily increase the voltage sensitivity. Let us take Eq. (4.27)

which provides a measure of current sensitivity. If N → 2N, i.e., we double
the number of turns, then

2
I I

φ φ→

Thus, the current sensitivity doubles. However, the resistance of the
galvanometer is also likely to double, since it is proportional to the length
of the wire. In Eq. (4.28), N →2N, and R →2R, thus the voltage sensitivity,

V V

φ φ→

remains unchanged. So in general, the modification needed for conversion
of a galvanometer to an ammeter  will be different from what is needed for

converting it into a voltmeter.

Example 4.12 In the circuit (Fig. 4.23) the current is to be

measured. What is the value of the current if the ammeter shown

(a) is a galvanometer with a resistance R
G
 = 60.00 Ω; (b) is a

galvanometer described in (a) but converted to an ammeter by a

shunt resistance r
s
 = 0.02 Ω; (c) is an ideal ammeter with zero

resistance?

FIGURE 4.23

FIGURE 4.22

Conversion of a
galvanometer (G) to a

voltmeter by the

introduction of a
resistance R of large

value in series.
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SUMMARY

1. The total force on a charge q moving with velocity v in the presence of

magnetic and electric fields B and E, respectively is called the Lorentz
force. It is given by the expression:

F = q (v × B + E)

The magnetic force q (v × B) is normal to v and work done by it is zero.

2. A straight conductor of length l and carrying a steady current I

experiences a force F in a uniform external magnetic field B,

F = I l × B

where|l| = l and the direction of l is given by the direction of the

current.

3. In a uniform magnetic field B, a charge q executes a circular orbit in

a plane normal to B. Its frequency of uniform circular motion is called
the cyclotron frequency and is given by:

2
c

q B

m
ν =

π

This frequency is independent of the particle’s speed and radius. This
fact is exploited in a machine, the cyclotron, which is used to

accelerate charged particles.

4. The Biot-Savart law asserts that the magnetic field dB due to an

element dl carrying a steady current I at a point P at a distance r from

the current element is:

0

3

d
d

4
I

r

µ ×=
π

l r
B

To obtain the total field at P, we must integrate this vector expression

over the entire length of the conductor.

5. The magnitude of the magnetic field due to a circular coil of radius R

carrying a current I at an axial distance x from the centre is

E
X

A
M

P
L
E
 
4
.1

2

Solution

(a) Total resistance in the circuit is,

3 63
G

R + = Ω . Hence, I = 3/63 = 0.048 A.

(b) Resistance of the galvanometer converted to an ammeter is,

R r

R r

G s

G s
+

=
×

+
60 0 02

60 0 02

Ω Ω
Ω

.

( . )
 ≃ 0.02Ω

Total resistance in the circuit is,

0.02 3 3.02Ω + Ω = Ω . Hence, I = 3/3.02 = 0.99 A.

(c) For the ideal ammeter with zero resistance,

 I =  3/3 = 1.00 A
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2
0

2 2 3/22( )

IR
B

x R

µ
=

+

At the centre this reduces to

0

2

I
B

R

µ
=

6. Ampere’s Circuital Law:  Let an open surface S be bounded by a loop

C. Then the Ampere’s law states that B l.d I=∫ µ
0

C

Ñ  where I refers to

the current passing through S. The sign of I is determined from the

right-hand rule. We have discussed a simplified form of this law. If B
is directed along the tangent to every point on the perimeter L of a

closed curve and is constant in magnitude along perimeter then,

BL = µ
0
 I

e

where I
e
 is the net current enclosed by the closed circuit.

7. The magnitude of the magnetic field at a distance R from a long,

straight wire carrying a current I is given by:

π

0

2

I
B

R

µ
=

The field lines are circles concentric with the wire.

8. The magnitude of the field B inside a long solenoid carrying a current

I is

B = µ0nI

where n is the number of turns per unit length.

9. Parallel currents attract and anti-parallel currents repel.

10. A planar loop carrying a current I, having N closely wound turns, and

an area A possesses a magnetic moment m where,

m = N I A

and the direction of m is given by the right-hand thumb rule : curl

the palm of your right hand along the loop with the fingers pointing

in the direction of the current. The thumb sticking out gives the
direction of m (and A)

When this loop is placed in a uniform magnetic field B, the force F on

it is:  F = 0

And the torque on it is,

τ = m × B

In a moving coil galvanometer, this torque is balanced by a counter-
torque due to a spring, yielding

kφ = NI AB

where φ  is the equilibrium deflection and k the torsion constant of

the spring.

11. A moving coil galvanometer can be converted into a ammeter by

introducing a shunt resistance r
s
, of small value in parallel. It can be

converted into a voltmeter by introducing a resistance of a large value

in series.
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Physical Quantity Symbol Nature Dimensions Units Remarks

Permeability of free µ
0

Scalar [MLT –2A–2] T m A–1 4π × 10–7 T m A–1

space

Magnetic Field B Vector [M T –2A–1] T (telsa)

Magnetic Moment m Vector [L2A] A m2 or J/T

Torsion Constant k   Scalar [M L2T –2]     N m rad–1 Appears in MCG

POINTS TO PONDER

1. Electrostatic field lines originate at a positive charge and terminate at a

negative charge or fade at infinity. Magnetic field lines always form

closed loops.

2. The discussion in this Chapter holds only for steady currents which do
not vary with time.

When currents vary with time Newton’s third law is valid only if momentum

carried by the electromagnetic field is taken into account.

3. Recall the expression for the Lorentz force,

F = q (v × B + E)

This velocity dependent force has occupied the attention of some of the

greatest scientific thinkers. If one switches to a frame with instantaneous

velocity v, the magnetic part of the force vanishes. The motion of the

charged particle is then explained by arguing that there exists an

appropriate electric field in the new frame. We shall not discuss the

details of this mechanism. However, we stress that the resolution of this
paradox implies that electricity and magnetism are linked phenomena

(electromagnetism) and that the Lorentz force expression does not imply

a universal preferred frame of reference in nature.

4. Ampere’s Circuital law is not independent of the Biot-Savart law. It

can be derived from the Biot-Savart law. Its relationship to the

Biot-Savart law is similar to the relationship between Gauss’s law and

Coulomb’s law.

EXERCISES

4.1 A circular coil of wire consisting of 100 turns, each of radius 8.0 cm
carries a current of 0.40 A. What is the magnitude of the magnetic
field B at the centre of the coil?

4.2 A long straight wire carries a current of 35 A. What is the magnitude
of the field B at a point 20 cm from the wire?

4.3 A long straight wire in the horizontal plane carries a current of 50 A

in north to south direction. Give the magnitude and direction of B
at a point 2.5 m east of the wire.
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4.4 A horizontal overhead power line carries a current of 90 A in east to
west direction. What is the magnitude and direction of the magnetic
field due to the current 1.5 m below the line?

4.5 What is the magnitude of magnetic force per unit length on a wire
carrying a current of 8 A and making an angle of 30º with the direction
of a uniform magnetic field of  0.15 T?

4.6 A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid
perpendicular to its axis. The magnetic field inside the solenoid is
given to be 0.27 T. What is the magnetic force on the wire?

4.7 Two long and parallel straight wires A and B carrying currents of
8.0 A and 5.0 A in the same direction are separated by a distance of
4.0 cm. Estimate the force on a 10 cm section of wire A.

4.8 A closely wound solenoid 80 cm long has 5 layers of windings of 400
turns each. The diameter of the solenoid is 1.8 cm. If the current
carried is 8.0 A, estimate the magnitude of B inside the solenoid

near its centre.

4.9 A square coil of side 10 cm consists of 20 turns and carries a current
of 12 A. The coil is suspended vertically and the normal to the plane

of the coil makes an angle of 30º with the direction of a uniform
horizontal magnetic field of magnitude 0.80 T. What is the magnitude
of torque experienced by the coil?

4.10 Two moving coil meters, M
1
 and M

2
 have the following particulars:

R
1
 = 10 Ω,  N

1
 = 30,

A
1
 = 3.6 × 10–3 m2

, B
1
 = 0.25 T

R
2
 = 14 Ω,  N

2
 = 42,

A
2
 = 1.8 × 10–3 m2, B

2
 = 0.50 T

(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage
sensitivity of M

2
 and M

1
.

4.11 In a chamber, a uniform magnetic field of 6.5 G (1 G = 10–4 T) is

maintained. An electron is shot into the field with a speed of
4.8 × 106 m s–1 normal to the field. Explain why the  path of the
electron is a circle. Determine the radius of the circular orbit.

(e = 1.5 × 10–19 C, m
e
 = 9.1×10–31 kg)

4.12 In Exercise 4.11 obtain the frequency of revolution of the electron in
its circular orbit. Does the answer depend on the speed of the

electron? Explain.

4.13 (a) A circular coil of 30 turns and radius 8.0 cm carrying a current
of 6.0 A is suspended vertically in a uniform horizontal magnetic

field of magnitude 1.0 T. The field lines make an angle of 60°
with the normal of the coil. Calculate the magnitude of the
counter torque that must be applied to prevent the coil from

turning.

(b) Would your answer change, if the circular coil in (a) were replaced
by a planar coil of some irregular shape that encloses the same

area? (All other particulars are also unaltered.)
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