
3.1  INTRODUCTION

In Chapter 1, all charges whether free or bound, were considered to be at

rest. Charges in motion constitute an electric current. Such currents occur

naturally in many situations. Lightning is one such phenomenon in

which charges flow from the clouds to the earth through the atmosphere,

sometimes with disastrous results. The flow of charges in lightning is not

steady, but in our everyday life we see many devices where charges flow

in a steady manner, like water flowing smoothly in a river. A torch and a

cell-driven clock are examples of such devices. In the present chapter, we

shall study some of the basic laws concerning steady electric currents.

3.2  ELECTRIC CURRENT

Imagine a small area held normal to the direction of flow of charges. Both

the positive and the negative charges may flow forward and backward

across the area. In a given time interval t, let q
+
 be the net amount (i.e.,

forward minus backward) of positive charge that flows in the forward

direction across the area. Similarly, let q
–
 be the net amount of negative

charge flowing across the area in the forward direction. The net amount

of charge flowing across the area in the forward direction in the time

interval t, then, is q = q
+
– q

–
. This is proportional to t for steady current
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and the quotient

q
I

t
= (3.1)

is defined to be the current across the area in the forward direction. (If it

turn out to be a negative number, it implies a current in the backward
direction.)

Currents are not always steady and hence more generally, we define

the current as follows. Let DQ be the net charge flowing across a cross-
section of a conductor during the time interval Dt [i.e., between times t

and (t + Dt)]. Then, the current at time t across the cross-section of the

conductor is defined as the value of the ratio of DQ to Dt in the limit of Dt

tending to zero,

( )
0

lim
t

Q
I t

t∆ →

∆≡
∆ (3.2)

In SI units, the unit of current is ampere. An ampere is defined
through magnetic effects of currents that we will study in the following

chapter. An ampere is typically the order of magnitude of currents in

domestic appliances. An average lightning carries currents of the order
of tens of thousands of amperes and at the other extreme, currents in

our nerves are in microamperes.

3.3 ELECTRIC CURRENTS IN CONDUCTORS

An electric charge will experience a force if an electric field is applied. If it is

free to move, it will thus move contributing to a current. In nature, free
charged particles do exist like in upper strata of atmosphere called the

ionosphere. However, in atoms and molecules, the negatively charged

electrons and the positively charged nuclei are bound to each other and
are thus not free to move. Bulk matter is made up of many molecules, a

gram of water, for example, contains approximately 1022 molecules. These

molecules are so closely packed that the electrons are no longer attached
to individual nuclei. In some materials, the electrons will still be bound,

i.e., they will not accelerate even if an electric field is applied. In other

materials, notably metals, some of the electrons are practically free to move
within the bulk material. These materials, generally called conductors,

develop electric currents in them when an electric field is applied.
If we consider solid conductors, then of course the atoms are tightly

bound to each other so that the current is carried by the negatively
charged electrons. There are, however, other types of conductors like
electrolytic solutions where positive and negative charges both can move.
In our discussions, we will focus only on solid conductors so that the
current is carried by the negatively charged electrons in the background
of fixed positive ions.

Consider first the case when no electric field is present. The electrons

will be moving due to thermal motion during which they collide with the

fixed ions. An electron colliding with an ion emerges with the same speed
as before the collision. However, the direction of its velocity after the

collision is completely random. At a given time, there is no preferential

direction for the velocities of the electrons. Thus on the average, the
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number of electrons travelling in any direction will be equal to the number

of electrons travelling in the opposite direction. So, there will be no net

electric current.
Let us now see what happens to such a

piece of conductor if an electric field is applied.

To focus our thoughts, imagine the conductor
in the shape of a cylinder of radius R (Fig. 3.1).

Suppose we now take two thin circular discs

of a dielectric of the same radius and put
positive charge +Q distributed over one disc

and similarly –Q at the other disc. We attach

the two discs on the two flat surfaces of the
cylinder. An electric field will be created and

is directed from the positive towards the

negative charge. The electrons will be accelerated due to this field towards
+Q. They will thus move to neutralise the charges. The electrons, as long

as they are moving, will constitute an electric current. Hence in the

situation considered, there will be a current for a very short while and no
current thereafter.

We can also imagine a mechanism where the ends of the cylinder are

supplied with fresh charges to make up for any charges neutralised by
electrons moving inside the conductor. In that case, there will be a steady

electric field in the body of the conductor. This will result in a continuous

current rather than a current for a short period of time. Mechanisms,
which maintain a steady electric field are cells or batteries that we shall

study  later in this chapter. In the next sections, we shall study the steady

current that results from a steady electric field in conductors.

3.4  OHM’S LAW

A basic law regarding flow of currents was discovered by G.S. Ohm in
1828, long before the physical mechanism responsible for flow of currents

was discovered. Imagine a conductor through which a current I is flowing

and let V be the potential difference between the ends of the conductor.
Then Ohm’s law states that

     V µ I

or, V = R I (3.3)

where the constant of proportionality R is called the resistance of the

conductor. The SI units of resistance is ohm, and is denoted by the symbol

W. The resistance R not only depends on the material of the conductor

but also on the dimensions of the conductor. The dependence of R on the

dimensions of the conductor can easily be determined as follows.

Consider a conductor satisfying Eq. (3.3) to be in the form of a slab of

length l and cross sectional area A [Fig. 3.2(a)]. Imagine placing two such

identical slabs side by side [Fig. 3.2(b)], so that the length of the
combination is 2l. The current flowing through the  combination is the

same as that flowing through either of the slabs. If V is the potential

difference across the ends of the first slab, then V is also the potential
difference across the ends of the second slab since the second slab is

FIGURE 3.1 Charges +Q and –Q put at the ends

of a metallic cylinder. The electrons will drift
because of the electric field created to

neutralise the charges. The current thus

will stop after a while unless the charges +Q

and –Q are continuously replenished.

FIGURE 3.2
Illustrating the

relation R = rl/A for

a rectangular slab

of length l and area
of cross-section A.
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identical to the first and the same current I flows through

both. The potential difference across the ends of the

combination is clearly sum of the potential difference
across the two individual slabs and hence equals 2V. The

current through the combination is I and the resistance

of the combination R
C
 is [from Eq. (3.3)],

2
2C

V
R R

I
= = (3.4)

since V/I = R, the resistance of either of the slabs. Thus,

doubling the length of a conductor doubles the
resistance. In general, then resistance is proportional to

length,

R l∝ (3.5)

Next, imagine dividing the slab into two by cutting it

lengthwise so that the slab can be considered as a
combination of two identical slabs of length l , but each

having a cross sectional  area of A/2 [Fig. 3.2(c)].

For a given voltage V across the slab, if I is the current
through the entire slab, then clearly the current flowing

through each of the two half-slabs is I/2. Since the

potential difference across the ends of the half-slabs is V,
i.e., the same as across the full slab, the resistance of each

of the half-slabs R
1
 is

1 2 2 .
( /2)

V V
R R

I I
= = = (3.6)

Thus, halving the area of the cross-section of a conductor doubles

the resistance. In general, then the resistance R is inversely proportional

to the cross-sectional area,

1
R

A
∝ (3.7)

Combining Eqs. (3.5) and (3.7), we have

l
R

A
∝ (3.8)

and hence for a given conductor

l
R

A
ρ= (3.9)

where the constant of proportionality r depends on the material of the
conductor but not on its dimensions. r is called resistivity.

Using the last equation, Ohm’s law reads

I l
V I R

A

ρ= × = (3.10)

Current per unit area (taken normal to the current), I/A, is called
current density and is denoted by j. The SI units of the current density

are A/m2. Further, if E is the magnitude of uniform electric field in the

conductor whose length is l, then the potential difference V across its
ends is El. Using these, the last equation reads

G
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Georg Simon Ohm  (1787–
1854) German physicist,

professor at Munich. Ohm

was led to his law by an
analogy between the

conduction of heat: the

electric field is analogous to
the temperature gradient,

and the electric current is
analogous to the heat flow.
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        E l = j r l

or,    E = j r (3.11)

The above relation for magnitudes E and j can indeed be cast in a
vector  form. The current density, (which we have defined as the current

through unit area normal to the current) is also directed along E, and is

also a vector j (ººººº j E/E). Thus, the last equation can be written as,

        E = jr (3.12)

or,   j = s E (3.13)

where s º1/r is called the conductivity. Ohm’s law is often stated in an
equivalent form, Eq. (3.13) in addition to Eq.(3.3). In the next section, we

will try to understand the origin of the Ohm’s law as arising from the

characteristics of the drift of electrons.

3.5 DRIFT OF ELECTRONS AND THE ORIGIN

OF RESISTIVITY

As remarked before, an electron will suffer collisions with the heavy fixed

ions, but after collision, it will emerge with the same speed but in random

directions. If we consider all the electrons, their average velocity will be
zero since their directions are random. Thus, if there are N electrons and

the velocity of the ith electron (i = 1, 2, 3, ... N ) at a given time is v
i
, then

1
0

1N
i

i

v =
=
∑
N

(3.14)

Consider now the situation when an electric field is

present. Electrons will be accelerated due to this
field by

=
– E

a
e

m
(3.15)

where –e is the charge and m is the mass of an electron.

Consider again the ith electron at a given time t. This

electron would have had its last collision some time
before t, and let t

i
 be the time elapsed after its last

collision. If v
i
 was its velocity immediately after the last

collision, then its velocity V
i
 at time t is

−  = +     

E
V vi i i

e
t

m
(3.16)

since starting with its last collision it was accelerated

(Fig. 3.3) with an acceleration given by Eq. (3.15) for a

time interval t
i
. The average velocity of the electrons at

time t is the average of all the V
i
’s. The average of v

i
’s is

zero [Eq. (3.14)] since immediately after any collision,

the direction of the velocity of an electron is completely
random. The collisions of the electrons do not occur at

regular intervals but at random times. Let us denote by

t, the average time between successive collisions. Then
at a given time, some of the electrons would have spent

FIGURE 3.3 A schematic picture of

an electron moving from a point A to
another point B through repeated

collisions, and straight line travel

between collisions (full lines). If an
electric field is applied as shown, the

electron ends up at point B¢ (dotted

lines). A slight drift in a direction
opposite the electric field is visible.
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time more than t and some less than t. In other words, the time t
i
 in

Eq. (3.16) will be less than t for some and more than t for others as we go

through the values of i = 1, 2 ..... N. The average value of t
i
 then is t

(known as relaxation time). Thus, averaging Eq. (3.16) over the

N-electrons at any given time t gives us for the average velocity v
d

( ) ( ) ( )≡ = − E
v V vd i i iaverage average average

e
t

m

0 – τ τ= = −
E Ee e

m m
(3.17)

This last result is surprising. It tells us that the
electrons move with an average velocity which is

independent of time, although electrons are

accelerated. This is the phenomenon of drift and the
velocity v

d
 in Eq. (3.17) is called the drift velocity.

Because of the drift, there will be net transport of

charges across any area perpendicular to E. Consider
a planar area A, located inside the conductor such that

the normal to the area is parallel to E (Fig. 3.4). Then

because of the drift, in an infinitesimal amount of time
Dt, all electrons to the left of the area at distances upto

|v
d
|Dt would have crossed the area. If n is the number

of free electrons per unit volume in the metal, then
there are n Dt |v

d
|A such electrons. Since each

electron carries a charge –e, the total charge transported across this area

A to the right in time Dt is –ne A|v
d
|Dt. E is directed towards the left and

hence the total charge transported along E across the area is negative of

this. The amount of charge crossing the area A in time Dt is by definition

[Eq. (3.2)] I Dt, where I is the magnitude of the current. Hence,

v∆ = + ∆dI t n e A t (3.18)

Substituting the value of |v
d
| from Eq. (3.17)

2

Eτ∆ = ∆e A
I t n t

m
(3.19)

By definition I is related to the magnitude |j| of the current density by

I = |j|A (3.20)

Hence, from Eqs.(3.19) and (3.20),

2

j Eτ= ne

m
(3.21)

The vector j is parallel to E and hence we can write Eq. (3.21) in the
vector form

2

τ=j E
ne

m
(3.22)

Comparison with Eq. (3.13) shows that Eq. (3.22) is exactly the Ohm’s
law, if we identify the conductivity s  as

FIGURE 3.4 Current in a metallic
conductor. The magnitude of current

density in a metal is the magnitude of

charge contained in a cylinder of unit
area and length v

d
.
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2
ne

m
σ τ= (3.23)

We thus see that a very simple picture of electrical conduction
reproduces Ohm’s law. We have, of course, made assumptions that t

and n are constants, independent of E. We shall, in the next section,
discuss the limitations of Ohm’s law.

Example 3.1 (a) Estimate the average drift speed of conduction
electrons in a copper wire of cross-sectional area 1.0 × 10–7 m2 carrying
a current of 1.5 A. Assume that each copper atom contributes roughly

one conduction electron. The density of copper is 9.0 × 103 kg/m3,
and its atomic mass is 63.5 u. (b) Compare the drift speed obtained
above with, (i) thermal speeds of copper atoms at ordinary

temperatures, (ii) speed of propagation of electric field along the
conductor which causes the drift motion.

Solution

(a) The direction of drift velocity of conduction electrons is opposite
to the electric field direction, i.e., electrons drift in the direction
of increasing potential. The drift speed v

d
 is given by Eq. (3.18)

v
d
  = (I/neA)

Now, e = 1.6 × 10–19 C, A = 1.0 × 10–7m2, I = 1.5 A. The density of
conduction electrons, n is equal to the number of atoms per cubic

metre (assuming one conduction electron per Cu atom as is
reasonable from its valence electron count of one). A cubic metre
of copper has a mass of 9.0 × 103 kg. Since 6.0 × 1023 copper

atoms have a mass of 63.5 g,

23
66.0 10

9.0 10
63.5

n
×

= × ×

   = 8.5 × 1028 m–3

which gives,

28 –19 –7

1.5

8.5 10 1.6 10 1.0 10
=

× × × × ×d
v

    = 1.1 × 10–3 m s–1  = 1.1 mm s–1

(b) (i) At a temperature T, the thermal speed* of a copper atom of

mass M is obtained from [<(1/2) Mv
2 > = (3/2) k

B
T ] and is thus

typically of the order of /Bk T M , where k
B
 is the Boltzmann

constant. For copper at 300 K, this is about 2 × 102 m/s. This
figure indicates the random vibrational speeds of copper atoms
in a conductor. Note that the drift speed of electrons is much

smaller, about 10–5 times the typical thermal speed at ordinary
temperatures.
(ii) An electric field travelling along the conductor has a speed of

an electromagnetic wave, namely equal to 3.0 × 108 m s–1

(You will learn about this in Chapter 8). The drift speed is, in

comparison, extremely small; smaller by a factor of 10–11.

* See Eq. (12.23) of Chapter 12 from Class XI book.
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Example 3.2

(a) In Example 3.1, the electron drift speed is estimated to be only a
few mm s–1 for currents in the range of a few amperes? How then

is current established almost the instant a circuit is closed?

(b) The electron drift arises due to the force experienced by electrons
in the electric field inside the conductor. But force should cause

acceleration. Why then do the electrons acquire a steady average

drift speed?
(c) If the electron drift speed is so small, and the electron’s charge is

small, how can we still obtain large amounts of current in a

conductor?
(d) When electrons drift in a metal from lower to higher potential,

does it mean that all the ‘free’ electrons of the metal are moving

in the same direction?
(e) Are the paths of electrons straight lines between successive

collisions (with the positive ions of the metal) in the (i) absence of

electric field, (ii) presence of electric field?

Solution
(a) Electric field is established throughout the circuit, almost instantly

(with the speed of light) causing at every point a local electron

drift. Establishment of a current does not have to wait for electrons

from one end of the conductor travelling to the other end. However,

it does take a little while for the current to reach its steady value.
(b) Each ‘free’ electron does accelerate, increasing its drift speed until

it collides with a positive ion of the metal. It loses its drift speed

after collision but starts to accelerate and increases its drift speed
again only to suffer a collision again and so on. On the average,

therefore, electrons acquire only a drift speed.

(c) Simple, because the electron number density is enormous,
~1029 m–3.

(d) By no means. The drift velocity is superposed over the large

random velocities of electrons.
(e) In the absence of electric field, the paths are straight lines; in the

presence of electric field, the paths are, in general, curved.

3.5.1  Mobility

As we have seen, conductivity arises from mobile charge carriers. In
metals, these mobile charge carriers are electrons; in an ionised gas, they

are electrons and positive charged ions; in an electrolyte, these can be

both positive and negative ions.
An important quantity is the mobility m defined as the magnitude of

the drift velocity per unit electric field:

| |d

E
µ =

v
(3.24)

The SI unit of mobility is m2/Vs and is 104 of the mobility in practical

units (cm2/Vs). Mobility is positive. From Eq. (3.17), we have

v
d
 = 

τe E

m
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Hence,

τµ = =dv e

E m
(3.25)

where t is the average collision time for electrons.

3.6  LIMITATIONS OF OHM’S LAW

Although Ohm’s law has been found valid over a large class
of materials, there do exist materials and devices used in

electric circuits where the proportionality of V and I does not

hold. The deviations broadly are one or more of the following
types:

(a) V ceases to be proportional to I (Fig. 3.5).

(b) The relation between V and I depends on the sign of V. In
other words, if I is the current for a certain V, then reversing

the direction of V keeping its magnitude fixed, does not

produce a current of the same magnitude as I in the opposite direction
(Fig. 3.6). This happens, for example, in a diode which we will study

in Chapter 14.

(c) The relation between V and I is not unique, i.e., there is more than
one value of V for the same current I (Fig. 3.7). A material exhibiting

such behaviour is GaAs.

Materials and devices not obeying Ohm’s law in the form of Eq. (3.3)
are actually widely used in electronic circuits. In this and a few

subsequent chapters, however, we will study the electrical currents in

materials that obey Ohm’s law.

3.7  RESISTIVITY OF VARIOUS MATERIALS

The materials are classified as conductors, semiconductors and insulators

depending on their resistivities, in an increasing order of their values.

FIGURE 3.5 The dashed line

represents the linear Ohm’s

law. The solid line is the voltage
V versus current I for a good

conductor.

FIGURE 3.6 Characteristic curve

of a diode. Note the different

scales for negative and positive
values of the voltage and current.

FIGURE 3.7 Variation of current

versus voltage for GaAs.
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Metals have low resistivities in the range of 10–8 Wm to 10–6 Wm. At the

other end are insulators like ceramic, rubber and plastics having

resistivities 1018 times greater than metals or more. In between the two

are the semiconductors. These, however, have resistivities

characteristically decreasing with a rise in temperature. The resistivities

of semiconductors can be decreased by adding small amount of suitable

impurities. This last feature is exploited in use of semiconductors for

electronic devices.

3.8 TEMPERATURE DEPENDENCE OF RESISTIVITY

The resistivity of a material is found to be dependent on the temperature.

Different materials do not exhibit the same dependence on temperatures.

Over a limited range of temperatures, that is not too large, the resistivity
of a metallic conductor is approximately given by,

r
T
 = r

0
 [1 + a (T–T

0
)] (3.26)

where r
T
 is the resistivity at a temperature T and r

0
 is the same at a

reference temperature T
0
. a is called the temperature co-efficient of

resistivity, and from Eq. (3.26), the dimension of a is (Temperature)–1.

For  metals, a is positive.

The relation of Eq. (3.26) implies that a graph of r
T
 plotted against T

would be a straight line. At temperatures much lower than 0°C, the graph,
however, deviates considerably from a straight line (Fig. 3.8).

Equation (3.26) thus, can be used approximately over a limited range

of T around any reference temperature T
0
, where the graph can be

approximated as a straight line.

FIGURE 3.8
Resistivity r

T
 of

copper as a function
of temperature T.

FIGURE 3.9 Resistivity

r
T
 of nichrome as a

function of absolute

temperature T.

FIGURE 3.10
Temperature dependence

of resistivity for a typical
semiconductor.



Some materials like Nichrome (which is an alloy of nickel, iron and

chromium) exhibit a very weak dependence of resistivity with temperature

(Fig. 3.9). Manganin and constantan have similar properties. These

materials are thus widely used in wire bound standard resistors since

their resistance values would change very little with temperatures.
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Unlike metals, the resistivities of semiconductors decrease with

increasing temperatures. A typical dependence is shown in Fig. 3.10.

We can qualitatively understand the temperature dependence of

resistivity, in the light of our derivation of Eq. (3.23). From this equation,

resistivity of a material is given by

2

1 m

n e
ρ

σ τ
= = (3.27)

r thus depends inversely both on the number n of free electrons per unit

volume and on the average time t between collisions. As we increase

temperature, average speed of the electrons, which act as the carriers of

current, increases resulting in more frequent collisions. The average time

of collisions t, thus decreases with temperature.

In a metal, n is not dependent on temperature to any appreciable

extent and thus the decrease in the value of t with rise in temperature

causes r to increase as we have observed.

For insulators and semiconductors, however, n increases with

temperature. This increase more than compensates any decrease in t in

Eq.(3.23) so that for such materials, r decreases with temperature.

Example 3.3 An electric toaster uses nichrome for its heating

element. When a negligibly small current passes through it, its
resistance at room temperature (27.0 °C) is found to be 75.3 W. When

the toaster is connected to a 230 V supply, the current settles, after

a few seconds, to a steady value of 2.68 A. What is the steady
temperature of the nichrome element? The temperature coefficient

of resistance of nichrome averaged over the temperature range

involved, is 1.70 × 10–4 °C–1.

Solution  When the current through the element is very small, heating

effects can be ignored and the temperature T
1
 of the element is the

same as room temperature. When the toaster is connected to the
supply, its initial current will be slightly higher than its steady value

of 2.68 A. But due to heating effect of the current, the temperature

will rise. This will cause an increase in resistance and a slight
decrease in current. In a few seconds, a steady state will be reached

when temperature will rise no further, and both the resistance of the

element and the current drawn will achieve steady values. The
resistance R

2
 at the steady temperature T

2
 is

R
2
 

230 V
85.8

2.68 A
= = Ω

Using the relation

R
2
 = R

1
 [1 + a (T

2
 – T

1
)]

with a = 1.70 × 10–4 °C–1, we get

T
2
 – T

1 –4

(85.8 – 75.3)

(75.3) 1.70 10
=

× ×
  = 820 °C

that is,  T
2 

= (820 + 27.0) °C = 847 °C

Thus, the steady temperature of the heating element (when heating

effect due to the current equals heat loss to the surroundings) is

847 °C.
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Example 3.4 The resistance of the platinum wire of a platinum
resistance thermometer at the ice point is 5 W and at steam point is

5.23 W. When the thermometer is inserted in a hot bath, the resistance

of the platinum wire is 5.795 W. Calculate the temperature of the
bath.

Solution R
0
 = 5 W, R

100
 = 5.23 W and R

t
 = 5.795 W

Now,
0

0

100 0

100, (1 )t
t

R R
t R R t

R R
α−

= × = +
−

5.795 5
100

5.23 5

−
= ×

−

=
0.795

100
0.23

×  = 345.65 °C

3.9  ELECTRICAL ENERGY, POWER

Consider a conductor with end points A and B, in which a current I is
flowing from A to B. The electric potential at A and B are denoted by V (A)

and V (B) respectively. Since current is flowing from A to B, V (A) > V (B)

and the potential difference across  AB is V = V(A) – V(B) > 0.
In a time interval Dt, an amount of charge DQ = I Dt travels from A to

B. The potential energy of the charge at A, by definition, was Q V (A) and
similarly at B, it is Q V(B). Thus, change in its potential energy DU

pot
 is

DU
pot

 = Final potential energy – Initial potential energy

         = DQ[(V (B) – V (A)] = –DQ V
         = –I VDt < 0 (3.28)

If charges moved without collisions through the conductor, their

kinetic energy would also change so that the total energy is unchanged.
Conservation of total energy would then imply that,

DK =  –DU
pot

(3.29)

that is,

DK = I VDt > 0 (3.30)

Thus, in case charges were moving freely through the conductor under

the action of electric field, their kinetic energy would increase as they
move. We have, however, seen earlier that on the average, charge carriers

do not move with acceleration but with a steady drift velocity. This is

because of the collisions with ions and atoms during transit. During
collisions, the energy gained by the charges thus is shared with the atoms.

The atoms vibrate more vigorously, i.e., the conductor heats up. Thus,

in an actual conductor, an amount of energy dissipated as heat in the
conductor during the time interval Dt is,

DW = I VDt (3.31)

The energy dissipated per unit time is the power dissipated
P = DW/Dt  and we have,

P = I V (3.32)
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Using Ohm’s law V = IR, we get

P = I 2 R = V 2/R (3.33)

as the power loss (“ohmic loss”) in a conductor of resistance R carrying a
current I. It is this power which heats up, for example, the coil of an

electric bulb to incandescence, radiating out heat and light.

Where does the power come from? As we have
reasoned before, we need an external source to keep

a steady current through the conductor. It is clearly

this source which must supply this power. In the
simple circuit shown with a cell (Fig.3.11), it is the

chemical energy of the cell which supplies this power

for as long as it can.
The expressions for power, Eqs. (3.32) and (3.33),

show the dependence of the power dissipated in a

resistor R on the current through it and the voltage
across it.

Equation (3.33) has an important application to

power transmission. Electrical power is transmitted
from power stations to homes and factories, which

may be hundreds of miles away, via transmission

cables. One obviously wants to minimise the power
loss in the transmission cables connecting the power stations to homes

and factories. We shall  see now how this can be achieved. Consider a

device R, to which a power P is to be delivered via transmission cables
having a resistance R

c
 to be dissipated by it finally. If V is the voltage

across R and I the current through it, then

P = V I (3.34)
The connecting wires from the power station to the device has a finite

resistance R
c
. The power dissipated in the connecting wires, which is

wasted is P
c
  with

P
c
 = I 2 R

c

   
2

2

cP R

V
= (3.35)

from Eq. (3.32). Thus, to drive a device of power P, the power wasted in the

connecting wires is inversely proportional to V 2. The  transmission cables
from power stations are hundreds of miles long and their resistance R

c
 is

considerable. To reduce P
c
, these wires carry current at enormous values

of V and this is the reason for the high voltage danger signs on transmission
lines — a common sight as we move away from populated areas. Using

electricity at such voltages is not safe and hence at the other end, a device

called a transformer lowers the voltage to a value suitable for use.

3.10 CELLS, EMF, INTERNAL RESISTANCE

We have already mentioned that a simple device to maintain a steady
current in an electric circuit is the electrolytic cell. Basically a cell has

two electrodes, called the positive (P) and the negative (N), as shown in

FIGURE 3.11 Heat is produced in the

resistor R which is connected across
the terminals of a cell. The energy

dissipated in the resistor R comes from

the chemical energy of the electrolyte.
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Fig. 3.12. They are immersed in an electrolytic solution. Dipped in
the solution, the electrodes exchange charges with the electrolyte.

The positive electrode has a potential difference V
+
 (V

+
 > 0) between

itself and the electrolyte solution immediately adjacent to it marked
A in the figure. Similarly, the negative electrode develops a negative

potential  – (V
–
 ) (V

–
 ≥  0) relative to the electrolyte adjacent to it,

marked as B in the figure. When there is no current, the electrolyte
has the same potential throughout, so that the potential difference
between P and N is V

+
 – (–V

–
) = V

+
 + V

–
 . This difference is called the

electromotive force (emf) of the cell and is denoted by e. Thus

e = V
+
+V

–
 > 

 
0 (3.36)

Note that e is, actually, a potential difference and not a force. The

name emf, however, is used because of historical reasons, and was
given at a time when the phenomenon was not understood properly.

To understand the significance of e, consider a resistor R

connected across the cell (Fig. 3.12). A current I flows across R
from C to D. As explained before, a steady current is maintained
because current flows from N to P through the electrolyte. Clearly,

across the electrolyte the same current flows through the electrolyte
but from N to P, whereas through R, it flows from P to N.

The electrolyte through which a current flows has a finite

resistance r, called the internal resistance. Consider first the
situation when R is infinite so that I = V/R = 0, where V is the
potential difference between P and N. Now,

V = Potential difference between P and A
       + Potential difference between A and B
       + Potential  difference between B and N

   = e (3.37)
Thus, emf e is the potential difference between the positive and
negative electrodes in an open circuit, i.e., when no current is

flowing through the cell.
If however R is finite, I is not zero. In that case the potential difference

between P and N is

V = V
+
+ V

–
 – I r

   = e – I r (3.38)

Note the negative sign in the expression (I r ) for the potential difference

between A and B. This is because the current I flows from B to A in the

electrolyte.

In  practical calculations, internal resistances of cells in the circuit
may be neglected when the  current I is such that e >> I r. The actual

values of the internal resistances of cells vary from cell to cell. The internal

resistance of dry cells, however, is much higher than the common

electrolytic cells.
We also observe that since V is the potential difference across R, we

have from Ohm’s law

V = I  R (3.39)

Combining Eqs. (3.38) and (3.39), we get

FIGURE 3.12 (a) Sketch of

an electrolyte cell with
positive terminal P and

negative terminal N. The

gap between the electrodes
is exaggerated for clarity. A

and B are points in the

electrolyte typically close to
P and N. (b) the symbol for
a cell, + referring to P and

– referring to the N
electrode. Electrical

connections to the cell are

made at P and N.
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I  R   =  e – I  r

Or, I
R r

=
+
ε

(3.40)

The maximum current that can be drawn from a cell is for R = 0
and it is Imax = e/r. However, in most cells the maximum allowed current
is much lower than this to prevent permanent damage to the cell.

3.11  3.11  3.11  3.11  3.11  CCCCCELLSELLSELLSELLSELLS     INININININ S S S S SERIESERIESERIESERIESERIES     ANDANDANDANDAND     INININININ P P P P PARALLELARALLELARALLELARALLELARALLEL

Like resistors, cells can be combined together in an electric circuit. And
like resistors, one can, for calculating currents and voltages in a circuit,
replace a combination of cells by an equivalent cell.

FIGUREFIGUREFIGUREFIGUREFIGURE 3.13 3.13 3.13 3.13 3.13 Two cells of emf’s e1 and e2 in the series. r1, r2 are their
internal resistances. For connections across A and C, the combination

can be considered as one cell of emf eeq and an internal resistance req.

Consider first  two cells in series (Fig. 3.13), where one terminal of the
two cells is joined together leaving the other terminal in either cell free.
e

1
, e

2
 are the emf’s of the two cells and r

1
, r

2
 their internal resistances,

respectively.
Let V (A), V (B), V (C) be the potentials at points A, B and C shown in

Fig. 3.13. Then V (A) – V (B) is the potential difference between the positive
and negative terminals of the first cell. We have already calculated it in
Eq. (3.38) and hence,

V V V I rAB A B≡ =( ) ( ) ε1 1
– –

(3.41)

Similarly,

V V V I rBC B C≡ =( ) ( ) ε2 2
– – (3.42)

Hence, the potential difference between the terminals A and C of
the combination is

( ) ( ) ( ) ( )AC (A) – (C) A – B B – CV V V V V V V≡ = +        

       ( ) ( )1 2 1 2– I r rε ε= + + (3.43)

If we wish to replace the combination by a single cell between A and
C of emf eeq and internal resistance req, we would have

V
AC

 = e
eq

– I r
eq

(3.44)

Comparing the last two equations, we get

  e
eq

 = e
1
 + e

2
(3.45)

and  r
eq

 = r
1
 + r

2
(3.46)

In Fig.3.13, we had connected the negative electrode of the first to the
positive electrode of the second. If instead we connect the two negatives,

Reprint 2025-26



Physics

96

Eq. (3.42) would change to V
BC

 = –e
2
–Ir

2
 and we will get

e
eq

 = e
1
 – e

2
         (e

1
 > e

2
) (3.47)

The rule for series combination clearly can be extended to any number
of cells:
(i) The equivalent emf of a series combination of n cells is just the sum of

their individual emf’s, and
(ii) The equivalent internal resistance of a series combination of n cells is

just the sum of their internal resistances.

This is so, when the current leaves each cell from the positive
electrode. If in the combination, the current leaves any cell from
the negative electrode, the emf of the cell enters the expression

for e
eq

 with a negative sign, as in Eq. (3.47).
Next, consider a parallel combination of the cells (Fig. 3.14).

I
1
 and I

2
 are the currents leaving the positive electrodes of the

cells. At the point B
1
, I

1
 and I

2
 flow in whereas the current I flows

out. Since as much charge flows in as out, we have

I = I
1
 + I

2
(3.48)

Let V (B
1
) and V (B

2
) be the potentials at B

1
 and B

2
, respectively.

Then, considering the first cell, the potential difference across its
terminals is V (B

1
) – V (B

2
). Hence, from Eq. (3.38)

( ) ( )1 2 1 1 1– –V V B V B I rε≡ = (3.49)

Points B
1
 and B

2
 are connected exactly similarly to the second

cell. Hence considering the second cell, we also have

( ) ( )1 2 2 2 2– –V V B V B I rε≡ = (3.50)

Combining the last three equations

1 2    I I I= +

    = + = +






+






ε ε ε ε1

1

2

2

1

1

2

2 1 2

1 1– –
–

V

r

V

r r r
V

r r
(3.51)

Hence, V is given by,

1 2 2 1 1 2

1 2 1 2

–
r r r r

V I
r r r r

ε ε+
=

+ + (3.52)

If we want to replace the combination by a single cell, between B
1
 and

B
2
, of emf e

eq
 and internal resistance r

eq
, we would have

V = e
eq 

– I r
eq

(3.53)

The last two equations should be the same and hence

1 2 2 1

1 2

eq

r r

r r

ε εε +
=

+ (3.54)

1 2

1 2

eq

r r
r

r r
=

+ (3.55)

We can put these equations in a simpler way,

FIGURE 3.14 Two cells in
parallel. For connections

across A and C, the

combination can be
replaced by one cell of emf

e
eq

 and internal resistances

r
eq

 whose values are given in
Eqs. (3.54) and (3.55).
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1 2

1 1 1

eqr r r
= + (3.56)

1 2

1 2

eq

eqr r r

ε ε ε= + (3.57)

In Fig. (3.14), we had joined the positive terminals

together and similarly the two negative ones, so that the
currents I

1
, I

2
 flow out of positive terminals. If the negative

terminal of the second is connected to positive terminal

of the first, Eqs. (3.56) and (3.57) would still be valid with
e

 2
 ® –e

2

Equations (3.56) and (3.57) can be extended easily.

If there are n cells of emf e
1
, . . . e

n
 and of internal

resistances r
1
,... r

n
 respectively, connected in parallel, the

combination is equivalent to a single cell of emf e
eq

 and

internal resistance r
eq

, such that

1 1 1

1r r req n

= + +... (3.58)

ε ε εeq

eq

n

nr r r
= + +1

1

... (3.59)

3.12  KIRCHHOFF’S RULES

Electric circuits generally consist of a number of resistors
and cells interconnected sometimes in a complicated way.

The formulae we have derived earlier for series and parallel combinations
of resistors are not always sufficient to determine all the currents and
potential differences in the circuit. Two rules, called Kirchhoff’s rules,

are very useful for analysis of electric circuits.
Given a circuit, we start by labelling currents in each resistor by a

symbol, say I, and a directed arrow to indicate that a current I flows

along the resistor in the direction indicated. If ultimately I is determined
to be positive, the actual current in the resistor is in the direction of the
arrow. If I turns out to be negative, the current actually flows in a direction

opposite to the arrow. Similarly, for each source (i.e., cell or some other
source of electrical power) the positive and negative electrodes are labelled,
as well as, a directed arrow with a symbol for the current flowing through

the cell. This will tell us the potential difference, V = V (P) – V (N) = e – I r
[Eq. (3.38) between the positive terminal P and the negative terminal N; I
here is the current flowing from N to P through the cell]. If, while labelling

the current I through the cell one goes from P to N, then of course
V = e + I r (3.60)

Having clarified labelling, we now state the rules and the proof:
(a) Junction rule: At any junction, the sum of the currents entering

the junction is equal to the sum of currents leaving the junction

(Fig. 3.15).

Gustav Robert Kirchhoff

(1824 – 1887) German
physicist, professor at
Heidelberg and at

Berlin. Mainly known for
his development of
spectroscopy, he also

made many important
contributions to mathe-
matical physics, among

them, his first and
second rules for circuits.
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This applies equally well if instead of a junction of
several lines, we consider a point in a line.

The proof of this rule follows from the fact that
when currents are steady, there is no accumulation
of charges at any junction or at any point in a line.

Thus, the total current flowing in, (which is the rate
at which charge flows into the junction), must equal
the total current flowing out.

(b) Loop rule: The algebraic sum of changes in

potential around any closed loop involving

resistors and cells in the loop is zero

(Fig. 3.15).
This rule is also obvious, since electric potential is
dependent on the location of the point. Thus

starting with any point if we come back to the same
point, the total change must be zero. In a closed
loop, we do come back to the starting point and

hence the rule.

FIGURE 3.15 At junction a the current
leaving is I

1
 + I

2
 and current entering is I

3
.

The junction rule says I
3
 = I

1
 + I

2
. At point

h current entering is I
1
. There is only one

current leaving h and by junction rule
that will also be I

1
. For the loops ‘ahdcba’

and ‘ahdefga’, the loop rules give –30I
1
 –

41 I
3
 + 45 = 0 and –30I

1
 + 21 I

2
 – 80 = 0.

Example 3.5 A battery of 10 V and negligible internal resistance is

connected across the diagonally opposite corners of a cubical network
consisting of 12 resistors each of resistance 1 W (Fig. 3.16). Determine
the equivalent resistance of the network and the current along each

edge of the cube.

Z

FIGURE 3.16
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Solution  The network is not reducible to a simple series and parallel
combinations of resistors. There is, however, a clear symmetry in the

problem which we can exploit to obtain the equivalent resistance of
the network.
The paths AA¢, AD and AB are obviously symmetrically placed in the

network. Thus, the current in each must be the same, say, I. Further,
at the corners A¢, B and D, the incoming current I must split equally
into the two outgoing branches. In this manner, the current in all

the 12 edges of the cube are easily written down in terms of I, using
Kirchhoff’s first rule and the symmetry in the problem.
Next take a closed loop, say, ABCC¢EA, and apply Kirchhoff’s second

rule:
–IR – (1/2)IR – IR + e = 0

where R is the resistance of each edge and e the emf of battery. Thus,

e = 
5

2
I R

The equivalent resistance R
eq

 of the network is

5

3 6
eqR R

I

ε= =

For R = 1 W, R
eq

 = (5/6) W and for e = 10 V, the total current (= 3I ) in

the network is
3I = 10 V/(5/6) W = 12 A, i.e., I = 4 A

The current flowing in each edge can now be read off from the
Fig. 3.16.

It should be noted that because of the symmetry of the network, the
great power of Kirchhoff’s rules has not been very apparent in Example 3.5.

In a general network, there will be no such simplification due to symmetry,
and only by application of Kirchhoff’s rules to junctions and closed loops
(as many as necessary to solve the unknowns in the network) can we

handle the problem. This will be illustrated in Example 3.6.

Example 3.6 Determine the current in each branch of the network
shown in Fig. 3.17.

FIGURE 3.17
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Solution  Each branch of the network is assigned an unknown current
to be determined by the application of Kirchhoff’s rules. To reduce
the number of unknowns at the outset, the first rule of Kirchhoff is

used at every junction to assign the unknown current in each branch.
We then have three unknowns I

1
, I

2
 and I

3
 which can be found by

applying the second rule of Kirchhoff to three different closed loops.

Kirchhoff’s second rule for the closed loop ADCA gives,

10 – 4(I
1
– I

2
) + 2(I

2
 + I

3
 – I

1
) – I

1
 = 0 [3.61(a)]

that is, 7I
1
– 6I

2
 – 2I

3
 = 10

For the closed loop ABCA, we get

10 – 4I
2
– 2 (I

2
 + I

3
) – I

1
 = 0

that is, I
1
 + 6I

2
 + 2I

3
 =10 [3.61(b)]

For the closed loop BCDEB, we get

5 – 2 (I
2
 + I

3
) – 2 (I

2
 + I

3
 – I

1
) = 0

that is, 2I
1
 – 4I

2
 – 4I

3
 = –5 [3.61(c)]

Equations (3.61 a, b, c) are three simultaneous equations in three
unknowns. These can be solved by the usual method to give

I
1
 = 2.5A,   I

2
 = 

5

8
 A,   I

3
 = 

7
1

8
  A

The currents in the various branches of the network are

AB : 
5

8
 A,   CA : 

1
2

2
 A,   DEB : 

7
1

8
  A

AD : 
7

1
8

 A,   CD : 0 A,   BC : 
1

2
2

 A

It is easily verified that Kirchhoff’s second rule applied to the
remaining closed loops does not provide any additional independent
equation, that is, the above values of currents satisfy the second

rule for every closed loop of the network. For example, the total voltage
drop over the closed loop BADEB

5
5

8
4

15

8
4V V V+ ×



 − ×





equal to zero, as required by Kirchhoff’s second rule.

3.13  WHEATSTONE BRIDGE

As an application of Kirchhoff’s rules consider the circuit shown in

Fig. 3.18, which is called the Wheatstone bridge. The bridge has

four resistors R
1
, R

2
, R

3
 and R

4
. Across one pair of diagonally opposite

points (A and C in the figure) a source is connected. This (i.e., AC) is

called the battery arm. Between the other two vertices, B and D, a

galvanometer G (which is a device to detect currents) is connected. This

line, shown as BD in the figure, is called the galvanometer arm.
For simplicity, we assume that the cell has no internal resistance. In

general there will be currents flowing across all the resistors as well as a
current I

g
 through G. Of special interest, is the case of a balanced bridge

where the resistors are such that I
g
 = 0. We can easily get the balance

condition, such that there is no current through G. In this case, the
Kirchhoff’s junction rule applied to junctions D and B (see the figure)
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immediately gives us the relations I
1
 = I

3
 and I

2
 = I

4
. Next, we apply

Kirchhoff’s loop rule to closed loops ADBA and CBDC. The first
loop gives

–I
1
 R

1
 + 0 + I

2
 R

2
 = 0        (I

g
 = 0)   (3.62)

and the second loop gives, upon using I
3
 = I

1
, I

4
 = I

2

I
2
 R

4
 + 0 – I

1
 R

3
 = 0         (3.63)

From Eq. (3.62), we obtain,

1 2

2 1

I R

I R
=

whereas from Eq. (3.63), we obtain,

1 4

2 3

I R

I R
=

Hence, we obtain the condition

2 4

1 3

R R

R R
= [3.64(a)]

 This last equation relating the four resistors is called the balance

condition for the galvanometer to give zero or null deflection.
The Wheatstone bridge and its balance condition provide a practical

method for determination of an unknown resistance. Let us suppose we
have an unknown resistance, which we insert in the fourth arm; R

4
 is

thus not known. Keeping known resistances R
1
 and R

2
 in the first and

second arm of the bridge, we go on varying R
3
 till the galvanometer shows

a null deflection. The bridge then is balanced, and from the balance
condition the value of the unknown resistance R

4
 is given by,

2
4 3

1

R
R R

R
= [3.64(b)]

A practical device using this principle is called the meter bridge.

Example 3.7 The four arms of a Wheatstone bridge (Fig. 3.19) have
the following resistances:

AB = 100W, BC = 10W, CD = 5W, and DA = 60W.

FIGURE 3.19
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 A galvanometer of 15W resistance is connected across BD. Calculate
the current through the galvanometer when a potential difference of
10 V is maintained across AC.

Solution  Considering the mesh BADB, we have

100I
1
 + 15I

g
 – 60I

2
 = 0

or   20I
1
 + 3I

g
 – 12I

2
= 0 [3.65(a)]

Considering the mesh BCDB, we have

10 (I
1
 – I

g
) – 15I

g
 – 5 (I

2
 + I

g
) = 0

10I
1
 – 30I

g
 –5I

2
 = 0

2I
1
 – 6I

g
 – I

2
 = 0 [3.65(b)]

Considering the mesh ADCEA,

60I
2
 + 5 (I

2
 + I

g
) = 10

65I
2
 + 5I

g
 = 10

13I
2
 + I

g
 = 2 [3.65(c)]

Multiplying Eq. (3.65b) by 10

20I
1
 – 60I

g
 – 10I

2
 = 0 [3.65(d)]

From Eqs. (3.65d) and (3.65a) we have

63I
g
 – 2I

2
 = 0

I
2
 = 31.5I

g
[3.65(e)]

Substituting the value of I
2
 into Eq. [3.65(c)], we get

13 (31.5I
g
 ) + I

g
 = 2

410.5 I
g
 = 2

I
g
 = 4.87 mA.

SUMMARY

1. Current through a given area of a conductor is the net charge passing
per unit time through the area.

2. To maintain a steady current, we must have a closed circuit in which

an external agency moves electric charge from lower to higher potential

energy. The work done per unit charge by the source in taking the

charge from lower to higher potential energy (i.e., from one terminal

of the source to the other) is called the electromotive force, or emf, of
the source. Note that the emf is not a force; it is the voltage difference

between the two terminals of a source in open circuit.

3. Ohm’s law: The electric current I flowing through a substance is

proportional to the voltage V across its ends, i.e., V µ I or V = RI,

where R is called the resistance of the substance. The unit of resistance

is ohm: 1W = 1 V A–1.
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4. The resistance R of a conductor depends on its length l and

cross-sectional area A through the relation,

l
R

A

ρ
=

where r, called resistivity is a property of the material and depends on

temperature and pressure.

5. Electrical resistivity of substances varies over a very wide range. Metals
have low resistivity, in the range of 10–8 W m to 10–6 W m. Insulators

like glass and rubber have 1022 to 1024 times greater resistivity.

Semiconductors like Si and Ge lie roughly in the middle range of
resistivity on a logarithmic scale.

6. In most substances, the carriers of current are electrons; in some

cases, for example, ionic crystals and electrolytic liquids, positive and
negative ions carry the electric current.

7. Current density j gives the amount of charge flowing per second per

unit area normal to the flow,

j = nq v
d

where n is the number density (number per unit volume) of charge

carriers each of charge q, and v
d
 is the drift velocity of the charge

carriers. For electrons q = – e. If j is normal to a cross-sectional area

A and is constant over the area, the magnitude of the current I through

the area is nev
d
 A.

8. Using E = V/l, I = nev
d
 A, and Ohm’s law, one obtains

2

d

eE ne
v

m m
ρ=

The proportionality between the force eE on the electrons in a metal

due to the external field E and the drift velocity v
d
 (not acceleration)

can be understood, if we assume that the electrons suffer collisions
with ions in the metal, which deflect them randomly. If such collisions

occur on an average at a time interval t,

v
d
 = at = eEt/m

where a is the acceleration of the electron. This gives

2

m

ne
ρ

τ
=

9. In the temperature range in which resistivity increases linearly with

temperature, the temperature coefficient of resistivity a is defined as

the fractional increase in resistivity per unit increase in temperature.

10. Ohm’s law is obeyed by many substances, but it is not a fundamental

law of nature. It fails if

(a) V depends on I non-linearly.
(b) the relation between V and I depends on the sign of V for the same

absolute value of V.

(c) The relation between V and I is non-unique.
An example of (a) is when r increases with I (even if temperature is

kept fixed). A rectifier combines features (a) and (b). GaAs shows the

feature (c).

11. When a source of emf e is connected to an external resistance R, the

voltage V
ext

 across R is given by

V
ext

 = IR = R
R r

ε
+

where r is the internal resistance of the source.
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Physical Quantity Symbol Dimensions Unit Remark

Electric current I [A] A SI base unit

Charge Q, q [T A] C

Voltage, Electric V [M L
2
 T

–3 
A

–1
] V Work/charge

potential difference

Electromotive force e [M L
2
 T

–3 
A

–1
] V Work/charge

Resistance R [M L
2 
T

–3 
A

–2
] W R = V/I

Resistivity r [M L
3 
T

–3 
A

–2
] W m R = rl/A

Electrical s [M
–1

 L
–3

 T
3 
A

2
] S s = 1/r

conductivity

Electric field E [M L T
–3

 A
–1

] V m
–1 Electric force

charge

Drift speed v
d

[L T
–1

] m s
–1

vd

e E

m
=

τ

Relaxation time t [T] s

Current density j [L
–2

 A] A m
–2

current/area

Mobility m [M L
3 
T

–4 
A

–1
] m

2 
V

–1
s

–1 /dv E

12. Kirchhoff’s Rules –

(a) Junction Rule: At any junction of circuit elements, the sum of

currents entering the junction must equal the sum of currents

leaving it.

(b) Loop Rule: The algebraic sum of changes in potential around any

closed loop must be zero.

13. The Wheatstone bridge is an arrangement of four resistances – R
1
, R

2
,

R
3
, R

4
 as shown in the text. The null-point condition is given by

31

2 4

RR

R R
=

using which the value of one resistance can be determined, knowing

the other three resistances.

POINTS TO PONDER

1. Current is a scalar although we represent current with an arrow.

Currents do not obey the  law of vector addition. That current is a
scalar also follows from it’s  definition. The current I through an area

of cross-section is given by the scalar product of two vectors:

I =  j . DS

where j and DS are vectors.
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2. Refer to V-I curves of a resistor and a diode as drawn in the text. A
resistor obeys Ohm’s law while a diode does not. The assertion that
V = IR is a statement of Ohm’s law is not true. This equation defines
resistance and it may be applied to all conducting devices whether
they obey Ohm’s law or not. The Ohm’s law asserts that the plot of I
versus V is linear i.e., R is independent of V.

Equation E = ρ j leads to another statement of Ohm’s law, i.e., a
conducting material obeys Ohm’s law when the resistivity of the
material does not depend on the magnitude and direction of applied
electric field.

3. Homogeneous conductors like silver or semiconductors like pure
germanium or germanium containing impurities obey Ohm’s law within
some range of electric field values. If the field becomes too strong,
there are departures from Ohm’s law in all cases.

4. Motion of conduction electrons in electric field E is the sum of (i)
motion due to random collisions and (ii) that due to E. The motion
due to random collisions averages to zero and does not contribute to
v

d
 (Chapter 10, Textbook of Class XI). v

d
 , thus is only due to applied

electric field on the electron.

5. The relation j = ρ v should be applied to each type of charge carriers
separately. In a conducting wire, the total current and charge density
arises from both positive and negative charges:

j = ρ
+
 v

+
 + ρ

–
 v

–

ρρρρρ = ρ
+
 + ρ

–

Now in a neutral wire carrying electric current,

ρρρρρ
+
 = – ρ

–

Further, v+ ~ 0 which gives

ρρρρρ = 0

j = ρ
–
 v

Thus, the relation j = ρ v does not apply to the total current charge
density.

6. Kirchhoff’s junction rule is based on conservation of charge and the
outgoing currents add up and are equal to incoming current at a
junction. Bending or reorienting the wire does not change the validity
of Kirchhoff’s junction rule.

EXERCISES

3.1 The storage battery of a car has an emf of 12 V. If the internal
resistance of the battery is 0.4 Ω, what is the maximum current
that can be drawn from the battery?

3.2 A battery of emf 10 V and internal resistance 3 Ω is connected to a
resistor. If the current in the circuit is 0.5 A, what is the resistance
of the resistor? What is the terminal voltage of the battery when the
circuit is closed?

3.3 At room temperature (27.0 °C) the resistance of a heating element
is 100 Ω. What is the temperature of the element if the resistance is
found to be 117 Ω, given that the temperature coefficient of the
material of the resistor is 1.70 × 10–4 °C–1.
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3.4 A negligibly small current is passed through a wire of length 15 m
and uniform cross-section 6.0 × 10–7 m2, and its resistance is
measured to be 5.0 W. What is the resistivity of the material at the
temperature of the experiment?

3.5 A silver wire has a resistance of 2.1 W at 27.5 °C, and a resistance
of 2.7 W at 100 °C. Determine the temperature coefficient of
resistivity of silver.

3.6 A heating element using nichrome connected to a 230 V supply
draws an initial current of 3.2 A which settles after a few seconds to
a steady value of 2.8 A. What is the steady temperature of the heating

element if the room temperature is 27.0 °C? Temperature coefficient
of resistance of nichrome averaged over the temperature range
involved is 1.70 × 10–4 °C–1.

3.7 Determine the current in each branch of the network shown in
Fig. 3.20:

FIGURE 3.20

3.8 A storage battery of emf 8.0 V and internal resistance 0.5 W is being
charged by a 120 V dc supply using a series resistor of 15.5 W. What
is the terminal voltage of the battery during charging? What is the
purpose of having a series resistor in the charging circuit?

3.9 The number density of  free electrons in a copper conductor
estimated in Example 3.1 is 8.5 × 1028 m–3. How long does an electron
take to drift from one end of a wire 3.0 m long to its other end? The
area of cross-section of the wire is 2.0 × 10–6 m2 and it is carrying a
current of 3.0 A.
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