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1.1 Physical Quantity. 

A quantity which can be measured and by which various physical happenings can be 

explained and expressed in form of laws is called a physical quantity. For example length, mass, 

time, force etc.  

On the other hand various happenings in life e.g., happiness, sorrow etc. are not physical 

quantities because these can not be measured. 

Measurement is necessary to determine magnitude of a physical quantity, to compare two 

similar physical quantities and to prove physical laws or equations. 

A physical quantity is represented completely by its magnitude and unit. For example, 10 

metre means a length which is ten times the unit of length 1 kg. Here 10 represents the 

numerical value of the given quantity and metre represents the unit of quantity under 

consideration. Thus in expressing a physical quantity we choose a unit and then find that how 

many times that unit is contained in the given physical quantity, i.e. 

    Physical quantity  (Q) = Magnitude × Unit  = n × u 

Where, n represents the numerical value and u represents the unit. Thus while expressing 

definite amount of physical quantity, it is clear that as the unit(u) changes, the magnitude(n) 

will also change but product ‘nu’ will remain same. 

i.e.  n u  = constant,  or constant2211  unun ;   
u

n
1

   

i.e. magnitude of a physical quantity and units are inversely proportional to each other 

.Larger the unit, smaller will be the magnitude.  

 1.2 Types of Physical Quantity. 

(1) Ratio (numerical value only) : When a physical quantity is a ratio of two similar 

quantities, it has no unit. 

e.g. Relative density =  Density of object/Density of water at 4oC  

        Refractive index = Velocity of light in air/Velocity of light in medium 
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                     Strain = Change in dimension/Original dimension 

Note :  Angle is exceptional physical quantity, which though is a ratio of two similar physical 

quantities (angle = arc / radius) but still requires a unit (degrees or radians) to specify 

it along with its numerical value. 

(2) Scalar (Magnitude only) : These quantities do not have any direction e.g. Length, time, 

work, energy etc. 

Magnitude of a physical quantity can be negative. In that case negative sign indicates that 

the numerical value of the quantity under consideration is negative. It does not specify the 

direction. 

Scalar quantities can be added or subtracted with the help of following ordinary laws of 

addition or subtraction. 

(3) Vector (magnitude and direction) : e.g. displacement, velocity, acceleration, force etc. 

Vector physical quantities can be added or subtracted according to vector laws of addition. 

These laws are different from laws of ordinary addition. 

Note :  There are certain physical quantities which behave neither as scalar nor as vector. 

For example, moment of inertia is not a vector as by changing the sense of rotation 

its value is not changed. It is also not a scalar as it has different values in different 

directions (i.e. about different axes). Such physical quantities are called Tensors.  

 1.3 Fundamental and Derived Quantities. 

(1) Fundamental quantities : Out of large number of physical quantities which exist in 

nature, there are only few quantities which are independent of all other quantities and do not 

require the help of any other physical quantity for their definition, therefore these are called 

absolute quantities. These quantities are also called fundamental or base quantities, as all other 

quantities are based upon and can be expressed in terms of these quantities. 

(2) Derived quantities : All other physical quantities can be derived by suitable 

multiplication or division of different powers of fundamental quantities. These are therefore 

called derived quantities. 

If length is defined as a fundamental quantity then area and volume are derived from length 

and are expressed in term of length with power 2 and 3 over the term of length. 

Note :   In mechanics Length, Mass and time are arbitrarily chosen as fundamental 

quantities. However this set of fundamental quantities is not a unique choice. In fact any three 

quantities in mechanics can be termed as fundamental as all other quantities in mechanics can 

be expressed in terms of these. e.g. if speed and time are taken as fundamental quantities, 

length will become a derived quantity because then length will be expressed as  Speed  Time. 



 
 

 
 

52 Units, Dimensions and Measurement 

and if force and acceleration are taken as fundamental quantities, then mass will be defined as 

Force / acceleration and will be termed as a derived quantity. 

 1.4 Fundamental and Derived Units. 

Normally each physical quantity requires a unit or standard for its specification so it 

appears that there must be as many units as there are physical quantities. However, it is not so. 

It has been found that if in mechanics we choose arbitrarily units of any three physical 

quantities we can express the units of all other physical quantities in mechanics in terms of 

these. Arbitrarily the physical quantities mass, length and time are choosen for this purpose. So 

any unit of mass, length and time in mechanics is called a fundamental, absolute or base unit. 

Other units which can be expressed in terms of fundamental units, are called derived units. For 

example light year or km is a fundamental units as it is a unit of length while s–1, m2 or kg/m are 

derived units as these are derived from units of time, mass and length respectively. 

System of units : A complete set of units, both fundamental and derived for all kinds of 

physical quantities is called system of units. The common systems are given below – 

(1) CGS system : The system is also called Gaussian system of units. In it length, mass and 

time have been chosen as the fundamental quantities and corresponding fundamental units are 

centimetre (cm), gram (g) and second (s) respectively. 

(2) MKS system : The system is also called Giorgi system. In this system also length, mass 

and time have been taken as fundamental quantities, and the corresponding fundamental units 

are metre, kilogram and second. 

(3) FPS system : In this system foot, pound and second are used respectively for 

measurements of length, mass and time. In this system force is a derived quantity with unit 

poundal. 

(4) S. I. system : It is known as International system of units, and is infact extended 

system of units applied to whole physics. There are seven fundamental quantities in this 

system. These quantities and their units are given in the following table   

Quantity Name of Unit Symbol 

Length  metre m 

Mass  kilogram kg 

Time  second s 

Electric Current  ampere A 

Temperature  Kelvin K 

Amount of Substance  mole  mol 

Luminous Intensity  candela cd 
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Besides the above seven fundamental units two supplementary units are also defined – 

Radian (rad) for plane angle and Steradian (sr) for solid angle. 

Note :  Apart from fundamental and derived units we also use very frequently practical 

units. These may be fundamental or derived units  

e.g., light year is a practical unit (fundamental) of distance while horse power is a 

practical unit (derived) of power.  

 Practical units may or may not belong to a system but can be expressed in any 

system of units  

e.g., 1 mile = 1.6 km = 1.6 × 103 m. 

 1.5 S.I. Prefixes. 

In physics we have to deal from very small (micro) to very large (macro) magnitudes as 

one side we talk about the atom while on the other side of universe, e.g., the mass of an 

electron is 9.1  10–31 kg while that of the sun is 2  1030 kg. To express such large or small 

magnitudes simultaneously we use the following prefixes : 

Power of 10  Prefix Symbol 

1018 exa E 

1015 peta P 

1012 tera T 

109 giga G 

106 mega M 

103 kilo k 

102 hecto h 

101 deca da 

10–1  deci d 

10–1 centi c 

10–3  milli m 

10–6  micro  

10–9  nano n 

10–12 pico p 

10–15  femto f 

10–18 atto a 

 

 1.6 Standards of Length, Mass and Time. 
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(1) Length : Standard metre is defined in terms of wavelength of light and is called atomic 

standard of length. 

The metre is the distance containing 1650763.73 wavelength in vacuum of the radiation 

corresponding to orange red light emitted by an atom of krypton-86. 

Now a days metre is defined as length of the path travelled by light in vacuum in 

1/299,7792, 458 part of a second.  

(2) Mass : The mass of a cylinder made of platinum-iridium alloy kept at International 

Bureau of Weights and Measures is defined as 1 kg.  

On atomic scale, 1 kilogram is equivalent to the mass of 5.0188  1025 atoms of 6C12 (an 

isotope of carbon). 

(3) Time : 1 second is defined as the time interval of 9192631770 vibrations of radiation in 

Cs-133 atom. This radiation corresponds to the transition between two hyperfine level of the 

ground state of Cs-133. 

 1.7 Practical Units. 

(1) Length :  

(i) 1 fermi = 1 fm = 10–15 m  

(ii) 1 X-ray unit = 1XU = 10–13 m  

(iii) 1 angstrom = 1Å = 10–10 m = 10–8 cm = 10–7 mm = 0.1 mm  

(iv) 1 micron = m = 10–6 m 

(v) 1 astronomical unit = 1 A.U. = 1. 49  1011 m  1.5  1011 m   108 km  

(vi) 1 Light year = 1 ly = 9.46  1015 m  

(vii) 1 Parsec = 1pc = 3.26 light year 

(2) Mass : 

(i) Chandra Shekhar unit : 1 CSU = 1.4 times the mass of sun = 2.8  1030 kg  

(ii) Metric tonne : 1 Metric tonne = 1000 kg  

(iii) Quintal : 1 Quintal = 100 kg  

(iv) Atomic mass unit (amu) :  amu = 1.67  10–27 kg mass of proton or neutron is of the 

order of 1 amu 

(3) Time :  

(i) Year : It is the time taken by earth to complete 1 revolution around the sun in its orbit. 

(ii) Lunar month : It is the time taken by moon to complete 1 revolution around the earth in 

its orbit.  

   1 L.M. = 27.3 days 
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(iii) Solar day : It is the time taken by earth to complete one rotation about its axis with 

respect to sun. Since this time varies from day to day, average solar day is calculated by taking 

average of the duration of all the days in a year and this is called Average Solar day.  

  1 Solar year = 365.25 average solar day 

or  average solar day 
25.365

1
  the part of solar year 

(iv) Sedrial day : It is the time taken by earth to complete one rotation about its axis with 

respect to a distant star.  

  1 Solar year = 366.25 Sedrial day = 365.25 average solar day  

Thus 1 Sedrial day is less than 1 solar day. 

(v) Shake : It is an obsolete and practical unit of time. 

  1 Shake = 10– 8 sec   

 1.8 Dimensions of a Physical Quantity. 

When a derived quantity is expressed in terms of fundamental quantities, it is written as a 

product of different powers of the fundamental quantities. The powers to which fundamental 

quantities must be raised in order to express the given physical quantity are called its 

dimensions.  

To make it more clear, consider the physical quantity force 

Force = mass × acceleration 
time

 velocity mass 


time

elength/tim  mass 
  = mass × length × (time)–2  

.... (i) 

Thus, the dimensions of force are 1 in mass, 1 in length and – 2 in time. 

Here the physical quantity that is expressed in terms of the base quantities is enclosed in 

square brackets to indicate that the equation is among the dimensions and not among the 

magnitudes.  

Thus equation (i) can be written as [force] = [MLT–2]. 

Such an expression for a physical quantity in terms of the fundamental quantities is called 

the dimensional equation. If we consider only the R.H.S. of the equation, the expression is 

termed as dimensional formula. 

Thus, dimensional formula for force is, [MLT – 2].  

 1.9 Important Dimensions of Complete Physics. 

Mechanics 

S. N. Quantity Unit Dimension 

(1)  Velocity or speed (v) m/s [M0L1T –1] 

(2)  Acceleration (a) m/s2 [M0LT –2] 
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S. N. Quantity Unit Dimension 

(3)  Momentum (P) kg-m/s [M1L1T –1] 

(4)  Impulse (I) Newton-sec or kg-m/s [M1L1T –1] 

(5)  Force (F) Newton [M1L1T –2] 

(6)  Pressure (P) Pascal [M1L–1T –2] 

(7)  Kinetic energy (EK) Joule [M1L2T –2] 

(8)  Power (P) Watt or Joule/s [M1L2T –3] 

(9)  Density (d) kg/m3 [M1L– 3T 0] 

(10)  Angular displacement () Radian (rad.) [M0L0T 0] 

(11)  Angular velocity () Radian/sec [M0L0T – 1] 

(12)  Angular acceleration () Radian/sec2 [M0L0T – 2] 

(13)  Moment of inertia (I) kg-m2 [M1L2T0] 

(14)  Torque () Newton-meter [M1L2T –2] 

(15)  Angular momentum (L) Joule-sec [M1L2T –1] 

(16)  
Force constant or spring constant 

(k) 
Newton/m [M1L0T –2] 

(17)  Gravitational constant (G) N-m2/kg2 [M–1L3T – 2] 

(18)  Intensity of gravitational field (Eg) N/kg [M0L1T – 2] 

(19)  Gravitational potential (Vg) Joule/kg [M0L2T – 2] 

(20)  Surface tension (T) N/m or  Joule/m2 [M1L0T – 2] 

(21)  Velocity gradient (Vg) Second–1 [M0L0T – 1] 

(22)  Coefficient of viscosity () kg/m-s [M1L– 1T – 1] 

(23)  Stress N/m2 [M1L– 1T – 2] 

(24)  Strain No unit [M0L0T 0] 

(25)  Modulus of elasticity (E) N/m2 [M1L– 1T – 2] 

(26)  Poisson Ratio () No unit [M0L0T 0] 

(27)  Time period (T) Second [M0L0T1] 

(28)  Frequency (n) Hz [M0L0T –1] 

 

Heat 

S. N. Quantity Unit Dimension 

(1)  Temperature (T) Kelvin [M0L0T0 1] 

(2)  Heat (Q) Joule [ML2T– 2] 

(3)  Specific Heat (c)  Joule/kg-K [M0L2T– 2 –1] 
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S. N. Quantity Unit Dimension 

(4)  Thermal capacity Joule/K [M1L2T – 2 –1] 

(5)  Latent heat (L) Joule/kg [M0L2T – 2] 

(6)  Gas constant (R) Joule/mol-K [M1L2T– 2 – 1] 

(7)  Boltzmann constant (k) Joule/K [M1L2T– 2 – 1] 

(8)  
Coefficient of thermal conductivity 

(K) 
Joule/m-s-K [M1L1T– 3 – 1] 

(9)  Stefan's constant () Watt/m2-K4 [M1L0T– 3 – 4] 

(10)  Wien's constant (b) Meter-K [M0L1To1] 

(11)  Planck's constant (h) Joule-s [M1L2T–1] 

(12)  Coefficient of Linear Expansion () Kelvin–1 [M0L0T0 –1] 

(13)  Mechanical eq. of Heat (J) Joule/Calorie [M0L0T0] 

(14)  Vander wall’s constant (a) Newton-m4 [ML5T– 2] 

(15)  Vander wall’s constant (b) m3 [M0L3T0] 

 

Electricity  
 

S. N. Quantity Unit Dimension 

(1)  Electric charge (q) Coulomb [M0L0T1A1] 

(2)  Electric current (I) Ampere [M0L0T0A1] 

(3)  Capacitance (C) Coulomb/volt or Farad [M–1L– 2T4A2] 

(4)  Electric potential (V) Joule/coulomb M1L2T–3A–1 

(5)  Permittivity of free space (0) 2

2

meter-Newton

Coulomb
 [M–1L–3T4A2] 

(6)  Dielectric constant (K) Unitless [M0L0T0] 

(7)  Resistance (R) Volt/Ampere or ohm [M1L2T– 3A– 2] 

(8)  
Resistivity or Specific resistance 

() 
Ohm-meter [M1L3T– 3A– 2] 

(9)  Coefficient of Self-induction (L) 
ampere

secondvolt 
or henery or ohm-second [M1L2T– 2A– 2] 

(10)  Magnetic flux () Volt-second or weber [M1L2T–2A–1] 

(11)  Magnetic induction (B) 
meterampere

newton

 2meterampere

Joule



2

second

meter

volt 
 or Tesla 

[M1L0T– 2A– 1] 

(12)  Magnetic Intensity (H) Ampere/meter [M0L– 1T0A1] 

(13)  Magnetic Dipole Moment (M) Ampere-meter2 [M0L2T0A1] 
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S. N. Quantity Unit Dimension 

(14)  Permeability of Free Space (0) 

2ampere

Newton
  or 

meterampere

Joule

2
or 

meterampere

Volt



 second
or 

meter

ondOhm sec
 or 

meter

henery
 

[M1L1T–2A–2] 

(15)  Surface charge density () 2metreCoulomb  [M0L–2T1A1] 

(16)  Electric dipole moment (p) meterCoulomb   [M0L1T1A1] 

(17)  Conductance (G) (1/R) 1ohm  [M–1L–2T3A2] 

(18)  Conductivity () (1/) 11  meterohm  [M–1L–3T3A2] 

(19)  Current density (J) Ampere/m2 M0L–2T0A1 

(20)  Intensity of electric field (E) Volt/meter, Newton/coulomb M1L1T –3A–1 

(21)  Rydberg constant (R) m–1 M0L–1T0 
 

 1.10 Quantities Having Same Dimensions. 
 

S. N. Dimension Quantity 

(1)  [M0L0T–1] 
Frequency, angular frequency, angular velocity, velocity gradient and decay 
constant 

(2)  [M1L2T–2] 
Work, internal energy, potential energy, kinetic energy, torque, moment of 

force 

(3)  [M1L–1T–2] 
Pressure, stress, Young’s modulus, bulk modulus, modulus of rigidity, energy 

density 

(4)  [M1L1T–1] Momentum, impulse 

(5)  [M0L1T–2] Acceleration due to gravity, gravitational field intensity 

(6)  [M1L1T–2] Thrust, force, weight, energy gradient 

(7)  [M1L2T–1] Angular momentum and Planck’s constant 

(8)  [M1L0T–2] Surface tension, Surface energy (energy per unit area) 

(9)  [M0L0T0] 
Strain, refractive index, relative density, angle, solid angle, distance 

gradient, relative permittivity (dielectric constant), relative permeability etc. 

(10)  [M0L2T–2] Latent heat and gravitational potential 

(11)  
[M0L2T–2–

1] 
Thermal capacity, gas constant, Boltzmann constant and entropy 

(12)  [M0L0T1] 
gRkmgl ,, , where l = length 

g = acceleration due to gravity, m = mass, k = spring constant  

(13)  [M0L0T1] L/R, LC , RC where L = inductance,  R = resistance, C = capacitance  

(14)  [ML2T–2] 
2

2
2

2
2 ,  ,  ,  ,  ,, CV

C

q
LIqVVItt

R

V
RtI  where I = current, t = time, q = charge,  

L = inductance, C = capacitance, R = resistance 
 

 1.11 Application of Dimensional Analysis. 

(1) To find the unit of a physical quantity in a given system of units : Writing the 

definition or formula for the physical quantity we find its dimensions. Now in the dimensional 
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formula replacing M, L and T by the fundamental units of the required system we get the unit of 

physical quantity. However, sometimes to this unit we further assign a specific name, e.g., 

Work = Force  Displacement  

So [W] = [MLT–2]  [L]  = [ML2T–2] 

So its units in C.G.S. system will be g cm2/s2 which is called erg while in M.K.S. system will 

be kg m2/s2 which is called joule. 

Sample problems based on unit finding  

Problem 1. The equation 









2V

a
P  )( bV  = constant. The units of a is  [MNR 1995; AFMC 1995] 

 (a) 5cmDyne   (b) 4cmDyne   (c) 3/ cmDyne  (d) 2/ cmDyne  

Solution : (b) According to the principle of dimensional homogenity 









2
][

V

a
P  

 ][][][][][ 6212 LTMLVPa  ][ 25  TML   

or unit of  a = gm  × 5cm    sec–2= Dyne  cm4 

Problem 2. If ,2btatx   where x  is the distance travelled by the body in kilometre while t  the time in 

seconds, then the units of b  are        [CBSE 1993] 

(a) km/s (b) km-s (c) km/s2 (d) km-s2 

Solution : (c) From the principle of dimensional homogenity ][][ 2btx    









2
][

t

x
b      Unit of b = km/s2. 

Problem 3. The unit of absolute permittivity is   [EAMCET (Med.) 1995; Pb. PMT 2001] 

(a) Farad - meter (b) Farad / meter (c) Farad/meter 2 (d) Farad 

Solution : (b) From the formula RC 04   
R

C




4
0   

By substituting the unit of capacitance and radius : unit of 0  Farad/ meter.  

Problem 4. Unit of Stefan's constant is       [MP PMT 1989] 

 (a) 1Js  (b) 412  KsJm  (c) 2Jm  (d) Js  

Solution : (b) Stefan's formula 4T
At

Q
   

4AtT

Q
  Unit of 

42 sec

Joule

Km 
 = 412  KsJm  

Problem 5. The unit of surface tension in SI system is 

[MP PMT 1984; AFMC 1986; CPMT 1985, 87; CBSE 1993; Karnataka CET (Engg/Med.) 1999; DCE 2000, 01] 

(a) 2/ cmDyne  (b) Newton/m (c) Dyne/cm (d) Newton/m2 

Solution : (b) From the formula of surface tension 
l

F
T   

By substituting the S.I. units of force and length, we will get the unit of surface tension = 

Newton/m 
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Problem 6. A suitable unit for gravitational constant is      [MNR 1988] 

(a) kg  1secmetre  (b) sec1metreNewton  (c) 22 kgmetreNewton  (d) 1secmetrekg  

Solution : (c) As 
2

21

r

mGm
F     

21

2

mm

Fr
G   

Substituting the unit of above quantities unit of G = 22 kgmetreNewton . 

Problem 7. The SI unit of universal gas constant (R) is 

[MP Board 1988; JIPMER 1993; AFMC 1996; MP PMT 1987, 94; CPMT 1984, 87; UPSEAT 1999] 

(a) Watt 11  molK  (b) Newton 11  molK  (c) Joule 11  molK  (d) 11  molKErg  

Solution : (c) Ideal gas equation nRTPV   
][][

][][

][

][][
][

321

Kmole

LTML

nT

VP
R




][][

][ 22

Kmole

TML






 

 So the unit will be Joule 11  molK . 

 

(2) To find dimensions of physical constant or coefficients : As dimensions of a physical 

quantity are unique, we write any formula or equation incorporating the given constant and 

then by substituting the dimensional formulae of all other quantities, we can find the 

dimensions of the required constant or coefficient. 

(i) Gravitational constant : According to Newton’s law of gravitation 
2

21

r

mm
GF   or 

21

2

mm

Fr
G   

Substituting the dimensions of all physical quantities ][
]][[

]][[
][ 231

22




 TLM
MM

LMLT
G  

(ii) Plank constant : According to Planck hE   or 


E
h   

Substituting the dimensions of all physical quantities ][
][

][
][ 12

1

22






 TML
T

TML
h  

(iii) Coefficient of viscosity : According to Poiseuille’s formula  
l

pr

dt

dV





8

4

  or 
)/(8

4

dtdVl

pr
   

Substituting the dimensions of all physical quantities ][
]/][[

]][[
][ 11

3

421




 TML
TLL

LTML
  

Sample problems based on dimension finding  

Problem 8. 23YZX   find dimension of Y  in (MKSA) system, if X  and Z  are the dimension of capacity 

and magnetic 

   field respectively [MP PMT 2003] 

(a) 1423  ATLM  (b) 2ML  (c) 4423 ATLM   (d) 4823 ATLM   
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Solution : (d) 23YZX    
][

][
][

2Z

X
Y 

212

2421

][

][





AMT

ATLM
][ 4823 ATLM  . 

Problem 9. Dimensions of ,
1

00
where symbols have their usual meaning, are    [AIEEE 2003] 

(a) ][ 1LT  (b) ][ 1TL  (c) ][ 22TL  (d) ][ 22 TL  

Solution : (d) We know that velocity of light 
00

1


C   2

00

1
C


 

 So 21

00

][
1 








LT


 = ][ 22 TL . 

Problem 10. If L, C and R denote the inductance, capacitance and resistance respectively, the 

dimensional formula for LRC 2  is        [UPSEAT 2002] 

(a) ][ 012 ITML   (b) ][ 0300 ITLM  (c) ][ 2621 ITLM   (d) ][ 0200 ITLM  

Solution : (b) ][ 2LRC = 








L

R
LC 22  = 

















L

R
LC 2)(  

and we know that frequency of LC circuits is given by 
LC

f
1

2

1


 i.e., the dimension of  LC 

is equal to ][ 2T   

and 








R

L
 gives the time constant of RL   circuit so the dimension of 

R

L
 is equal to [T].  

By substituting the above dimensions in the given formula  ][][][)( 31222 TTT
L

R
LC 















   . 

Problem 11. A force F is given by ,2btatF   where t  is time. What are the dimensions of a and b 

[BHU 1998; AFMC 2001] 

(a) 3MLT  and 42 TML  (b) 3MLT  and 4MLT (c) 1MLT  and 0MLT  (d)  and  

Solution : (b) From the principle of dimensional homogenity ][][ atF    
























T

MLT

t

F
a

2

][ ][ 3 MLT  

Similarly ][][ 2btF    
























2

2

2
][

T

MLT

t

F
b ][ 4 MLT . 

Problem 12. The position of a particle at time t is given by the relation ),1()( 0 tc
v

tx 











  where 0v  is a 

constant and 0 . The dimensions of 0v  and   are respectively     [CBSE 1995] 

(a) 110 TLM  and 1T  (b) 010 TLM  and 1T  (c) 110 TLM  and 2LT  (d) 110 TLM  and T  

Solution : (a) From the principle of dimensional homogeneity ][ t = dimensionless  ][
1

][ 1







 T

t
  

Similarly 
][

]
][ 0



v
x


   ][][][]][[][ 11

0
  LTTLxv  . 
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Problem 13. The dimensions of physical quantity X in the equation Force 
Density

X
  is given by  [DCE 1993] 

(a) 241 TLM  (b) 122  TLM  (c) 222  TLM  (d) 121  TLM  

Solution : (c) [X] = [Force] × [Density] = ][][ 32   MLMLT  = ][ 222  TLM . 

Problem 14. Number of particles is given by 
12

12

xx

nn
Dn




  crossing a unit area perpendicular to X- axis 

in unit time, where 1n  and 2n  are number of particles per unit volume for the value of x 

meant to 2x  and .1x  Find dimensions of D called as diffusion constant      [CPMT 1979] 

(a) 20 LTM  (b) 420 TLM  (c) 30 LTM  (d) 120 TLM  

Solution : (d) (n) = Number of particle passing from unit area in unit time = 
tA 

eof particl No.

][][

][
2

000

TL

TLM
 = 

][ 12  TL  

 ][][ 21 nn No. of particle in unit volume = ][ 3L  

Now from the given formula 
][

]][[
][

12

12

nn

xxn
D






][

][][

3

12






L

LTL
][ 12  TL . 

Problem 15. E, m, l and G denote energy, mass, angular momentum and gravitational constant 

respectively, then the dimension of 
25

2

Gm

El
 are        [AIIMS 1985] 

(a) Angle  (b) Length (c) Mass (d) Time 

Solution : (a) ][E = energy = ][ 22 TML , [m] = mass = [M], [l] = Angular momentum = ][ 12 TML  

[G] = Gravitational constant = ][ 231  TLM  

Now substituting dimensions of above quantities in 
25

2

Gm

El
= 

22315

21222

][][

][][








TLMM

TMLTML
= ][ 000 TLM  

i.e., the quantity should be angle.  

Problem 16. The equation of a wave is given by AY   sin 







 k

v

x
  where   is the angular velocity and 

v  is the linear velocity. The dimension of k is       [MP PMT 1993] 

(a) LT  (b) T  (c) 1T  (d) 2T  

Solution : (b) According to principle of dimensional homogeneity 









v

x
k][  = ][

1
T

LT

L











. 

Problem 17. The potential energy of a particle varies with distance x from a fixed origin as ,
2 Bx

xA
U


  

where A and B are dimensional constants then dimensional formula for AB is 

(a) ML7/2T 2  (b) 22/11 TML   (c) 22/92 TLM   (d) 32/13 TML  

Solution : (b) From the dimensional homogeneity ][][ 2 Bx     [B] = [L2]  

As well as  
][][

][][

2

2/1

Bx

xA
U


   

][

][][
][

2

2/1
22

L

LA
TML    ][][ 22/7  TMLA  
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Now ][][][ 222/7 LTMLAB  
][ 22/11  TML  

Problem 18. The dimensions of 
2

1 2
0E  ( 0 = permittivity of free space ; E = electric field ) is   [IIT-JEE 1999] 

(a) 1MLT  (b) ML 2 T 2  (c) ML 1 T 2  (d) 12 TML  

Solution : (c) Energy density = 
Volume

Energy

2

1 2
0 E ][ 21

3

22
















 TML

L

TML
 

Problem 19. You may not know integration. But using dimensional analysis you can check on some 

results. In the integral   











 1sin
)2(

1

2/12 a

x
a

xax

dx n the value of n is  

(a) 1 (b) – 1 (c) 0 (d) 
2

1
 

Solution : (c) Let x = length ][][ LX   and ][][ Ldx   

By principle of dimensional homogeneity 








a

x
dimensionless ][][][ Lxa   

By substituting dimension of each quantity in both sides: ][
][

][
2/122

nL
LL

L



 0 n  

Problem 20. A physical quantity 
m

lB
P

22

  where B= magnetic induction, l= length and m = mass. The 

dimension of P is  

(a) 3MLT  (b) 42 TML I–2 (c) ITLM 422   (d) 22  IMLT  

Solution : (b) F = BIL 
][][

][

][][

][
][ofDimension

2

LI

MLT

LI

F
B



 = ][ 12  IMT  

Now dimension of 
][

][][
][

221222

M

LIMT

m

lB
P






][ 242  ITML  

Problem 21. The equation of the stationary wave is y= 






















 xct
a

2
cos

2
sin2 , which of the following 

statements is wrong  

(a) The unit of ct  is same as that of  (b) The unit of x is same as that of  

(c) The unit of c2 / is same as that of x2 /t (d) The unit of c/ is same 

as that of /x  

Solution : (d) Here, 


ct2
 as well as 



x2
 are dimensionless (angle)  i.e. 00022

TLM
xct


























 

So (i) unit of c t is same as that of  (ii) unit of x is same as that of   (iii) 

















t

xc







 22
  

and (iv) 


x
 is unit less. It is not the case with .



c
 

 

(3) To convert a physical quantity from one system to the other : The measure of a 

physical quantity is  nu = constant  
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If a physical quantity X has dimensional formula [MaLbTc] and if (derived) units of that 

physical quantity in two systems are ][ 111
cba TLM  and ][ 222

cba TLM  respectively and n1 and n2 be the 

numerical values in the two systems respectively, then ][][ 2211 unun    

 ][][ 22221111
cbacba TLMnTLMn    

 

cba

T

T

L

L

M

M
nn 


























2

1

2

1

2

1
12  

where M1, L1 and T1 are fundamental units of mass, length and time in the first (known) 

system and M2, L2 and T2 are fundamental units of mass, length and time in the second 

(unknown) system. Thus knowing the values of fundamental units in two systems and 

numerical value in one system, the numerical value in other system may be evaluated.  

Example : (1) conversion of Newton into Dyne.  

The Newton is the S.I. unit of force and has dimensional formula [MLT–2].  

So 1 N = 1 kg-m/ sec2  

By using 

cba

T

T

L

L

M

M
nn 


























2

1

2

1

2

1
12

211

1





























sec

sec

cm

m

gm

kg
21

2
1

3 1010
1





























sec

sec

cm

cm

gm

gm 510  

 1 N = 105 Dyne  

(2) Conversion of gravitational constant (G) from C.G.S. to M.K.S. system  

The value of G in C.G.S. system is 6.67  10–8 C.G.S. units while its dimensional formula is 

[M–1L3T–2] 

So  G = 6.67  10–8 cm3/g s2  

By using 

cba

T

T

L

L

M

M
nn 


























2

1

2

1

2

1
12

231

81067.6































sec

sec

m

cm

kg

gm
 

            11

23

2

1

3

8 1067.6
1010

1067.6 



 

























sec

sec

cm

cm

gm

gm
 

  G =  6.67  10–11 M.K.S. units  

Sample problems based on conversion  

Problem 22. A physical quantity is measured and its value is found to be nu  where n  numerical value 

and u  unit.  

   Then which of the following relations is true [RPET 2003] 

(a) 2un   (b) un   (c) un   (d) 
u

n
1

  

Solution : (d) We know  nuP constant   2211 unun   or 
u

n
1

 . 
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Problem 23. In C.G.S. system the magnitude of the force is 100 dynes. In another system where the 

fundamental physical quantities are kilogram, metre and minute, the magnitude of the force 

is   [EAMCET 2001] 

(a) 0.036 (b) 0.36 (c) 3.6 (d) 36 

Solution : (c) 1001 n , gM 1 , cmL 1 , sec1 T  and  kgM 2 , meterL 2 , inute2 mT  , 1x , 1y , 2z  

By substituting these values in the following conversion formula 

2

2

1

2

1

2

1
12 


























T

T

L

L

M

M
nn

yx

 

211

2
minute

sec
100





























meter

cm

kg

gm
n  

21

2

1

32
sec60

sec

1010
100





























cm

cm

gm

gm
n 6.3  

Problem 24. The temperature of a body on Kelvin scale is found to be X K. When it is measured by a 

Fahrenheit thermometer, it is found to be X F. Then X is     [UPSEAT 200] 

(a) 301.25 (b) 574.25 (c) 313 (d) 40 

Solution : (c) Relation between centigrade and Fahrenheit 
9

32

5

273 


 FK
 

According to problem 
9

32

5

273 


 XX
  313X . 

Problem 25. Which relation is wrong       [RPMT 1997] 

(a) 1 Calorie = 4.18 Joules  (b) 1Å =10–10 m 

(c) 1 MeV = 1.6 × 10–13 Joules (d) 1 Newton =10–5 Dynes 

Solution : (d) Because 1 Newton = 510 Dyne. 

Problem 26. To determine the Young's modulus of a wire, the formula is ;.
l

L

A

F
Y


  where L= length, A= 

area of cross- section of the wire, L Change in length of the wire when stretched with a 

force F. The conversion factor to change it from CGS to MKS system is       [MP PET 1983]  

(a) 1 (b) 10 (c) 0.1 (d) 0.01 

Solution : (c) We know that the dimension of young's modulus is ][ 21  TML  

C.G.S. unit : gm 21 seccm  and M.K.S. unit :  kg. m–1  sec–2 . 

By using the conversion formula: 
2

2

1

1

2

1

1

2

1
12





























T

T

L

L

M

M
nn

211

sec

sec




























meter

cm

kg

gm
 

Conversion factor 
21

2

1

3
1

2

sec

sec

1010

































cm

cm

gm

gm

n

n
1.0

10

1
  

Problem 27. Conversion of 1 MW power on a new system having basic units of mass, length and time 

as 10kg, 1dm and 1 minute respectively is 

(a) unit121016.2   (b)  unit121026.1   (c) unit101016.2   (d)  
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Solution : (a) ][][ 32  TMLP   

Using the relation 

zyx

T

T

L

L

M

M
nn 


























2

1

2

1

2

1
12

321

6

min1

1

1

1

10

1
101





























s

dm

m

kg

kg
 [As 

WMW 6101  ] 

                          
32

6

60

1

1

10

10

1
10





























sec

sec

dm

dm

kg

kg 121016.2  unit 

Problem 28. In two systems of relations among velocity, acceleration and force are respectively 

,1

2

2 vv



  12 aa   and .1

2


F
F   If   and  are constants then relations among mass, length 

and time in two systems are 

(a) 










 1
3

212

2

212 ,,
T

TLLMM   (b) 
21213

3

21222 ,,
1










TTLLMM    

(c) 1212

2

213

3

2 ,, TTLLMM











  (d) 13

3

212212

2

2 ,, TTLLMM











  

Solution : (b) 


 2

12 vv   


 2
1

11
1

22 ][][   TLTL   ......(i) 

12 aa   ][][ 2
11

2
22

  TLTL   ......(ii) 

and 


1
2

F
F   



1
][][ 2

111
2

222   TLMTLM  ......(iii) 

Dividing equation (iii) by equation (ii)  we get 
 )(

1
2

M
M   

22

1

B

M


  

Squaring equation (i) and dividing by equation (ii) we get  
3

3

12



LL    

Dividing equation (i) by equation (ii) we get 
212




TT    

Problem 29. If the present units of length, time and mass (m, s, kg) are changed to 100m, 100s, and 

10

1
kg then  

(a) The new unit of velocity is increased 10 times (b) The new unit of 

force is decreased 
1000

1
 times 

(c) The new unit of energy is increased 10 times (d) The new unit of 

pressure is increased 1000 times 

Solution : (b) Unit of velocity = m/sec ; in new system =
secsec100

100 mm
  (same) 

Unit of force 
2sec

mkg 
 ; in new system 

sec100sec100

100

10

1




m
kg  

2sec1000

1 mkg 
  
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Unit of energy 
2

2

sec

mkg
  ; in new system 

sec100sec100

100100

10

1






mm
kg  

2

2

10 sec

mkg 
  

Unit of pressure 
2sec


m

kg
; in new system 

secsec
mkg

100100

1

100

1

10

1




2

710
secm

kg


   

Problem 30. Suppose we employ a system in which the unit of mass equals 100 kg, the unit of length 

equals 1 km and the unit of time 100 s and call the unit of energy eluoj (joule written in 

reverse order), then 

(a) 1 eluoj = 104 joule (b) 1 eluoj = 10-3 joule (c) 1 eluoj = 10-4 joule (d) 1 joule = 103 eluoj  

Solution : (a) ][][ 22  TMLE  

1 eluoj 22 sec]100[]1[]100[  kmkg 2426 sec1010100  mkg 224 sec10  mkg  Joule410  

Problem 31. If 1gm cms–1 = x Ns, then number x is equivalent to 

(a) 1101   (b) 2103   (c) 4106   (d) 5101   

Solution : (d) 1- scmgm  123 1010   smkg 1510   smkg  = 10–5 Ns 

 

(4) To check the dimensional correctness of a given physical relation : This is based on 

the ‘principle of homogeneity’. According to this principle the dimensions of each term on both 

sides of an equation must be the same.  

If DEFBCAX  2)( ,  

then according to principle of homogeneity [X] = [A] = [(BC)2] ][ DEF  

If the dimensions of each term on both sides are same, the equation is dimensionally 

correct, otherwise not. A dimensionally correct equation may or may not be physically correct. 

Example : (1) 22 / rmvF    

By substituting dimension of the physical quantities in the above relation – 

  2212 ]/[]][[][ LLTMMLT    

i.e.  ][][ 22   MTMLT  

As in the above equation dimensions of both sides are not same; this formula is not correct 

dimensionally, so can never be physically. 

(2) 2)2/1( atuts   

By substituting dimension of the physical quantities in the above relation – 

  [L] = [LT–1][T] – [LT–2][T2] 

i.e.  [L] = [L] – [L] 

As in the above equation dimensions of each term on both sides are same, so this equation 

is dimensionally correct. However, from equations of motion we know that 2)2/1( atuts   

Sample problems based on formulae checking  
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Problem 32. From the dimensional consideration, which of the following equation is correct    [CPMT 1983] 

(a) 
GM

R
T

3

2  (b) 
3

2
R

GM
T   (c) 

2
2

R

GM
T   (d) 

GM

R
T

2

2  

Solution : (a) 
GM

R
T

3

2  
2

3

2
gR

R


g

R
2    [As GM = gR2] 

Now by substituting the dimension of each quantity in both sides. 

2/1

2
][ 










LT

L
T ][T  

L.H.S. = R.H.S. i.e., the above formula is Correct. 

Problem 33. A highly rigid cubical block A of small mass M and side L is fixed rigidly onto another 

cubical block B of the same dimensions and of low modulus of rigidity   such that the 

lower face of A completely covers the upper face of B. The lower face of B is rigidly held on 

a horizontal surface. A small force F is applied perpendicular to one of the side faces of A. 

After the force is withdrawn block A executes small oscillations. The time period of which 

is given by         [IIT-JEE 1992] 

(a) 
L

M
2  (b) 




M

L
2  (c) 




ML
2  (d) 

L

M


2  

Solution : (d) Given m = mass = [M],   = coefficient of rigidity = ][ 21  TML , L  = length = [L] 

By substituting the dimension of these quantity we can check the accuracy of the given 

formulae 

2/1

][][

][
2][ 












L

M
T


 = 

2/1

21 







 LTML

M
= [T].  

L.H.S. = R.H.S. i.e., the above formula is Correct. 

Problem 34. A small steel ball of radius r is allowed to fall under gravity through a column of a viscous 

liquid of coefficient of viscosity. After some time the velocity of the ball attains a constant 

value known as terminal velocity .Tv  The terminal velocity depends on (i) the mass of the 

ball. (ii)   (iii) r and (iv) acceleration due to gravity g. which of the following relations is 

dimensionally correct  [CPMT 1992; CBSE 1992; NCERT 1983; MP PMT 2001] 

(a) 
r

mg
vT


  (b)  

mg

r
vT


  (c) rmgvT   (d)  

Solution : (a) Given Tv = terminal velocity = ][ 1LT , m = Mass = [M], g  = Acceleration due to gravity = 

][ 2LT  

r  = Radius = [L],   = Coefficient of viscosity = ][  

By substituting the dimension of each quantity we can check the accuracy of given formula 

r

mg
vT


  
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 
][][

][][
][

11

2
1

LTML

LTM
LT




  = ][ 1LT  

L.H.S. = R.H.S. i.e., the above formula is Correct. 

Problem 35. A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity   

flowing per second through a tube of radius r  and length l and having a pressure difference 

p across its end, is 

(a) 
l

pr
V





8

4

  (b) 
48 pr

l
V


  (c) 

4

8

r

lp
V




  (d) 

48lr

p
V


  

Solution : (a) Given V = Rate of flow = ][
sec

 Volume 13  TL , P  = Pressure = ][ 21  TML , r = Radius = [L] 

  = Coefficient of viscosity = ][ 11  TML , l = Length = [L] 

By substituting the dimension of each quantity we can check the accuracy of the formula 

l

rP
V





8

4

  

 
][][

][][
][

11

421
13

LTML

LTML
TL




   = ][ 13 TL  

L.H.S. = R.H.S. i.e., the above formula is Correct. 

Problem 36. With the usual notations, the following equation )12(
2

1
 tauS t  is 

(a) Only numerically correct  (b) Only dimensionally 

correct  

(c) Both numerically and dimensionally correct  (d) Neither numerically 

nor dimensionally correct 

Solution : (c) Given tS = distance travelled by the body in tth sec.= ][ 1LT , a  = Acceleration = ][ 2LT , 

v  = velocity = ][ 1LT ,  t = time = [T] 

By substituting the dimension of each quantity we can check the accuracy of the formula  

)12(
2

1
 tauS t  

 ][][][][ 211 TLTLTLT     ][][][ 111   LTLTLT  

Since the dimension of each terms are equal therefore this equation is dimensionally 

correct. And after deriving this equation from Kinematics we can also proof that this 

equation is correct numerically also.  

Problem 37. If velocity ,v  acceleration A and force F are chosen as fundamental quantities, then the 

dimensional formula of angular momentum in terms of Av,  and F  would be  

(a) 1FA v (b) 23 AFv  (c) 12 AFv  (d) 122 AvF  

Solution : (b) Given,   v = velocity = ][ 1LT , A  = Acceleration = ][ 2LT , F  = force = ][ 2MLT  

By substituting, the dimension of each quantity we can check the accuracy of the formula  
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[Angular momentum] = 23 AFv  

                 ][ 12 TML 22312 ][][][  LTLTMLT  

                           = ][ 12 TML  

L.H.S. = R.H.S. i.e., the above formula is Correct. 

Problem 38. The largest mass (m) that can be moved by a flowing river depends on velocity (v), density 

(  ) of river water and acceleration due to gravity (g). The correct relation is 

(a) 
2

42

g

v
m


  (b) 

2

6

g

v
m


  (c) 

3

4

g

v
m


  (d) 

3

6

g

v
m


  

Solution : (d) Given, m = mass = [M], v = velocity = ][ 1LT ,   = density = ][ 3ML , g  = acceleration due to 

gravity = [LT–2]  

By substituting, the dimension of each quantity we can check the accuracy of the formula  

 
3

6

g

v
Km


   

32

613

][

]][[
][






LT

LTML
M  

          = [M] 

L.H.S. = R.H.S. i.e., the above formula is Correct. 

 

(5) As a research tool to derive new relations : If one knows the dependency of a physical 

quantity on other quantities and if the dependency is of the product type, then using the method 

of dimensional analysis, relation between the quantities can be derived.  

Example : (i) Time period of a simple pendulum.  

Let time period of a simple pendulum is a function of mass of the bob (m), effective length 

(l), acceleration due to gravity (g) then assuming the function to be product of power function 

of m, l and g   

i.e., zyx glKmT  ; where K = dimensionless constant  

If the above relation is dimensionally correct then by substituting the dimensions of 

quantities – 

  [T] = [M]x [L]y [LT–2]z  

or  [M0L0T1]  = [MxLy+zT–2z] 

Equating the exponents of similar quantities x = 0, y = 1/2 and z = – 1/2 

So the required physical relation becomes 
g

l
KT    

The value of dimensionless constant is found (2 ) through experiments so 
g

l
T 2  
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(ii) Stoke’s law : When a small sphere moves at low speed through a fluid, the viscous 

force F, opposing the motion, is found experimentally to depend on the radius r, the velocity of 

the sphere v and the viscosity  of the fluid.  

So  F = f (, r, v) 

If the function is product of power functions of , r and v,   zyx vrKF  ;  where K is 

dimensionless constant. 

If the above relation is dimensionally correct zyx LTLTMLMLT ][][][][ 1112    

or ][][ 2 zxzyxx TLMMLT    

Equating the exponents of similar quantities x = 1;   – x + y + z = 1  and  – x – z = – 2 

Solving these for x, y and z, we get x = y = z = 1 

So eqn (i) becomes    F = Krv  

On experimental grounds, K = 6; so  F = 6rv  

This is the famous Stoke’s law. 

Sample problem based on formulae derivation 

Problem 39. If the velocity of light (c), gravitational constant (G) and Planck's constant (h) are chosen 

as fundamental units, then the dimensions of mass in new system is     [UPSEAT 2002] 

(a) 2/12/12/1 hGc  (b) 2/12/12/1 hGc  (c) 2/12/12/1 hGc   (d) 2/12/12/1 hGc   

Solution : (c) Let zyx hGcm   or zyx hGcKm    

By substituting the dimension of each quantity in both sides  

zyx TMLTLMLTKTLM ][][][][ 122311001  ][ 223 zyxzyxzy TLM   

By equating the power of M, L and T in both sides :  1 zy , 023  zyx , 02  zyx  

By solving above three equations 2/1x , 2/1y   and 2/1z . 

 2/12/12/1 hGcm     

Problem 40. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius 

(r) of the drop and density )(  of the liquid, then the expression of T is     [AMU (Med.) 2000] 

(a) SrKT /3  (b) SrKT /32/1  (c) 2/13 / SrKT   (d) None of these 

Solution : (a) Let zyxrST   or T = zyx rSK   

By substituting the dimension of each quantity in both sides 

zyx MLLMTKTLM ][][][][ 32100  ][ 23 xzyzx TLM   

By equating the power of M, L and T in both sides    0 zx , 03  zy , 12  x  

By solving above three equations   2/1x , 2/3y , 2/1z  

So the time period can be given as, 
S

r
KrSKT

3
2/12/32/1 

   . 
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Problem 41. If P represents radiation pressure, C represents speed of light and Q represents radiation 

energy striking a unit area per second, then non-zero integers x, y and z such that zyx CQP  

is dimensionless, are  

[AFMC 1991; CBSE 1992; CPMT 1981, 92; MP PMT 1992] 

(a) 1,1,1  zyx  (b) 1,1,1  zyx  (c) 1,1,1  zyx  (d) 1,1,1  zyx  

Solution : (b) 000][ TLMCQP zyx    

By substituting the dimension of each quantity in the given expression 

 zyx LTMTTML ][][][ 1321 00032 ][ TLMTLM zyxzxyx   

by equating the power of M, L and T in both sides: 0 yx , 0 zx  and 032  zyx  

by solving we get 1,1,1  zyx .  

Problem 42. The volume V of water passing through a point of a uniform tube during t seconds is related 

to the cross-sectional area A of the tube and velocity u of water by the relation  tuAV  , 

which one of the following will be true  

(a)    (b)    (c)    (d)    

Solution : (b) Writing dimensions of both sides  ][][][][ 123 TLTLL  ][][ 203   TLTL  

By comparing powers of both sides 32    and 0   

Which give    and )3(
2

1
   i.e.   . 

Problem 43. If velocity (V), force (F) and energy (E) are taken as fundamental units, then dimensional 

formula for mass will be  

(a) EFV 02  (b) 20FEV  (c) 02EVF  (d) EFV 02  

Solution : (d) Let  cba EFVM    

Putting dimensions of each quantities in both side cba TMLMLTLTM ][][][][ 2221   

Equating powers of dimensions. We have ,1 cb  02  cba  and 022  cba  

Solving these equations, ,2a  b = 0 and c = 1 

So ][ 02 EFVM   

Problem 44. Given that the amplitude A of scattered light is : 

(i) Directly proportional to the amplitude (A0) of incident light. 

(ii) Directly proportional to the volume (V) of the scattering particle 

(iii) Inversely proportional to the distance (r) from the scattered particle 

(iv) Depend upon the wavelength (  ) of the scattered light. then: 

(a) 


1
A  (b) 

2

1


A  (c) 

3

1


A  (d) 

4

1


A  

Solution : (b) Let 
r

VKA
A

x0  

By substituting the dimension of each quantity in both sides 
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][

][].[][
][

3

L

LLL
L

x

  

][][ 3 xLL  ; 13  x  or 2x  

2 A  

 1.12 Limitations of Dimensional Analysis. 

Although dimensional analysis is very useful it cannot lead us too far as,  

(1) If dimensions are given, physical quantity may not be unique as many physical 

quantities have same dimensions. For example if the dimensional formula of a physical quantity 

is ][ 22 TML it may be work or energy or torque. 

(2) Numerical constant having no dimensions [K] such as (1/2), 1 or 2 etc. cannot be 

deduced by the methods of dimensions. 

(3) The method of dimensions can not be used to derive relations other than product of 

power functions. For example, 

  2)2/1( tatus   or tay sin  

cannot be derived by using this theory (try if you can). However, the dimensional 

correctness of these can be checked. 

(4) The method of dimensions cannot be applied to derive formula if in mechanics a 

physical quantity depends on more than 3 physical quantities as then there will be less number 

(= 3) of equations than the unknowns (>3). However still we can check correctness of the given 

equation dimensionally. For example mglT 12 can not be derived by theory of dimensions 

but its dimensional correctness can be checked.  

(5) Even if a physical quantity depends on 3 physical quantities, out of which two have 

same dimensions, the formula cannot be derived by theory of dimensions, e.g., formula for the 

frequency of a tuning fork vLdf )/( 2  cannot be derived by theory of dimensions but can be 

checked.   

 1.13 Significant Figures. 

Significant figures in the measured value of a physical quantity tell the number of digits in 

which we have confidence. Larger the number of significant figures obtained in a measurement, 

greater is the accuracy of the measurement. The reverse is also true.  

The following rules are observed in counting the number of significant figures in a given 

measured quantity.  

(1) All non-zero digits are significant.  

Example :  42.3 has three significant figures. 

243.4 has four significant figures. 
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24.123 has five significant figures.  

(2) A zero becomes significant figure if it appears between to non-zero digits.  

Example :  5.03 has three significant figures.  

 5.604 has four significant figures. 

4.004 has four significant figures.  

(3) Leading zeros or the zeros placed to the left of the number are never significant.  

Example :  0.543 has three significant figures.  

 0.045 has two significant figures. 

 0.006 has one significant figures.  

(4) Trailing zeros or the zeros placed to the right of the number are significant.  

Example : 4.330 has four significant figures. 

 433.00 has five significant figures. 

 343.000 has six significant figures. 

(5) In exponential notation, the numerical portion gives the number of significant figures.  

Example : 1.32  10–2 has three significant figures. 

 1.32  104 has three significant figures. 

 1.14 Rounding Off. 

While rounding off measurements, we use the following rules by convention: 

(1) If the digit to be dropped is less than 5, then the preceding digit is left unchanged.  

Example : 82.7x  is rounded off to 7.8, again 94.3x  is rounded off to 3.9.  

(2) If the digit to be dropped is more than 5, then the preceding digit is raised by one.  

Example : x = 6.87 is rounded off to 6.9, again x = 12.78 is rounded off to 12.8. 

(3) If the digit to be dropped is 5 followed by digits other than zero, then the preceding digit is 

raised by one.  

Example : x = 16.351 is rounded off to 16.4, again x = 6.758 is rounded off to 6.8.  

(4) If digit to be dropped is 5 or 5 followed by zeros, then preceding digit is left unchanged, if 

it is even. 

Example : x = 3.250 becomes 3.2 on rounding off, again x = 12.650 becomes 12.6 on 

rounding off.  

(5) If digit to be dropped is 5 or 5 followed by zeros, then the preceding digit is raised by one, 

if it is odd.  

Example : x = 3.750 is rounded off to 3.8, again x = 16.150 is rounded off to 16.2.   

 1.15 Significant Figures in Calculation. 
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In most of the experiments, the observations of various measurements are to be combined 

mathematically, i.e., added, subtracted, multiplied or divided as to achieve the final result. 

Since, all the observations in measurements do not have the same precision, it is natural that 

the final result cannot be more precise than the least precise measurement. The following two 

rules should be followed to obtain the proper number of significant figures in any calculation.  

(1) The result of an addition or subtraction in the number having different precisions 

should be reported to the same number of decimal places as are present in the number having 

the least number of decimal places. The rule is illustrated by the following examples : 

(i)   33.3      (has only one decimal place) 

     3.11 

            + 0.313 

    36.723   (answer should be reported to one decimal place) 

 Answer = 36.7 

(ii)   3.1421 

   0.241 

          + 0.09   (has 2 decimal places) 

    3.4731   (answer should be reported to 2 decimal places) 

 Answer = 3.47  

(iii)   62.831   (has 3 decimal places) 

          – 24.5492 

    38.2818  (answer should be reported to 3 decimal places after 

rounding off) 

 Answer = 38.282 

(2) The answer to a multiplication or division is rounded off to the same number of 

significant figures as is possessed by the least precise term used in the calculation. The rule is 

illustrated by the following examples : 

(i)   142.06 

     0.23   (two significant figures) 

    32.6738  (answer should have two significant figures) 

 Answer = 33 

(ii)   51.028 

     1.31   (three significant figures) 

   66.84668 

 Answer = 66.8 
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(iii)   2112676.0
26.4

90.0
  

 Answer = 0.21 

 1.16 Order of Magnitude. 

In scientific notation the numbers are expressed as, Number xM 10 . Where M is a 

number lies between 1 and 10 and x is integer. Order of magnitude of quantity is the power of 

10 required to represent the quantity. For determining this power, the value of the quantity has 

to be rounded off. While rounding off, we ignore the last digit which is less than 5. If the last 

digit is 5 or more than five, the preceding digit is increased by one. For example,  

(1) Speed of light in vacuum smms /10103 818   (ignoring 3 < 5) 

(2) Mass of electron kgkg 3031 10101.9    (as 9.1 > 5). 

Sample problems based on significant figures   

Problem 45. Each side a cube is measured to be 7.203 m. The volume of the cube up to appropriate 

significant figures is  

(a) 373.714 (b) 373.71 (c) 373.7 (d) 373 

Solution : (c)  Volume 33 )023.7( a  3715.373 m  

In significant figures volume of cube will be 37.373 m  because its side has four significant 

figures. 

Problem 46. The number of significant figures in 0.007 2m  is 

(a) 1 (b) 2 (c) 3 (d) 4 

Solution : (a) 

Problem 47. The length, breadth and thickness of a block are measured as 125.5 cm, 5.0 cm and 0.32 cm 

respectively. Which one of the following measurements is most accurate  

(a) Length  (b) Breadth (c) Thickness  (d) Height 

Solution : (a) Relative error in measurement of length is minimum, so this measurement is most 

accurate. 

Problem 48. The mass of a box is 2.3 kg. Two marbles of masses 2.15 g and 12.39 g are added to it. The 

total mass of the box to the correct number of significant figures is  

(a) 2.340 kg (b) 2.3145 kg. (c) 2.3 kg (d) 2.31 kg 

Solution : (c) Total mass kg31.201239.000215.03.2   

Total mass in appropriate significant figures be 2.3 kg. 

Problem 49. The length of a rectangular sheet is 1.5 cm and breadth is 1.203 cm. The area of the face of 

rectangular sheet to the correct no. of significant figures is : 

(a) 1.8045 2cm  (b) 1.804 2cm  (c) 1.805 2cm  (d) 1.8 2cm  

Solution : (d) Area 28045.1203.15.1 cm 28.1 cm  (Upto correct number of significant figure). 
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Problem 50. Each side of a cube is measured to be 5.402 cm. The total surface area and the volume of 

the cube in appropriate significant figures are : 

(a) 175.1 2cm , 157 2cm    (b) 175.1 2cm , 157.6 3cm   

(c) 175 2cm , 157 2cm    (d) 175.08 2cm , 157.639 3cm  

Solution : (b) Total surface area = 22 09.175)402.5(6 cm 21.175 cm  (Upto correct number of significant 

figure) 

Total volume 33 64.175)402.5( cm 36.175 cm  (Upto correct number of significant figure). 

Problem 51. Taking into account the significant figures, what is the value of 9.99 m + 0.0099 m 

(a) 10.00 m (b) 10 m (c) 9.9999 m (d) 10.0 m 

Solution : (a) mmm 999.90099.099.9   m00.10  (In proper significant figures). 

Problem 52. The value of the multiplication 3.124   4.576 correct to three significant figures is  

(a) 14.295 (b) 14.3 (c) 14.295424 (d) 14.305 

Solution : (b) 295.14576.4124.3   =14.3 (Correct to three significant figures). 

Problem 53. The number of the significant figures in 11.118 10 6 V is 

(a) 3 (b) 4 (c) 5 (d) 6 

Solution : (c) The number of significant figure is 5 as 610   does not affect this number. 

Problem 54. If the value of resistance is 10.845 ohms and the value of current is 3.23 amperes, the 

potential difference is 35.02935 volts. Its value in significant number would be     [CPMT 1979]   

(a) 35 V (b) 35.0 V (c) 35.03 V (d) 35.025 V 

Solution : (b) Value of current (3.23 A) has minimum significant figure (3) so the value of potential 

difference )( IRV   have only 3 significant figure. Hence its value be 35.0 V. 

 1.17 Errors of Measurement. 

The measuring process is essentially a process of comparison. Inspite of our best efforts, 

the measured value of a quantity is always somewhat different from its actual value, or true 

value. This difference in the true value of a quantity is called error of measurement.  

(1) Absolute error : Absolute error in the measurement of a physical quantity is the 

magnitude of the difference between the true value and the measured value of the quantity.  

Let a physical quantity be measured n times. Let the measured value be a1, a2, a3, ….. an. The 

arithmetic mean of these value is 
n

aaa
a n

m

....21 
  

Usually, am is taken as the true value of the quantity, if the same is unknown otherwise.  

By definition, absolute errors in the measured values of the quantity are  

  11 aaa m   

  22 aaa m   

  …………. 
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  nmn aaa   

The absolute errors may be positive in certain cases and negative in certain other cases.  

(2) Mean absolute error : It is the arithmetic mean of the magnitudes of absolute errors in 

all the measurements of the quantity. It is represented by .a  Thus  

  
n

aaa
a n ||.....|||| 21 
  

Hence the final result of measurement may be written as aaa m   

This implies that any measurement of the quantity is likely to lie between )( aam   and 

).( aam   

(3) Relative error or Fractional error : The relative error or fractional error of 

measurement is defined as the ratio of mean absolute error to the mean value of the quantity 

measured. Thus  

  Relative error or Fractional error 
ma

a


  valuemean

error absolute mean
 

(4) Percentage error : When the relative/fractional error is expressed in percentage, we 

call it percentage error. Thus  

  Percentage error %100



ma

a
 

 1.18 Propagation of Errors. 

(1) Error in sum of the quantities : Suppose   x = a + b  

Let a = absolute error in measurement of a  

    b = absolute error in measurement of b  

    x = absolute error in calculation of x i.e. sum of a and b.  

The maximum absolute error in x is )( bax   

Percentage error in the value of %100
)(







ba

ba
x  

(2) Error in difference of the quantities : Suppose x = a – b  

Let a = absolute error in measurement of a,  

    b = absolute error in measurement of b  

    x = absolute error in calculation of x i.e. difference of a and b. 

The maximum absolute error in x is )( bax   

Percentage error in the value of %100
)(







ba

ba
x  

(3) Error in product of quantities : Suppose x = a  b 

Let a = absolute error in measurement of a,  
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    b = absolute error in measurement of b  

    x = absolute error in calculation of x i.e. product of a and b. 

The maximum fractional error in x is 






 







b

b

a

a

x

x
 

Percentage error in the value of x = (Percentage error in value of a) + (Percentage error in 

value of b) 

(4) Error in division of quantities : Suppose 
b

a
x   

Let a = absolute error in measurement of a,  

    b = absolute error in measurement of b  

    x = absolute error in calculation of x i.e. division of a and b. 

The maximum fractional error in x is 






 







b

b

a

a

x

x
 

Percentage error in the value of x = (Percentage error in value of a) + (Percentage error in 

value of b) 

(5) Error in quantity raised to some power : Suppose 
m

n

b

a
x   

Let a = absolute error in measurement of a,  

    b = absolute error in measurement of b  

    x = absolute error in calculation of x 

The maximum fractional error in x is 






 







b

b
m

a

a
n

x

x
 

Percentage error in the value of x = n (Percentage error in value of a) + m (Percentage 

error in value of b) 

Note :  The quantity which have maximum power must be measured carefully because it's 

contribution to error is maximum.  

Sample problems based on errors of measurement  

Problem 55. A physical parameter a can be determined by measuring the parameters b, c, d and e 

using the relation a =  edcb / . If the maximum errors in the measurement of b, c, d 

and e are 1b %, 1c %, 1d % and 1e %, then the maximum error in the value of a 

determined by the experiment is  [CPMT 1981] 

(a) ( 1111 edcb  )%   (b) ( 1111 edcb  )%  

(c) ( 1111 edcb   )%  (d) ( 1111 edcb   )% 

Solution : (d)  edcba /  

So maximum error in a is given by  
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100.100.100.100.100
max

























e

e

d

d

c

c

b

b

a

a
   

                           %1111 edcb    

Problem 56. The pressure on a square plate is measured by measuring the force on the plate and the 

length of the sides of the plate. If the maximum error in the measurement of force and 

length are respectively 4% and 2%, The maximum error in the measurement of pressure is     [CPMT 1993] 

(a) 1% (b) 2% (c) 6% (d) 8% 

Solution : (d) 
2l

F

A

F
P  , so maximum error in pressure )(P  

1002100100
max



















l

l

F

F

P

P
 = 4% + 2 × 2% = 8% 

Problem 57. The relative density of material of a body is found by weighing it first in air and then in 

water. If the weight in air is (5.00 05.0 ) Newton and weight in water is (4.00 0.05) 

Newton. Then the relative density along with the maximum permissible percentage error is  

(a) 5.0  11% (b) 5.0  1% (c) 5.0  6% (d) 1.25  5% 

Solution : (a) Weight in air N)05.000.5(   

Weight in water N)05.000.4(   

Loss of weight in water N)1.000.1(   

Now relative density 
 waterin loss weight

air inweight
   i.e. R . D

1.000.1

05.000.5




  

Now relative density with max permissible error 100
00.1

1.0

00.5

05.0

00.1

00.5








 )%101(0.5   

%110.5   

Problem 58. The resistance R =
i

V
 where  V= 100  5 volts and  i = 10  0.2 amperes. What is the total 

error in R  

(a) 5% (b) 7% (c) 5.2% (d) 
2

5
% 

Solution : (b) 
I

V
R          100100100

max



















I

I

V

V

R

R
100

10

2.0
100

100

5
  )%25(   = 7% 

Problem 59. The period of oscillation of a simple pendulum in the experiment is recorded as 2.63 s, 2.56 

s, 2.42 s, 2.71 s and 2.80 s respectively. The average absolute error is  

(a) 0.1 s (b) 0.11 s (c) 0.01 s (d) 1.0 s 

Solution : (b) Average value 
5

80.271.242.256.263.2 
 sec62.2  

Now  01.062.263.2|| 1 T  

    06.056.262.2|| 2 T  
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    20.042.262.2|| 3 T  

    09.062.271.2|| 4 T  

    18.062.280.2|| 5 T  

Mean absolute error 
5

|||||||||| 54321 TTTTT
T


 sec11.0108.0

5

54.0
  

Problem 60. The length of a cylinder is measured with a meter rod having least count 0.1 cm. Its 

diameter is measured with venier calipers having least count 0.01 cm. Given that length is 

5.0 cm. and radius is 2.0 cm. The percentage error in the calculated value of the volume 

will be 

(a) 1% (b) 2% (c) 3% (d) 4% 

Solution : (c) Volume of cylinder lrV 2  

Percentage error in volume 100100
2

100 








l

l

r

r

V

V
 

                  







 100

0.5

1.0
100

0.2

01.0
2  )%21(   = %3  

Problem 61. In an experiment, the following observation's were recorded : L = 2.820 m, M = 3.00 kg, l = 

0.087 cm, Diameter D = 0.041 cm Taking g = 9.81 2/ sm using the formula , Y=
lD

Mg
2

4


, the 

maximum permissible error in Y is 

(a) 7.96% (b) 4.56% (c) 6.50% (d) 8.42% 

Solution : (c) 
lD

MgL
Y

2

4


  so maximum permissible error in Y = 100

2
100 









 
















l

l

D

D

L

L

g

g

M

M

Y

Y
 

                                                                100
87

1

41

1
2

9820

1

81.9

1

300

1








  

%5.6100065.0   

Problem 62. According to Joule's law of heating, heat produced 2IH  Rt, where I is current, R is 

resistance and t is time. If the errors in the measurement of I, R and t are 3%, 4% and 6% 

respectively then error in the measurement of H is  

(a)  17% (b)  16% (c)  19% (d)  25% 

Solution : (b) tRIH 2  

100
2

100 






 











t

t

R

R

I

I

H

H
 )%6432(   %16  

Problem 63. If there is a positive error of 50% in the measurement of velocity of a body, then the error 

in the measurement of kinetic energy is 

(a) 25% (b) 50% (c) 100% (d) 125% 
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Solution : (c) Kinetic energy 2

2

1
mvE   

100
2

100 






 








v

v

m

m

E

E
 

Here 0m  and %50100 


v

v
 

%100502100 



E

E
 

Problem 64. A physical quantity P is given by P=

2

3

4

2

1

3

DC

BA



. The quantity which brings in the maximum 

percentage error in P is 

(a) A (b) B (c) C (d) D 

Solution : (c) Quantity C has maximum power. So it brings maximum error in P.  
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