1.2 Relations

В

1.2.1 Definition

Let *A* and *B* be two non-empty sets, then every subset of $A \times B$ defines a relation from *A* to *B* and every relation from *A* to *B* is a subset of $A \times B$.

Let $R \subseteq A \times B$ and $(a, b) \in R$. Then we say that *a* is related to *b* by the relation *R* and write it as a R b. If $(a,b) \in R$, we write it as a R b.

Example: Let $A = \{1, 2, 5, 8, 9\}$, $B = \{1, 3\}$ we set a relation from A to B as: $a \ R \ b$ iff $a \le b$; $a \in A, b \in B$. Then $R = \{(1, 1)\}, (1, 3), (2, 3)\} \subset A \times B$

(1) **Total number of relations :** Let *A* and *B* be two non-empty finite sets consisting of *m* and *n* elements respectively. Then $A \times B$ consists of *mn* ordered pairs. So, total number of subset of $A \times B$ is 2^{mn} . Since each subset of $A \times B$ defines relation from *A* to *B*, so total number of relations from *A* to *B* is 2^{mn} . Among these 2^{mn} relations the void relation ϕ and the universal relation $A \times B$ are trivial relations from *A* to *B*.

(2) **Domain and range of a relation :** Let *R* be a relation from a set *A* to a set *B*. Then the set of all first components or coordinates of the ordered pairs belonging to *R* is called the domain of *R*, while the set of all second components or coordinates of the ordered pairs in *R* is called the range of *R*.

Thus, Dom $(R) = \{a : (a, b) \in R\}$ and Range $(R) = \{b : (a, b) \in R\}$.

It is evident from the definition that the domain of a relation from *A* to *B* is a subset of *A* and its range is a subset of *B*.

(3) **Relation on a set :** Let *A* be a non-void set. Then, a relation from *A* to itself *i.e.* a subset of $A \times A$ is called a relation on set *A*.

(a p p) mb - total and have a faith at a slation of the total back and have the state of the sta

Example: 1	Let A	= {1, 2, 3}. The total number of distinct relations that can be defined over A is				
	(a)	2 ⁹	(b) 6	(c) 8	(d) None of these	
Solution: (a)	$n(A \times A) = n(A).n(A) = 3^2 = 9$					
	So, t	So, the total number of subsets of $A \times A$ is 2^9 and a subset of $A \times A$ is a relation over the set A.				
Example: 2	Let	Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is/are relations from X to Y				
	(a)	$R_1 = \{(x, y) y = 2 + x, x \in$	$X, y \in Y$	(b) $R_2 = \{(1,1), (2,1), (3,3), (3,$	(4,3),(5,5)}	
	(c)	$R_3 = \{(1,1), (1,3)(3,5), (3,7)\}$),(5,7)}	(d) $R_4 = \{(1,3), (2,5), (2,4), \dots, (2,5), (2,4), \dots, (2,5), (2,4), \dots, (2,5), \dots, (2,5)$	(7,9)}	
Solution: (a,b,	,c)	R_4 is not a relation fr	rom X to Y, because (7, 9) \in	R_4 but (7, 9) $\notin X \times Y$.		
Example: 3 is	Give	n two finite sets A a	nd B such that $n(A) = 2$, $n(A)$	B) = 3. Then total numb	er of relations from A to	

20 Set Theor	ry and Relations
--------------	------------------

	(a) 4	(b) 8	(c) 64	(d) None of these		
Solution: (c)	Here $n(A \times B) = 2 \times 3 = 6$					
	Since every subset of $A \times B$ defines a relation from A to B , number of relation from A to B is equal to number of subsets of $A \times B = 2^6 = 64$, which is given in (c).					
Example: 4	The relation R defined on the set of natural numbers as $\{(a, b) : a \text{ differs from } b \text{ by } 3\}$, is given by					
	(a) {(1, 4, (2, 5),	(3, 6),} (b)	{(4, 1), (5, 2), (6	$(c){(1, 3), (2, 6), (3, 9), (2, 6), (3, 9), $		
Solution: (b)	$R = \{(a,b): a, b \in N, a-b=3\} = \{((n+3), n): n \in N\} = \{(4,1), (5,2), (6,3), \dots\}$					

1.2.2 Inverse Relation

Let *A*, *B* be two sets and let *R* be a relation from a set *A* to a set *B*. Then the inverse of *R*, denoted by R^{-1} , is a relation from *B* to *A* and is defined by $R^{-1} = \{(b, a) : (a, b) \in R\}$

Clearly $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$. Also, Dom (R) = Range (R^{-1}) and Range (R) = Dom (R^{-1})

Example : Let $A = \{a, b, c\}, B = \{1, 2, 3\}$ and $R = \{(a, 1), (a, 3), (b, 3), (c, 3)\}.$

Then, (i) $R^{-1} = \{(1, a), (3, a), (3, b), (3, c)\}$

(ii) Dom (R) = {a, b, c} = Range (R^{-1})

(iii) Range $(R) = \{1, 3\} = \text{Dom } (R^{-1})$

 Example: 5
 Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}. A$ relation $R: A \rightarrow B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}.$ Then R^{-1} is defined by

 (a) $\{(1,2), (3,1), (1,3), (1,5)\}$ (b)
 $\{(1, 2), (3, 1), (2, 1)\}$ (c) $\{(1, 2), (5, 1), (3, 1)\}$ (d)

 Solution: (c)
 $(x, y) \in R \Leftrightarrow (y, x) \in R^{-1}, \therefore R^{-1} = \{(3,1), (5,1), (1,2)\}.$

 Example: 6
 The relation R is defined on the set of natural numbers as $\{(a, b) : a = 2b\}.$ Then R^{-1} is given by

 (a) $\{(2, 1), (4, 2), (6, 3), \dots\}$ (b)
 $\{(1, 2), (2, 4), (3, 6), \dots\}$ (c) R^{-1} is not defined (d)

 Solution: (b)
 $R = \{(2, 1), (4, 2), (6, 3), \dots\}$ So, $R^{-1} = \{(1, 2), (2, 4), (3, 6), \dots\}.$

1.2.3 Types of Relations

(1) **Reflexive relation :** A relation *R* on a set *A* is said to be reflexive if every element of *A* is related to itself.

Thus, *R* is reflexive \Leftrightarrow (*a*, *a*) \in *R* for all *a* \in *A*.

A relation *R* on a set *A* is not reflexive if there exists an element $a \in A$ such that $(a, a) \notin R$.

Example: Let $A = \{1, 2, 3\}$ and $R = \{(1, 1); (1, 3)\}$

Then *R* is not reflexive since $3 \in A$ but (3, 3) $\notin R$

Wole : \Box The identity relation on a non-void set *A* is always reflexive relation on *A*. However, a reflexive relation on *A* is not necessarily the identity relation on *A*.

□ The universal relation on a non-void set *A* is reflexive.

(2) Symmetric relation : A relation R on a set A is said to be a symmetric relation iff

 $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in A$

i.e.

 $aRb \Rightarrow bRa$ for all $a, b \in A$.

it should be noted that *R* is symmetric iff $R^{-1} = R$

Wole : **D** The identity and the universal relations on a non-void set are symmetric relations.

□ A relation *R* on a set *A* is not a symmetric relation if there are at least two elements $a, b \in A$ such that $(a, b) \in R$ but $(b, a) \notin R$.

 \Box A reflexive relation on a set *A* is not necessarily symmetric.

(3)**Anti-symmetric relation :** Let *A* be any set. A relation *R* on set *A* is said to be an antisymmetric relation *iff* $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$ for all $a, b \in A$.

Thus, if $a \neq b$ then a may be related to *b* or *b* may be related to *a*, but never both.

Example: Let *N* be the set of natural numbers. A relation $R \subseteq N \times N$ is defined by xRy iff *x* divides y(i.e., x/y).

Then x R y, $y R x \Rightarrow x$ divides y, y divides $x \Rightarrow x = y$

Note : \Box The identity relation on a set *A* is an anti-symmetric relation.

- □ The universal relation on a set *A* containing at least two elements is not antisymmetric, because if $a \neq b$ are in *A*, then *a* is related to *b* and *b* is related to *a* under the universal relation will imply that a = b but $a \neq b$.
- □ The set {(*a*, *a*): *a* ∈ *A*} = *D* is called the diagonal line of *A* × *A*. Then "the relation *R* in *A* is antisymmetric iff $R \cap R^{-1} \subseteq D$ ".

(4) **Transitive relation :** Let *A* be any set. A relation *R* on set *A* is said to be a transitive relation *iff*

 $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$ *i.e.*, aRb and $bRc \Rightarrow aRc$ for all $a, b, c \in A$.

In other words, if *a* is related to *b*, *b* is related to *c*, then *a* is related to *c*.

Transitivity fails only when there exists *a*, *b*, *c* such that *a R b*, *b R c* but *a R c*.

Example: Consider the set $A = \{1, 2, 3\}$ and the relations

 $R_1 = \{(1, 2), (1, 3)\}; R_2 = \{(1, 2)\}; R_3 = \{(1, 1)\}; R_4 = \{(1, 2), (2, 1), (1, 1)\}$

Then R_1 , R_2 , R_3 are transitive while R_4 is not transitive since in R_4 , $(2, 1) \in R_4$; $(1, 2) \in R_4$ but $(2, 2) \notin R_4$.

Wole : **D** The identity and the universal relations on a non-void sets are transitive.

 \Box The relation 'is congruent to' on the set *T* of all triangles in a plane is a transitive relation.

(5) **Identity relation :** Let *A* be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on *A* is called the identity relation on *A*.

22 Set Theory and Relations

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only. Every identity relation will be reflexive, symmetric and transitive.

Example: On the set = $\{1, 2, 3\}$, $R = \{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on A.

Vole : It is interesting to note that every identity relation is reflexive but every reflexive relation need not be an identity relation.

Also, identity relation is reflexive, symmetric and transitive.

- (6) **Equivalence relation :** A relation *R* on a set *A* is said to be an equivalence relation on *A*
- iff
 - (i) It is reflexive *i.e.* $(a, a) \in R$ for all $a \in A$

(ii) It is symmetric *i.e.* $(a, b) \in R \Rightarrow (b, a) \in R$, for all $a, b \in A$

(iii) It is transitive *i.e.* $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$.

Wate : **Congruence modulo (m)** : Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m if a-b is divisible by m and we write $a \equiv b \pmod{m}$.

Thus $a \equiv b \pmod{m} \Leftrightarrow a - b$ is divisible by *m*. For example, $18 \equiv 3 \pmod{5}$ because 18 - 3 = 15 which is divisible by 5. Similarly, $3 \equiv 13 \pmod{2}$ because 3 - 13 = -10 which is divisible by 2. But $25 \neq 2 \pmod{4}$ because 4 is not a divisor of 25 - 3 = 22.

The relation "Congruence modulo m" is an equivalence relation.

Important Tips

 ${}^{\mathscr{F}}$ If R and S are two equivalence relations on a set A , then $R \cap S$ is also an equivalence relation on A.

The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

The inverse of an equivalence relation is an equivalence relation.

1.2.4 Equivalence Classes of an Equivalence Relation

Let *R* be equivalence relation in $A \neq \phi$. Let $a \in A$. Then the equivalence class of *a*, denoted by [a] or $\{\overline{a}\}$ is defined as the set of all those points of *A* which are related to *a* under the relation *R*. Thus $[a] = \{x \in A : x R a\}$.

It is easy to see that

(1) $b \in [a] \Rightarrow a \in [b]$ (2) $b \in [a] \Rightarrow [a] = [b]$ (3) Two equivalence classes are either disjoint or identical.

As an example we consider a very important equivalence relation $x \equiv y \pmod{n}$ iff *n* divides (x - y), n is a fixed positive integer. Consider n = 5. Then

 $[0] = \{x : x \equiv 0 \pmod{5}\} = \{5p : p \in Z\} = \{0, \pm 5, \pm 10, \pm 15, \dots\}$

$[1] = \{x :$	$x \equiv 1 \pmod{5} = \{x : x -$	$1 = 5k, k \in Z\} = \{5k + 1 : k$	$\in Z$ = {1, 6, 11,, - 4	l,−9,} .		
One can	easily see that there	are only 5 distinct eq	uivalence classes viz	z. [0], [1], [2], [3] and	
[4], when <i>n</i>	= 5.					
Example: 7	Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = \{1, 2, 3\}$, the minimum number of ordered pairs which when added to R make it an equivalence relation is					
	(a) 5	(b) 6	(c) 7	(d) 8		
Solution: (c)	(c) <i>R</i> is reflexive if it contains $(1, 1), (2, 2), (3, 3)$ $\therefore (1, 2) \in R, (2, 3) \in R$					
	∴ <i>R</i> is symmetric if (2, 1), (3, 2) ∈ <i>R</i> . Now, $R = \{(1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (2, 3), (1, 2)\}$					
	<i>R</i> will be transitive if $(3, 1)$; $(1, 3) \in R$. Thus, <i>R</i> becomes an equivalence relation by adding $(1, 1)$ $(2, 2)$ $(3, 3)$ $(2, 1)$ $(3, 2)$ $(1, 3)$ $(3, 1)$. Hence, the total number of ordered pairs is 7.					
Example: 8	The relation $R = \{(1, 1),$	(2, 2), (3, 3), (1, 2), (2, 3),	$(1, 3)$ on set $A = \{1, 2, 3\}$	} is		
	(a) Reflexive but not syn	nmetric	(b)	Reflexive but	not	
transitive						
	(c) Symmetric and Tran nor transitive	sitive		(d) Neither syr	nmetric	
Solution: (a)	Since (1, 1); (2, 2); (3, 3) $\in R$ therefore <i>R</i> is reflexive. (1, 2) $\in R$ but (2, 1) $\notin R$, therefore <i>R</i> is not symmetric. It can be easily seen that <i>R</i> is transitive.					
Example: 9	Let <i>R</i> be the relation on	the set <i>R</i> of all real numbe	rs defined by $a R b iff \mid a$	$ b \le 1$. Then <i>R</i> is		
	(a) Reflexive and Symm	etric (b)	Symmetric only	(c) Transitive onl	y (d)	
Solution: (a)	$(a) a-a = 0 < 1 \therefore a R a \forall a \in R$					
	$\therefore R \text{ is reflexive,} \text{Again } a R b \Rightarrow a-b \le 1 \Rightarrow b-a \le 1 \Rightarrow bRa$					
	\therefore <i>R</i> is symmetric, Again $1R\frac{1}{2}$ and $\frac{1}{2}R1$ but $\frac{1}{2} \neq 1$					
	∴ R is not anti-symmetric					
	Further, 1 R 2 and 2 R 3 but 1 R 3					
	[:: 1-3 =2>1]					
	\therefore R is not transitive.					
Example: 10 [UPSEAT 1994, 9	Example: 10 The relation "less than" in the set of natural numbers is UPSEAT 1994, 98; AMU 1999]					
	(a) Only symmetric	(b) Only transitive	(c) Only reflexive	(d) Equivalence r	elation	
Solution: (b)	Since $x < y, y < z \Rightarrow x < z \neq$	$x, y, z \in N$				
	$\therefore x R y, y R z \Rightarrow x R z$, \therefore symmetric.	Relation is transitive ,	\therefore $x < y$ does not give	$y < x$, \therefore Relation	ı is not	
	Since $x < x$ does not hole	d, hence relation is not refl	exive.			
Example: 11	e: 11 With reference to a universal set, the inclusion of a subset in another, is relation, which is					
	(a) Symmetric only	(b) Equivalence relation	(c) Reflexive only	(d) None of these		

Set Theory and Relations

Solution: (d)	Since $A \subseteq A$ \therefore relation ' \subseteq ' is reflexive.					
	Since $A \subseteq B$, $B \subseteq C \Rightarrow A \subseteq C$					
	\therefore relation ' \subseteq ' is transit	tive.				
	But $A \subseteq B$, $\not\Rightarrow B \subseteq A$, \therefore	Relation is not symmetric	2.			
Example: 12	Let $A = \{2, 4, 6, 8\}$. A rela	tion R on A is defined by	$R = \{(2,4), (4,2), (4,6), (6,4)\}.$	Then R is		
	(a) Anti-symmetric	(b) Reflexive	(c) Symmetric	(d) Transitiv	e	
Solution: (c)	Given $A = \{2, 4, 6, 8\}$					
	$R = \{(2, 4)(4, 2) (4, 6) (6, 4)\}$					
	$(a, b) \in R \Rightarrow (b, a) \in R$	and also $R^{-1} = R$. Hence R	is symmetric.			
Example: 13	Let $P = \{(x, y) x^2 + y^2 = 1, \}$	$x, y \in R$ }. Then <i>P</i> is				
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Anti-sym	metric	
Solution: (b)	Obviously, the relation	ion is not reflexive	and transitive but it	is symmetr	ic, because	
$x^2 + y^2 = 1 \Longrightarrow y^2$	$+x^2=1$.					
Example: 14 Then <i>R</i> is	Let <i>R</i> be a relation on the set <i>N</i> of natural numbers defined by $nRm \Leftrightarrow n$ is a factor of <i>m</i> (<i>i.e.</i> , $n m$).					
	(a) Reflexive and symm symmetric	netric	(b)	Transitive	and	
	(c) Equivalence	(c) Equivalence (d) Reflexive, transitive but not symmetric				
Solution: (d)	Since $n \mid n$ for all $n \in N$, therefore R is reflexive. Since $2/16$ but $6 \mid 2$, therefore R is not symmetric.					
	Let $n \ R \ m$ and $m \ R \ p \Rightarrow n m$ and $m p \Rightarrow n p \Rightarrow n R p$. So R is transitive.					
Example: 15 pairs in <i>R</i> is	Let R be an equivalence relation on a finite set A having n elements. Then the number of ordered					
	(a) Less than <i>n</i>	(b) Greater than or equ	ual to n (c)	Less than or	equal to <i>n</i> (d)	
Solution: (b) ordered pairs.	Since <i>R</i> is an equivalence relation on set <i>A</i> , therefore $(a, a) \in R$ for all $a \in A$. Hence, <i>R</i> has at least <i>n</i>					
Example: 16	Let <i>N</i> denote the set of all natural numbers and <i>R</i> be the relation on $N \times N$ defined by (<i>a</i> , <i>b</i>) <i>R</i> (<i>c</i> , <i>d</i>) if $ad(b+c) = bc(a+d)$, then <i>R</i> is [Roorkee 1995]					
	(a) Symmetric only relation	(b) Reflexive only	(c) Transitive only	(d) An	equivalence	
Solution: (d)	For $(a, b), (c, d) \in N \times N$					
	$(a,b)R(c,d) \Longrightarrow ad(b+c) = bc(a+d)$					
	Reflexive: Since $ab(b+a) = ba(a+b) \forall ab \in N$,					
	\therefore $(a,b)R(a,b)$, \therefore R is reflexive.					
	Symmetric: For $(a,b), (c,d) \in N \times N$, let $(a,b)R(c,d)$					
	$\therefore ad(b+c) = bc(a+d) \implies bc(a+d) = ad(b+c) \implies cb(d+a) = da(c+b) \implies (c,d)R(a,b)$					
	\therefore R is symmetric					
	Transitive: For $(a,b), (c,d), (e,f) \in N \times N$, Let $(a,b)R(c,d), (c,d)R(e,f)$					
	$\therefore ad(b+c) = bc(a+d), cf(d+e) = de(c+f)$					

	$\Rightarrow adb + adc = bca + bcd$	(i) and cf	d + cfe = dec + def	(ii)	
	(i) $\times ef + (ii) \times ab$ gives, $adbef + adcef + cfdab + cfeab = bcaef + bcdef + decab + defab$				
	$\Rightarrow adcf(b+e) = bcde(a+f)$	$\Rightarrow af(b+e) = be(a+f) \Rightarrow$	$(a,b)R(e,f)$. \therefore R is t	transitive. Hence <i>R</i> is an	
	equivalence relation.				
Example: 17	For real numbers x and	<i>y</i> , we write $x Ry \Leftrightarrow x - y + y$	$\sqrt{2}$ is an irrational num	ober. Then the relation R is	
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these	
Solution: (a)	For any $x \in R$, we have $x \in R$	$x - x + \sqrt{2} = \sqrt{2}$ an irrational	number.		
	\Rightarrow <i>xRx</i> for all <i>x</i> . So, <i>R</i> is	reflexive.			
	R is not symmetric, bec	cause $\sqrt{2}RY$ but $1R\sqrt{2}$, R	is not transitive also	because $\sqrt{2} R \cancel{1}$ and $1R2\sqrt{2}$	
	but $\sqrt{2} R 2 \sqrt{2}$.				
Example: 18	Let <i>X</i> be a family of sets	and R be a relation on X d	efined by 'A is disjoint	from B'. Then R is	
-	(a) Reflexive	(b) Symmetric	(c) Anti-symmetric	(d) Transitive	
Solution: (b)	Clearly, the relation is s	ymmetric but it is neither r	eflexive nor transitive		
Example: 19	Let <i>R</i> and <i>S</i> be two non-v	void relations on a set A. W	hich of the following s	tatements is false	
	(a) <i>R</i> and <i>S</i> are transitive \Rightarrow <i>R</i> \cup <i>S</i> is transitive (b) <i>R</i> and <i>S</i> are transitive \Rightarrow <i>R</i> \cap <i>S</i> is trans				
	(c) <i>R</i> and <i>S</i> are symmetric	$\operatorname{ric} \Rightarrow R \cup S$ is symmetric	(d) R and S are refle	xive $\Rightarrow R \cap S$ is reflexive	
Solution: (a)	Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2)\}, S = \{(2, 2), (2, 3)\}$ be transitive relations on A .				
	Then $R \cup S = \{(1, 1); (1, 2)\}$	2); (2, 2); (2, 3)}			
	Obviously, $R \cup S$ is not transitive. Since $(1, 2) \in R \cup S$ and $(2,3) \in R \cup S$ but $(1, 3) \notin R \cup S$.				
Example: 20	The solution set of $8x = 6$	$6 \pmod{14}, x \in \mathbb{Z}$, are			
	(a) [8]∪[6]	(b) [8] U [14]	(c) [6] ∪ [13]	(d) [8]∪[6]∪[13]	
Solution: (c)	$8x - 6 = 14 P(P \in Z) \implies x =$	$=\frac{1}{8}[14P+6], x \in \mathbb{Z}$			
	$\Rightarrow x = \frac{1}{4}(7P+3) \Rightarrow x = 6, 13, 20, 27, 34, 41, 48,$				
	: Solution set = {6, 20, 34, 48,} \cup {13, 27, 41,} = [6] \cup [13].				
	Where [6], [13] are equivalence classes of 6 and 13 respectively.				

1.2.5 Composition of Relations

Let *R* and *S* be two relations from sets *A* to *B* and *B* to *C* respectively. Then we can define a relation *SoR* from *A* to *C* such that $(a, c) \in SoR \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

This relation is called the composition of *R* and *S*.

For example, if $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$, $C = \{p, q, r, s\}$ be three sets such that $R = \{(1, a), (2, c), (1, c), (2, d)\}$ is a relation from *A* to *B* and $S = \{(a, s), (b, q), (c, r)\}$ is a relation from *B* to *C*. Then *SoR* is a relation from *A* to *C* given by *SoR* = $\{(1, s), (2, r), (1, r)\}$

In this case *RoS* does not exist.

26 Set Theory and Relations

In general $RoS \neq SoR$. Also $(SoR)^{-1} = R^{-1}oS^{-1}$. **Example: 21** If *R* is a relation from a set *A* to a set *B* and *S* is a relation from *B* to a set *C*, then the relation *SoR* (a) Is from A to C (b) Is from C to A (c) Does not exist (d) None of these **Solution:** (a) It is obvious. **Example: 22** If $R \subset A \times B$ and $S \subset B \times C$ be two relations, then $(SoR)^{-1} =$ (b) $R^{-1}oS^{-1}$ (a) $S^{-1}oR^{-1}$ (c) *SoR* (d) *RoS* **Solution:** (b) It is obvious. **Example: 23** If R be a relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ *i.e.*, $(a, b) \in R \Leftrightarrow a < b$, then RoR^{-1} is (a) $\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$ (b) $\{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$ (c) $\{(3, 3), (3, 5), (5, 3), (5, 5)\}$ (d) $\{(3, 3), (3, 4), (4, 5)\}$ **Solution:** (c) We have, $R = \{(1, 3); (1, 5); (2, 3); (2, 5); (3, 5); (4, 5)\}$ $R^{-1} = \{(3, 1), (5, 1), (3, 2), (5, 2); (5, 3); (5, 4)\}$ Hence $RoR^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}$ **Example: 24** Let a relation R be defined by $R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\}$ then $R^{-1} \circ R$ is (a) $\{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)\}$ (b) $\{(1, 1), (4, 4), (7, 7), (3, 3)\}$ (c) $\{(1, 5), (1, 6), (3, 6)\}$ (d) None of these **Solution:** (a) We first find R^{-1} , we have $R^{-1} = \{(5,4); (4,1); (6,4); (6,7); (7,3)\}$ we now obtain the elements of $R^{-1}oR$ we first pick the element of R and then of R^{-1} . Since $(4,5) \in R$ and $(5,4) \in R^{-1}$, we have $(4,4) \in R^{-1}oR$ Similarly, $(1,4) \in R, (4,1) \in R^{-1} \Longrightarrow (1,1) \in R^{-1} oR$ $(4,6) \in R, (6,4) \in R^{-1} \Rightarrow (4,4) \in R^{-1} oR,$ $(4,6) \in R, (6,7) \in R^{-1} \Rightarrow (4,7) \in R^{-1} oR$

$$(7,6) \in R, (6,4) \in R^{-1} \Rightarrow (7,4) \in R^{-1} oR,$$
 $(7,6) \in R, (6,7) \in R^{-1} \Rightarrow (7,7) \in R^{-1} oR$

 $(3,7) \in R, (7,3) \in R^{-1} \Longrightarrow (3,3) \in R^{-1}oR$

Hence $R^{-1}oR = \{(1, 1); (4, 4); (4, 7); (7, 4), (7, 7); (3, 3)\}.$

1.2.6 Axiomatic Definitions of the Set of Natural Numbers (Peano's Axioms)

The set *N* of natural numbers ($N = \{1, 2, 3, 4.....\}$) is a set satisfying the following axioms (known as peano's axioms)

(1) N is not empty.

(2) There exist an injective (one-one) map $S: N \to N$ given by $S(n) = n^+$, where n^+ is the immediate successor of n in N i.e., $n + 1 = n^+$.

(3) The successor mapping *S* is not surjective (onto).

(4) If $M \subseteq N$ such that,

(i) M contains an element which is not the successor of any element in N, and

(ii) $m \in M \Rightarrow m^+ \in M$, then M = N

This is called the axiom of induction. We denote the unique element which is not the successor of any element is 1. Also, we get $1^+ = 2, 2^+ = 3$.

Note : Addition in *N* is defined as,

$$n+1 = n^+$$
$$n+m^+ = (n+m)^+$$

 \Box Multiplication in *N* is defined by,

$$n \cdot 1 = n$$
$$n \cdot m^+ = n \cdot m + n$$