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 Electric Charge. 

(1) Definition : Charge is the property associated with matter due to which it produces and experiences 

electrical and magnetic effects. 

(2) Origin of electric charge : It is known that every atom is electrically neutral, containing as many 

electrons as the number of protons in the nucleus.  

Charged particles can be created by disturbing neutrality of an atom. Loss of electrons gives positive 

charge (as then np > ne) and gain of electrons gives negative charge (as then ne > np) to a particle. When an 

object is negatively charged it gains electrons and therefore its mass increases negligibly. Similarly, on charging 

a body with positive electricity its mass decreases. Change in mass of object is equal to n  me. Where, n is the 

number of electrons transferred and em  is the mass of electron Kg31101.9  . 

 

 

 

 

 

 

 

 

(3) Type : There exists two types of charges in nature  (i) Positive charge (ii) Negative charge 
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2 Electrostatics 

Charges with the same electrical sign repel each other, and charges with opposite electrical sign attract each 

other. 

 

 

 

 

 

(4) Unit and dimensional formula : Rate of flow of electric charge is called electric current i.e., 
dt

dQ
i    

idtdQ  , hence S.I. unit of charge is – Ampere  sec = coulomb (C), smaller S.I. units are mC, C, nC  

)101,101,101( 963 CnCCCCmC    . C.G.S. unit of charge is – Stat coulomb or e.s.u. Electromagnetic unit 

of charge is – ab coulomb coulombabcoulombstatC
10

1
1031 9  . Dimensional formula  ATQ ][  

Note :  Benjamin Franklin was the first to assign positive and negative sign of charge. 

 The existence of two type of charges was discovered by Dufog. 

 Franklin ( i.e. , e.s.u. of charge) is the smallest unit of charge while faraday is largest 

(1 Faraday = 96500 C). 

 The e.s.u. of charge is also called stat coulomb or Franklin (Fr) and is related to e.m.u. of charge 

through the relation 10103
chargeof  esu

chargeof  emu
   

(5) Point charge : A finite size body may behave like a point charge if it produces an inverse square electric field. 

For example an isolated charged sphere behave like a point charge at very large distance as well as very small 

distance close to it’s surface. 

(6) Properties of charge  

(i) Charge is transferable : If a charged body is put in contact with an uncharged body, uncharged body 

becomes charged due to transfer of electrons from one body to the other.  

+ – – – + + 



 

 

 

 
Electrostatics 3 

(ii) Charge is always associated with mass, i.e., charge can not exist without mass though mass can exist without 

charge. 

(iii) Charge is conserved : Charge can neither be created nor be destroyed. e.g. In radioactive decay the 

uranium nucleus (charge e92 ) is converted into a thorium nucleus (charge e90 ) and emits an  -particle 

(charge e2 )  

4
2

234
90

238
92 HeThU  . Thus the total charge is e92  both before and after the decay. 

(iv) Invariance of charge : The numerical value of an elementary charge is independent of velocity. It is proved 

by the fact that an atom is neutral. The difference in masses on an electron and a proton suggests that electrons 

move much faster in an atom than protons. If the charges were dependent on velocity, the neutrality of atoms 

would be violated. 

(v) Charge produces electric field and magnetic field : A charged particle at rest produces only electric field 

in the space surrounding it. However, if the charged particle is in unaccelerated motion it produces both electric 

and magnetic fields. And if the motion of charged particle is accelerated it not only produces electric and 

magnetic fields but also radiates energy in the space surrounding the charge in the form of electromagnetic 

waves.  

 

 

 

 

(vi) Charge resides on the surface of conductor : Charge resides on the outer surface of a conductor 

because like charges repel and try to get as far away as possible from one another and stay at the farthest 

distance from each other which is outer surface of the conductor. This is why a solid and hollow conducting 

sphere of same outer radius will hold maximum equal charge and a soap bubble expands on charging.  

(vii) Charge leaks from sharp points : In case of conducting body no doubt charge resides on its outer 

surface, if surface is uniform the charge distributes uniformly on the surface and for irregular surface the 
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4 Electrostatics 

distribution of charge, i.e., charge density is not uniform. It is maximum where the radius of curvature is 

minimum and vice versa. i.e., σ   /R1 . This is why charge leaks from sharp points. 

 

 

 

 

 

 

(viii) Quantization of charge : When a physical quantity can have only discrete values rather than any value, 

the quantity is said to be quantised. The smallest charge that can exist in nature is the charge of an electron. If 

the charge of an electron ( C19106.1  ) is taken as elementary unit i.e. quanta of charge the charge on any 

body will be some integral multiple of e i.e.,  

neQ   with ....3,2,1n  

Charge on a body can never be e
3

2
 , e2.17  or  e510  etc. 

Note :  Recently it has been discovered that elementary particles such as proton or neutron are 

composed of quarks having charge  3/1 e and  3/2 e. However, as quarks do not exist in free 

state, the quanta of charge is still e. 

 Quantization of charge implies that there is a maximum permissible magnitude of charge. 

 Comparison of Charge and Mass. 

We are familiar with role of mass in gravitation, and we have just studied some features of electric charge. 

We can compare the two as shown below 
 

Charge Mass 

(1) Electric charge can be positive, negative or zero. (1) Mass of a body is a positive quantity. 

(2) Charge carried by a body does not depend upon 

velocity of the body. 

(2) Mass of a body increases with its velocity as 
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22

0

/1 cv

m
m



  where c is velocity of light in 

vacuum, m is the mass of the body moving with 

velocity v and 0m  is rest mass of the body. 

(3) Charge is quantized. (3) The quantization of mass is yet to be established. 

(4) Electric charge is always conserved. (4) Mass is not conserved as it can be changed into 

energy and vice-versa. 

(5) Force between charges can be attractive or repulsive, 

according as charges are unlike or like charges. 

(5) The gravitational force between two masses is 

always attractive. 

 Methods of Charging.  

A body can be charged by following methods :  

(1) By friction : In friction when two bodies are rubbed together, electrons are transferred from one body to 

the other. As a result of this one body becomes positively charged while the other negatively charged, e.g., 

when a glass rod is rubbed with silk, the rod becomes positively charged while the silk negatively. However, 

ebonite on rubbing with wool becomes negatively charged making the wool positively charged. Clouds also 

become charged by friction. In charging by friction in accordance with conservation of charge, both positive and 

negative charges in equal amounts appear simultaneously due to transfer of electrons from one body to the 

other. 

(2) By electrostatic induction : If a charged body is brought near an uncharged body, the charged body will 

attract opposite charge and repel similar charge present in the uncharged body. As a result of this one side of 

neutral body (closer to charged body) becomes oppositely charged while the other is similarly charged. This 

process is called electrostatic induction. 
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6 Electrostatics 

 

 

Note :  Inducting body neither gains nor loses charge. 

 Induced charge can be lesser or equal to inducing charge (but never greater) and its maximum 

value is given by 









K
QQ'

1
1  where Q is the inducing charge and K is the dielectric constant 

of the material of the uncharged body. Dielectric constant of different media are shown below  

 

Medium K 

Vacuum / air 

Water 

Mica 

Glass 

Metal 

1 

80 

6 

5–10 

 

 

 

 Dielectric constant of an insulator can not be    

 For metals in electrostatics K  and so ;QQ'   i.e. in metals induced charge is equal and 

opposite to inducing charge. 

(3) Charging by conduction : Take two conductors, one charged and other uncharged. Bring the 

conductors in contact with each other. The charge  (whether ve or ve ) under its own repulsion will spread 

over both the conductors. Thus the conductors will be charged with the same sign. This is called as charging by 

conduction (through contact). 
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Note :  A truck carrying explosives has a metal chain touching the ground, to conduct away the charge 

produced by friction. 

 Electroscope.  

It is a simple apparatus with which the presence of electric charge on a body is detected (see figure). When 

metal knob is touched with a charged body, some charge is transferred to the gold leaves, which then diverges 

due to repulsion. The separation gives a rough idea of the amount of charge on the body. If a charged body 

brought near a charged electroscope the leaves will further diverge. If the charge on body is similar to that on 

electroscope and will usually converge if opposite. If the induction effect is strong enough leaves after converging 

may again diverge. 

(1) Uncharged electroscope 

 

 

 

 

 

 

 

 

 

(2) Charged electroscope  
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8 Electrostatics 

 

 

 

 

 

Concepts 

 After earthing a positively charged conductor electrons flow from earth to conductor and if a negatively charged conductor is 

earthed then electrons flows from conductor to earth. 

 

 

 

 

 

 

 When a charged spherical conductor placed inside a hollow insulated conductor and connected if through a fine conducting 

wire the charge will be completely transferred from the inner conductor to the outer conductor. 

 

 

 

 

 

 Lightening-rods arrestors are made up of conductors with one of their ends earthed while the other sharp, and protects a 

building from lightening either by neutralising or conducting the charge of the cloud to the ground. 

 With rise in temperature dielectric constant of liquid decreases. 

 Induction takes place only in bodies (either conducting or non-conducting) and not in particles. 

 If X-rays are incident on a charged electroscope, due to ionisation of air by X-rays the electroscope will get discharged and 

hence its leaves will collapse. However, if the electroscope is evacuated. X-rays will cause photoelectric effect with gold and 

so the leaves will further diverge if it is positively charged (or uncharged) and will converge if it is negatively charged. 

 If only one charge is available than by repeating the induction process, it can be used to obtain a charge many times greater 

than it’s equilibrium. (High voltage generator) 
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Examples based on properties of charge 
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Example: 1 A soap bubble is given negative charge. Its radius will      [DCE 2000; RPMT 1997; CPMT 1997; MNR 1988] 

 (a) Increase (b) Decrease (c) Remain unchanged (d) Fluctuate 

Solution: (a) Due to repulsive force. 

Example: 2 Which of the following charge is not possible 

    (a) C18106.1   (b) C19106.1   (c) C20106.1   (d) None of these 

Solution: (c) ,106.1 20 C  because this is 
10

1
 of electronic charge and hence not an integral multiple.  

Example: 3 Five balls numbered 1 to 5 balls suspended using separate threads. Pair (1,2), (2,4) and (4,1) show electrostatic 

attraction, while pair (2,3) and (4,5) show repulsion. Therefore ball 1 must be  [NCERT 1980] 

 (a) Positively charged  (b)  Negatively charged  (c) Neutral  (d) Made of metal  

Solution: (c) Since 1 does not enter the list of repulsion, it is just possible that it may not be having any charge. Moreover, 

since ball no. 1 is being attracted by 2 and 4 both. So 2 and 4 must be similarly charged, but it is also given 

that 2 and 4 also attract each other. So 2 and 4 are certainly oppositely charged. 

 Since 1 is attracting 2, either 1 or 2 must be neutral but since 2 is already in the list of balls repelling each 

other, it necessarily has some charge, similarly 4 must have some charge. It means that though 1 is 

attracting 2 and 4 it does not have any charge. 

Example: 4 If the radius of a solid and hollow copper spheres are same which one can hold greater charge    

[BHU 1999; KCET 1994; IIT-JEE 1974] 

 (a) Solid sphere   (b) Hollow sphere   

 (c) Both will hold equal charge  (d) None of these 

Solution: (c)  Charge resides on the surface of conductor, since both the sphere having similar surface area so they will 

hold equal charge. 

Example: 5 Number of electrons in one coulomb of charge will be    [RPET 2001; MP PMT/PET 1998] 

 (a) 291046.5   (b) 181025.6   (c) 19106.1   (d) 11109   

Solution: (b) By using 
e

Q
nneQ   18

19
1025.6

106.1

1






n  

Example: 6 The current produced in wire when 107 electron/sec are flowing in it   [CPMT 1994] 

 (a) 1.6  10–26 amp (b) 1.6  1012 amp (c) 1.6  1026 amp (d) 1.6  10–12 amp 

Solution: (d) amp
t

ne

t

Q
i 12197 106.1106.110    



 

 

 

 
10 Electrostatics 

Example: 7 A table-tennis ball which has been covered with a conducting paint is suspended by a silk thread so that it 

hangs between two metal plates. One plate is earthed. When the other plate is connected to a high 

voltage generator, the ball 

(a) Is attracted to the high voltage plate and stays there  

(b) Hangs without moving 

(c) Swings backward and forward hitting each plate in turn 

(d) None of these 

Solution: (c) The table tennis ball when slightly displaced say towards the positive plate gets attracted towards the positive 

plate due to induced negative charge on its near surface. 

The ball touches the positive plate and itself gets positively charged by 

the process of conduction from the plate connected to high voltage 

generator. On getting positively charged it is repelled by the positive 

plate and therefore the ball touches the other plate (earthed), which has 

negative charge due to induction. On touching this plate, the positive charge of the ball gets neutralized 

and in turn the ball shares negative charge of the earthed plate and is again repelled from this plate also, 

and this process is repeated again and again. 

 Here it should be understood that since the positive plate is connected to high voltage generator, its 

potential and hence its charge will always remain same, as soon as this plate gives some of its charge to 

ball, excess charge flows from generator to the plate, and an equal negative charge is always induced on 

the other plate. 

 

 

  

 In 1 gm of a solid, there are 5  1021 atoms. If one electron is removed from everyone of 0.01% 

atoms of the solid, the charge gained by the solid is (given that electronic charge is 1.6  10–19 C) 

 (a) + 0.08 C  (b) + 0.8 C  (c) – 0.08 C  (d) – 0.8 C  

Solution: (a) To calculate charge, we will apply formula Q = ne for this, we must have number of electrons. Here, 

number of electrons %01.n  of 5  1021  

i.e.  
100

01.105 21 
n 421 10105  = 5  1017  

So  Q = 5  1017  1.6  10–19 = 8  10–2 = 0.08 C  

Since electrons have been removed, charge will be positive i.e. Q = + 0.08 C 
 

 Tricky example: 1 
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Electrostatics 11 

 Coulomb’s Law. 

If two stationary and point charges 1Q  and 2Q  are kept at a distance r, then it is found that force of 

attraction  

 

 

 

or repulsion between them is 
2

21

r

QQ
F   i.e., 

2

21

r

QkQ
F   ;  (k = Proportionality constant) 

(1) Dependence of k : Constant k depends upon system of units and medium between the two charges. 

(i) Effect of units   

(a) In C.G.S. for air ,1k  
2

21

r

QQ
F   Dyne 

(b) In S.I. for air 
2

2
9

0

109
4

1

C

mN
k





, 

2

21

0

.
4

1

r

QQ
F


 Newton (1 Newton = 105 Dyne) 

Note :  0 Absolute permittivity of air or free space = 
2

2
121085.8

mN

C


 











m

Farad
. It’s 

Dimension is ][ 243 ATML   

 0 Relates with absolute magnetic permeability ( 0 ) and velocity of light (c) according to the 

following relation 
00

1


c  

(ii) Effect of medium  

(a) When a dielectric medium is completely filled in between charges rearrangement of the charges inside 

the dielectric medium takes place and the force between the same two charges decreases by a factor of K 

known as dielectric constant or specific inductive capacity (SIC) of the medium, K is also called relative 

permittivity r of the medium (relative means with respect to free space). 

Hence in the presence of medium 
2

21

0

.
4

1

r

QQ

KK

F
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m


  

Q2 Q1 
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12 Electrostatics 

Here   rK 00  (permittivity of medium)   

(b) If a dielectric medium (dielectric constant K, thickness t) is partially filled between the charges then 

effective air separation between the charges becomes )( Kttr   

Hence force 
2

21

0 )(4

1

Kttr

QQ
F





 

(2) Vector form of coulomb’s law : Vector form of Coulomb’s law is ,ˆ.. 122

21
123

21
12

r
r

qq
Kr

r

qq
KF   where 

12r̂  is the unit vector from first charge to second charge along the line joining the two charges. 

(3) A comparative study of fundamental forces of nature 

 

S.No. Force Nature and formula Range Relative 

strength 

(i) Force of gravitation 

between two masses 

Attractive F = Gm1m2/r2, obey’s 

Newton’s third law of motion, 

it’s a conservative force 

Long range (between planets 

and between electron and 

proton) 

1 

(ii) Electromagnetic force 

(for stationary and 

moving charges) 

Attractive as well as repulsive, 

obey’s Newton’s third law of 

motion, it’s a conservative 

force 

Long (upto few kelometers) 3710  

(iii) Nuclear force (between  

nucleons) 

Exact expression is not known 

till date. However in some cases 

empirical formula 0/
0

rr
eU  can 

be utilized for nuclear potential 

energy 0U  and 0r  are 

constant. 

Short (of the order of nuclear 

size 10–15 m) 

1039 

(strongest) 

(iv) Weak force (for 

processes like  decay) 

Formula not known Short (upto 10–15m) 1024  

 

Note :  Coulombs law is not valid for moving charges because moving charges produces 

magnetic field also. 

 Coulombs law is valid at a distance greater than .10 15 m  

Q2 Q1 
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Electrostatics 13 

 A charge 1Q exert some force on a second charge 2Q . If third charge 3Q  is brought near, the 

force of 1Q  exerted on 2Q  remains unchanged. 

 Ratio of gravitational force and electrostatic force between (i) Two electrons is 10–43/1. (ii) Two 

protons is 10–36/1 (iii) One proton and one electron 10–39/1.  

 Decreasing order to fundamental forces nalGravitatioWeakneticElectromagNuclear FFFF   

(4) Principle of superposition : According to the principle of super 

position, total force acting on a given charge due to number of charges is 

the vector sum of the individual forces acting on that charge due to all the 

charges. 

Consider number of charge 1Q , 2Q , 3Q …are applying force on a 

charge Q  

Net force on Q will be  

nnnet FFFFF


 121 ..........   

 

Concepts 

 Two point charges separated by a distance r in vacuum and a force F acting between them. After filling a dielectric medium 

having dielectric constant K completely between the charges, force between them decreases. To maintain the force as before 

separation between them changes to Kr . This distance known as effective air separation. 

 

 

 

Example: 8 Two point charges C3 and C8  repel each other with a force of 40 N. If a charge of C5  is added to 

each of them, then the force between them will become      [SCRA 1998] 

    (a) N10  (b) N10  (c) N20  (d) N20  

Solution: (a)  Initially 
2

121083

r
kF


  and  Finally  

2

121032

r
k'F


        so   

4

1


F

'F
  N'F 10  

r1 

r2 

r3 

Q 

Q1 

Q2 

Q3 

Qn – 1 

Qn 

Examples based on Coulomb’s law 
+Q – Q 



 

 

 

 
14 Electrostatics 

Example: 9 Two small balls having equal positive charge Q (coulomb) on each are suspended by two insulated string of 

equal length L meter, from a hook fixed to a stand. The whole set up is taken in satellite into space where 

there is no gravity (state of weight less ness). Then the angle between the string and tension in the string is  

            [IIT-JEE 1986] 

    (a) 
2

2

0 )2(
.

4

1
,180

L

Qo


  

    (b) 
2

2

0

.
4

1
,90

L

Q



   

    (c) 
2

2

0 2
.

4

1
,180

L

Q



   

    (d) 
2

0 4
.

4

1
,180

L

QLo


 

Solution: (a)  In case to weight less ness following situation arises 

 

    So angle 180  and force 
 2

2

0 2
.

4

1

L

Q
F


  

Example: 10 Two point charges 1 C  & C5  are separated by a certain distance. What will be ratio of forces acting on 

these two        [CPMT 1979] 

    (a) 5:1  (b) 1:5  (c) 1:1  (d) 0  

Solution: (c)  Both the charges will experience same force so ratio is 1:1   

Example: 11 Two charges of C40  and C20  are placed at a certain distance apart. They are touched and kept at the 

same distance. The ratio of the initial to the final force between them is    [MP PMT 2001] 

    (a) 1:8  (b) 1:4  (c) 1 : 8 (d) 1 : 1  

Solution: (a)  Since only magnitude of charges are changes that’s why  21qqF      
1

8

1010

2040

21

21

2

1 





q'q'

qq

F

F
 

Example: 12 A total charge Q is broken in two parts 1Q  and 2Q  and they are placed at a distance R from each other. The 

maximum force of repulsion between them will occur, when     [MP PET 1990] 

(a) 
R

Q
QQ

R

Q
Q  12 ,  (b) 

3

2
,

4
12

Q
QQ

Q
Q   (c) 

4

3
,

4
12

Q
Q

Q
Q   (d) 

2
,

2
21

Q
Q

Q
Q   

Solution: (d)  Force between charges 1Q  and 2Q     
 

2

11

2

21

R

QQQ
k

R

QQ
kF


  

    For F to be maximum, 0
1


dQ

dF
        i.e., 

 
0

2

2
11

1












 

R

QQQ
k

dQ

d
 or 

2
,02 11

Q
QQQ   

    Hence 
2

21

Q
QQ   

L L 

+Q +Q 180o 

L 

+Q 

L 

+Q 
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Example: 13 The force between two charges 0.06m apart is 5 N. If each charge is moved towards the other by 0.01m, then 

the force between them will become      [SCRA 1994] 

    (a) 7.20 N (b) 11.25 N (c) 22.50 N (d) 45.00 N 

Solution: (b)  Initial separation between the charges = 0.06m 

    Final separation between the charges = 0.04m 

    Since 
2

1

r
F   

2

1

2

2

1













r

r

F

F
 

9

4

06.0

04.05
2

2











F
 NF 25.112   

Example: 14 Two charges equal in magnitude and opposite in polarity are placed at a certain distance apart and force 

acting between them is F. If 75% charge of one is transferred to another, then the force between the 

charges becomes 

    (a) 
16

F
 (b) 

16

9F
 (c) F  (d) F

16

15
 

Solution: (a)    

 

  

 

             Initially  
2

2

r

Q
kF   Finally 

16

4
.

2

2

F

r

Q
k

'F 










  

Example: 15 Three equal charges each +Q, placed at the corners of on equilateral triangle of side a what will be the force 

on any charge 














04

1


k        [RPET 2000]  

    (a) 
2

2

a

kQ
 (b) 

2

22

a

kQ
 (c) 

2

22

a

kQ
 (d) 

2

23

a

kQ
  

Solution: (d) Suppose net force is to be calculated on the charge which is kept at A. Two charges kept at B and C are 

applying force on that particular charge, with direction as shown in the figure. 

    Since 
2

2

a

Q
kFFF cb    

    So, 60cos222
CBCBnet FFFFF   

    
2

23
3

a

kQ
FFnet    

Example: 16 Equal charges Q are placed at the four corners A, B, C, D of a square of length a. The magnitude of the force 

on the charge at B will be        [MP PMT 1994] 

r 

– Q +Q 

A B 

r 

– Q/4 +Q/4 

A B 

60o 

60o 

A 

B C 

+Q +Q 

+Q 

FB FC 
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    (a) 
2

0

2

4

3

a

Q


 (b) 

2
0

2

4

4

a

Q


 (c) 

2
0

2

4
 

2

211

a

Q













 
 (d) 

2
0

2

4
 

2

1
2

a

Q















   

Solution: (c) After following the guidelines mentioned above 

    DCADACnet FFFFFF  22  

    Since 
2

2

a

kQ
FF CA  and 

2

2

)2(a

kQ
FD   

    









2

1
2

2

2
2

2

2

2

2

2

a

kQ

a

kQ

a

kQ
Fnet 












 


2

221

4 2
0

2

a

Q


 

Example: 17 Two equal charges are separated by a distance d. A third charge placed on a perpendicular bisector at x 

distance, will experience maximum coulomb force when     [MP PMT 2002] 

    (a) 
2

d
x   (b) 

2

d
x   (c) 

22

d
x    (d) 

32

d
x    

Solution: (c) Suppose third charge is similar to Q and it is q 

So net force on it Fnet = 2F cos 

Where  


















4

.
4

1

2
20 d

x

Qq
F


 and 

4

cos
2

2 d
x

x



  

      
2/3

2
2

0

2/1
2

2

2
20

4
4

2

44

.
4

1
2




















































d
x

Qqx

d
x

x

d
x

Qq
Fnet




 

for Fnet to be maximum 0
dx

dFnet  i.e. 0

4
4

2
2/3

2
2

0








































d
x

Qqx

dx

d



  

or     0
4

3
4

2/5
2

22

2/3
2

2 














































d
xx

d
x     i.e. 

22

d
x   

Example: 18 ABC is a right angle triangle in which AB = 3 cm, BC = 4 cm and 
2


ABC . The three charges +15, +12 and – 

20 e.s.u. are placed respectively on A, B and C. The force acting on B is  

    (a) 125 dynes (b) 35 dynes (c) 25 dynes (d) Zero 

Solution: (c) Net force on B  22
CAnet FFF   

    
 

dyneFA 20
3

1215
2




  

A 

D C 

B 

FC 

FAC 
FA 

FD 

+Q +Q 

+Q 

 

B C 

Q Q 

F F 
 

q 

x 

  

2

d
 

2

d
 

4/
22

dx   4/
22

dx   

A 

FC 

FA 

3 cm 

4 cm 

+15 esu 

– 20 esu +12 esu 
B C  

22

CAnet FFF   
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 

dyneFC 15
4

2012
2




   

    dyneFnet 25  

Example: 19 Five point charges each of value +Q are placed on five vertices of a regular hexagon of side L. What is the 

magnitude of the force on a point charge of value – q placed at the centre of the hexagon  [IIT-JEE 1992] 

    (a) 
2

2

L

Q
k    (b) 

2

2

4 L

Q
k   

    (c) Zero   (d) Information is insufficient   

Solution: (a) Four charges cancels the effect of each other, so the net force on the charge placed at centre due to remaining 

fifth charge is 

    
2

2

L

Q
kF   

 

 

 

Example: 20 Two small, identical spheres having +Q and – Q charge are kept at a certain distance. F force acts between the 

two. If in the middle of two spheres, another similar sphere having +Q charge is kept, then it experience a 

force in magnitude and direction as      [MP PET 1996] 

    (a) Zero having no direction  (b) 8F towards +Q charge  

    (c) 8F towards – Q charge   (d)  4F towards +Q charge 

Solution: (c) Initially, force between A and C      
2

2

r

Q
kF   

    When a similar sphere B having charge +Q is kept at the mid point 

of line joining A and C, then Net force on B is  

CAnet FFF 
   

F
r

kQ

r

kQ

r

Q
k 88

22
2

2

2

2

2

2

 . (Direction is shown 

in figure) 

 

  

 Two equal spheres are identically charged with q units of electricity separately. When they are 

placed at a distance 3R from centre-to-centre where R is the radius of either sphere the force of 

repulsion between them is 

+ 

+ 
+ + + 

+ 

+ 
+ 

+ 

 Tricky example: 2  

r 

A C 

– Q +Q 

B 

r/2 r/2 

+Q 

FA FC 

L 
+Q +Q 

+Q 

+Q +Q 

– Q 
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 (a) 
2

2

0

.
4

1

R

q


 (b) 

2

2

0 9
.

4

1

R

q


 (c) 

2

2

0 4
.

4

1

R

q


 (d) None of these 

Solution: (a) Generally students give the answer 
2

2

0 )3(4

1

R

q


 but it is not true. Since the charges are not 

uniformly distributed, they cannot be treated as point charges and so we cannot apply coulombs 

law which is a law for point charges. The actual distribution is shown in the figure above. 

 

 

 

 

 

 Electrical Field. 

A positive charge or a negative charge is said to create its field around itself. If a charge 1Q  exerts a force 

on charge 2Q placed near it, it may be stated that since 2Q  is in the field of 1Q , it experiences some force, or it 

may also be said that since charge 1Q is inside the field of 2Q , it experience some force. Thus space around a 

charge in which another charged particle experiences a force is said to have electrical field in it. 

(1) Electric field intensity )(E


: The electric field intensity at any point is defined as the force experienced by 

a unit positive charge placed at that point. 
0q

F
  E



  

 

Where  00 q so that presence of this charge may not affect the source charge Q and its electric field is 

not changed, therefore expression for electric field intensity can be better written as 
0

0q q

F
LimE

0





  

(2) Unit and Dimensional formula : It’s S.I. unit –
metercoulomb

Joule

meter

volt

coulomb

Newton


  and  

  C.G.S. unit – Dyne/stat coulomb.  

    Dimension : [ E ] =[ 13  AMLT ] 

(3) Direction of electric field : Electric field (intensity) E


 is a vector quantity. Electric field due to a positive 

charge is always away from the charge and that due to a negative charge is always towards the charge 

 (q0) 
F


 
P 

+Q 
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(4) Relation between electric force and electric field : In an electric field E


 a charge (Q) experiences a force 

QEF  . If charge is positive then force is directed in the direction of field while if charge is negative force acts 

on it in the opposite direction of field  

 

 

 

(5) Super position of electric field (electric field at a point due to various charges) : The resultant electric 

field at any point is equal to the vector sum of electric fields at that point due to various charges.  

  ...321  EEEE


 

The magnitude of the resultant of two electric fields is given by 

 cos2 21
2
2

2
1 EEEEE   and the direction is given by 






cos

sin
tan

21

2

EE

E


  

(6) Electric field due to continuous distribution of charge : A system of closely spaced electric charges forms 

a continuous charge distribution 

 

Continuous charge distribution 

Linear charge distribution Surface charge distribution Volume charge distribution 

In this distribution charge distributed 

on a line. 

For example : charge on a wire, 

charge on a ring etc.  Relevant 

parameter is   which is called linear 

charge density i.e., 

length

charge
  

In this distribution charge distributed 

on the surface. 

For example : Charge on a 

conducting sphere, charge on a 

sheet etc. Relevant parameter is 

 which is called surface charge 

density i.e., 

In this distribution charge distributed 

in the whole volume of the body. 

For example : Non conducting 

charged sphere. Relevant parameter 

is   which is called volume charge 

density i.e., 

volume

charge
  

+ 

+ 

+ 
+ + 

+ 

+ 

+ 
+ 

R 

Q 

Spherical shall 

+ 

+ 

+ 
+ + 

+ 

+ 

+ 
+ 

R 
+ + + 

+ 

+ 
+ 

Q 

Non conducting 

sphere 

+ 
+ 

+ 

+ 
+ + 

+ 

+ 

+ 

R 

Circular charged 

ring 

Q 

E2 

E1 

E 

 
 

+Q E


 – Q 
E


 

+Q 
E  

F – Q 
E  



 

 

 

 
20 Electrostatics 

R

Q




2
  

area

charge
  

24 R

Q


   

3

3

4
R

Q



   

 

To find the field of a continuous charge distribution, we divide the charge into infinitesimal charge 

elements. Each infinitesimal charge element is then considered, as a point charge and electric field dE  is 

determined due to this charge at given point. The Net field at the given point is the summation of fields of all 

the elements. i.e.,    dEE   

 Electric Potential. 

(1) Definition : Potential at a point in a field is defined as the amount of work done in bringing a unit 

positive test charge, from infinity to that point along any arbitrary path (infinity is point of zero potential). 

Electric potential is a scalar quantity, it is denoted by V;   
0q

W
V       

(2) Unit and dimensional formula : S. I. unit – volt
Coulomb

Joule
  C.G.S. unit – Stat volt (e.s.u.); 1 volt 

300

1
  Stat 

volt Dimension – ][][ 132  ATMLV  

(3) Types of electric potential : According to the nature of charge potential is of two types 

(i) Positive potential : Due to positive charge.    (ii) Negative potential : Due to negative charge. 

(4) Potential of a system of point charges : Consider P is a point at which net electric potential is to be 

determined due to several charges. So net potential at P  

      
 

...
4

4

3

3

2

2

1

1 



r

Q
k

r

Q
k

r

Q
k

r

Q
kV  

 In general 



X

i i

i

r

kQ
V

1

 

 

Note :  At the centre of two equal and opposite charge V = 0 but 0E  

r1 

r2 

r3 

P 

– Q1 
r4 

– Q2 
+ Q3 

– Q4 
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 At the centre of the line joining two equal and similar charge 0,0  EV  

(5) Electric potential due to a continuous charge distribution : The potential due to a continuous charge 

distribution is the sum of potentials of all the infinitesimal charge elements in which the distribution may be 

divided i.e.,   
r0

dQ
dVV

πε4
,   

(6) Graphical representation of potential : When we move from a positive charge towards an equal 

negative charge along the line joining the two then initially potential decreases in magnitude and at centre 

become zero, but this potential is throughout positive because when we are nearer to positive charge, overall 

potential must be positive. When we move from centre towards the negative charge then though potential 

remain always negative but increases in magnitude fig. (A). As one move from one charge to other when both 

charges are like, the potential first decreases, at centre become minimum and then increases Fig. (B). 

 

 

 

 

 

 

 

 

(7) Potential difference : In an electric field potential difference between two points A and B is defined as 

equal to the amount of work done (by external agent) in moving a unit positive charge from point A to point B.  

i.e., 
0q

W
VV AB   in general VQW  . ; V Potential difference through which charge Q moves. 

 Electric Field and Potential Due to Various Charge Distribution. 

(1) Point charge : Electric field and potential at point P due to a point charge Q is  

+ q – q 

V 

x 

Y 

X O 

(A) 

v 

x 

Y 

X 
O 

(B) 

+ q + q 
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  r
r

Q
kE ˆor

2




2
r

Q
kE    












04

1


k ,   

r

Q
kV   

 

Note :  Electric field intensity and electric potential due to a point charge q, at a distance t1 + t2 where 

t1 is thickness  of medium of dielectric constant K1 and t2 is thickness of medium of dielectric constant 

K2 are : 

   
2

2210 )(4

1

KtKt

Q
E

1 


πε
 ;        

)22104

1

KtK(t

Q
V

1 


πε
 

(2) Line charge   

(i) Straight conductor : Electric field and potential due to a charged straight conducting wire of length l and 

charge density    

(a) Electric field : )sin(sin 



r

k
Ex  and )cos(cos 




r

k
Ey  

If  = ;    


sin
2

r

k
Ex   and Ey = 0 

If  l   i.e.  =  = 
2


; 

r

k
Ex

2
  and Ey = 0 so 

r
Enet

02


  

If  = 0, 
2


  ;  

r

k
EE yx


 ||||  so 

r

k
EEE yxnet

222   

(b) Potential : 



















1

1
log

2 22

22

0 lr

lr
V e




 for infinitely long conductor crV e 


 log

2 0


  

r 

Q P 

+ 
+ 

+ 
+ 

l 
+  

 P 
r 

Ey 

Ex 
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(ii) Charged circular ring : Suppose we have a charged circular ring of radius R and charge 
Q. On it’s axis electric field and potential is to be determined, at a point ‘x’ away from the 
centre of the ring. 

 

 

 

 

 

 

(a) Electric field : Consider an element carrying charge dQ . It’s electric field  22 xR
KdQdE


  

directed as shown. It’s component along the axis is cosdE  and perpendicular to the axis is 

sindE . By symmetry   0sindE , hence 212222 )(
.

)(
cos

xR
x

xR
kdQdEE


    

  2322 xR

kQxE


   directed away from the centre if Q is positive 

(b) Potential : 
220

.
4

1

Rx

QV





 

Note :  At centre x = 0 so Ecentre= 0 and 
R
kQVcentre   

 At a point on the axis such that x >> R 
2x

kQE   and 
x
kQV   

 At a point on the axis if 
2
Rx  , 

2
0

max 36 a
QE


  

(3) Surface charge : 
(i) Infinite sheet of charge : Electric field and potential at a point P as shown 

  )(
2 0

orEE 

  

  and  CrV 
02


 

(ii) Electric field due to two parallel plane sheet of charge : Consider two large, 
uniformly charged parallel. Plates A and B, having 
surface charge densities are A  and B  

respectively. Suppose net electric field at points 
P, Q and R is to be calculated. 

At P,  )(
2

1)(
0

BABAP EEE 


  

x 

+ 

O 

2

R
  

2

R

 

x 

E 

+ 
+ 
+ 
+ + + + 

+ 
+ 
+ 

+ 
+ 

+ + + 

+ 
r P 

+ 
+ 
+ 
+ + + + 

+ 
+ 
+ 

+ 
+ 

+ + 

+ 

+ 
+  

A 

  
R P 

EB 

EA 

EB 

EA EA EB 

B 

Q + 
+ 
+ 
+ + + + 

+ 
+ 
+ 

+ 
+ 

+ + 

+ 

+ 
+ 

+ 
+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 

+ 
+ 

dE sin 
 

dE cos  

Ed


 

 
 

R 
P 

x 

dQ 
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At Q, )(
2
1)(

0
BABAQ EEE 


 ;    At R, )(

2
1)(

0
BABAR EEE 


  

Note :  If  A  and  B  then 0,,0
0

 RQp EEE

 . Thus in case of two infinite 

plane sheets of charges having equal and opposite surface 
charge densities, the field is non-zero only in the space between 
the two sheets and is independent of the distance between them 
i.e., field is uniform in this region. It should be noted that this 
result will hold good for finite plane sheet also, if they are held 
at a distance much smaller then the dimensions of sheets i.e., 
parallel plate capacitor. 

(iii) Conducting sheet of charge :  

  
0


E  

   CrV 
0

  

 

(iv) Charged conducting sphere : If charge on a conducting sphere of radius R is Q as 
shown in figure then electric field and potential in different situation are –  

 

 

 

 

 

 

(a) Out side the sphere : P is a point outside the sphere at a distance r from the centre at 
which electric field and potential is to be determined. 

Electric field at P 

  
2

0

2

2
0

.
4

1
r
R

r
QEout 




   and  
r
R

r
QVout

0

2

0
.

4
1





  








24 R
AQ



 

(b) At the surface of sphere : At surface Rr   

So,  
0

2
0

.
4

1






R
QE s  and 

00
.

4
1





R

R
QVs   

(c) Inside the sphere : Inside the conducting charge sphere electric field is zero and 
potential remains constant every where and equals to the potential at the surface. 

+ 
+ 

+ 

+ 

+ 
+ 

+ 
+ + 
+ 

r 
P 

+Q 

R 

+ + 
+ 

+ 

+ 

+ 
+ + 

+ 
+ 

+ 
+ 

+ 

R 

+Q 
+ + 

+ 
+ 

+ 

+ 
+ + 

+ 
+ 

+ 
+ 

+ 

Hollo
w 

Solid 

E=/0 

+ 
+ 

+ 
+ 
+ 
+ 

– 
– 
– 

– 

– 
– 
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  0inE  and inV = constant sV  

 

 

Note :  Graphical variation of electric field and potential of a charged spherical conductor 

with distance  

   

 

 

 

 

 

 

 

(4) Volume charge (charged non-conducting sphere) :  

Charge given to a non conducting spheres spreads uniformly throughout it’s volume.  

(i) Outside the sphere at P   

  2
0

.
4

1
r
QEout 

 and 
r
QVout .

4
1

0
  by using 

3

3
4 R

Q


    

  
2

0

3

3 r
REout 


  and 
r

RVout
0

3

3


  

(ii) At the surface of sphere : At surface Rr   

  
0

2
0 3

.
4

1




R

R
QE s             and     

0

2

0 3
.

4
1





R

R
QVs   

(iii) Inside the sphere : At a distance r from the centre 

  3
0

.
4

1
R
QrE in 

  
03

r
   rEin       and     

0

22

3

22

0 6
)3(

2
]3[

4
1





rR

R
rRQVin





  

Note :  At centre 0r   So,               sVR
QV

2
3.

4
1

2
3

0
centre 


               i.e.,   

outsurfacecentre VVV   

 Graphical variation of electric field and potential with distance 

      

 

 

+Q 

r 

P R 
+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 

+ + 
+ + 

+ 

+ 
+ 

+ + + 
+ 

+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ + + 
+ 

O 

O R 

r 

r
outV

1
  

VS 

r =R 

V - r 
graph 

O 
Ein=0 

E 

O R 

r 

2

1

r
Eout   

E - r 
graph 

E-r graph 

E 

2

1

r
Eout   Ein  r 

R O 

+ 
+ 
+ 

+ 
+ 

+ 
+ + 
+ 

+ 

+ 
+ 

+ + 
+ V-r graph 

R O 

+ 
+ 

+ 
+ 
+ + 

+ + 
+ 

+ 

+ 
+ 

+ + 

r
Vout

1
  

VC 

VS 

+ 
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(5) Electric field and potential in some other cases  

(i) Uniformly charged semicircular ring : 
length
charge

  

 At centre :  

    2
0

22
2

R
Q

R
KE



   

    
R

Q
R
KQV

04
  

(iii) Charged cylinder of infinite length  

(a) Conducting                 (b) Non-conducting  

       

    

 

 

For both type of cylindrical charge distribution 
r

Eout
02


 , and 

R
E suface

02


  but for 

conducting 0inE and for non-conducting 
2

0
in 2 R

rE



 . (we can also write formulae in form 

of  i.e., 
r

RE
0

2

out 2


 etc.) 

(ii) Hemispherical charged body : 

At centre O,    
04


E  

     
02

RV   

(iv) Uniformly charged disc  

At a distance x from centre O on it’s axis 

 

R 

x 
O 

 + + 
+ 

+ 
+ + 

+ 
+ + 

+ + 
+ 

+ + + + 
+ + 

+ + + 

+ 

O 

+Q 

+ 

R 

+ 
+ 

+ 
+ + + 

+ 
+ 

+ 
+ 

r 
P 

R 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

r 
P 



 
 
 
 Electrostatics 21 

         















220
1

2 Rx

xE

  

          



  xRxV 22

02


 

Note :  Total charge on disc Q = R2  

 If x  0, 
02

–~

E  i.e. for points situated near the disc, it behaves as an infinite 

sheet of charge. 

 

Concepts 

 No point charge produces electric field at it’s own position. 

 Since charge given to a conductor resides on it’s surface hence electric field inside it is zero. 

 

 

 

 

 

 The electric field on the surface of a conductor is directly proportional to the surface charge density at that 
point i.e, E  

 Two charged spheres having radii 1r  and 2r  charge densities 1  and 2  respectively, then the ratio of 

electric field on their surfaces will be 
2

1

2
2

2

1

2

1

r

r
E
E



           





 24 r
Q


  

 In air if intensity of electric field exceeds the value CN /103 6  air ionizes.  

 A small ball is suspended in a uniform electric field with the help of an insulated thread. If a high energy x–
ray bean falls on the ball, x-rays knock out electrons from the ball so the ball is positively charged and 
therefore the ball is deflected in the direction of electric field. 

 

 

 

 

 

 Electric field is always directed from higher potential to lower potential. 

 A positive charge if left free in electric field always moves from higher potential to lower potential while a 
negative charge moves from lower potential to higher potential. 

+ + 

+ 

+ + 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ + 

E = 0 

+ 

+ 

+ 
+ 

+ 
+ 
+ + 

+ 

+ + 
+ 

+ 

+ 
+ 

E = 0 

+ 

F= QE 

X–
Ray 

E


+q 
+Q 

+ 

+Q 

+ 
+ 

+ 

+ + 
+ 

+ 
– 

– 
– 

– – 

– 
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 The practical zero of electric potential is taken as the potential of earth and theoretical zero is taken at 
infinity. 

 An electric potential exists at a point in a region where the electric field is zero and it’s vice versa. 

 A point charge +Q lying inside a closed conducting shell does not exert force another point charge q placed 
outside the shell as shown in figure 
 

 

 

 

Actually the point charge +Q is unable to exert force on the charge +q because it can not produce electric field 
at the position of +q. All the field lines emerging from the point charge +Q terminate inside as these lines 
cannot penetrate the conducting medium (properties of lines of force). 

The charge q however experiences a force not because of charge +Q but due to charge induced on the outer surface of 
the shell. 

 
 

 

Example: 21 A half ring of radius R has a charge of  per unit length. The electric field at the centre is 











04
1


k  

[CPMT 2000; CBSE PMT 2000; REE 1999] 

  (a) Zero (b) 
R
k  (c) 

R
k2  (d) 

R
k  

Solution: (c)  Rddl    
 
 
  Charge on .Rddl   

  Field at C due to dE
R
Rdkdl  2

.  

   We need to consider only the component cosdE , as the component sindE  will cancel out 
because of the field at C due to the symmetrical element dl, 

  The total field at C is 
2

0
cos2


dE

R
kd

R
k  

2cos2
2

0
         












 2

02 R
Q


 

Example: 22 What is the magnitude of a point charge due to which the electric field 30 cm away has the 
magnitude 2 newton/coulomb ]1094/1[ 29

0 Nm      

(a) coulomb11102   (b) coulomb11103   (c) coulomb11105   (d) coulomb11109   

Solution: (a) By using 2
0

.
4

1
r
QE


 ;       

 22
9

1030
1092




Q
 CQ 11102   

– e + e E  0 

V = 0 
Examples based on electric field and electric 
potential

  

 

d 

dl 

dl dE 

C 
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Example: 23 Two point charges Q and – 3Q are placed at some distance apart. If the electric field at the 
location of Q is E, then at the locality of – 3Q, it is      

   (a) E  (b) E/3 (c) E3  (d) – E/3 
Solution: (b) Let the charge Q and – 3Q be placed respectively at A and B at a distance x 
   Now we will determine the magnitude and direction to the field produced by charge – 3Q at 

A, this is E as mentioned in the Example. 

    2
3
x
QE   (along AB directed towards negative charge) 

   Now field at location of – 3Q i.e. field at B due to charge Q will be 
32
E

x
QE'   (along AB 

directed away from positive charge) 
Example: 24 Two charged spheres of radius 1R  and 2R  respectively are charged and joined by a wire. 

The ratio of electric field of the spheres is    

    (a) 
2

1

R
R  (b) 

1

2

R
R  (c) 2

2

2
1

R
R

 (d) 2
1

2
2

R
R

 

Solution: (b) After connection their potential becomes equal i.e., 
2

2

1

1 .
.

R
Qk

R
Q

k  ;     
2

1

2

1

R
R

Q
Q

  

Ratio of electric field .
1

2
2

1

2

2

1

2

1

R
R

R
R

Q
Q

E
E









  

Example: 25 The number of electrons to be put on a spherical conductor of radius 0.1m to produce an 
electric field of 0.036 N/C just above its surface is     

   (a) 5107.2   (b) 5106.2   (c) 5105.2   (d) 5104.2   

Solution: (c)  By using 2R
QkE  , where R = radius of sphere so 0.036 =

 2
9

1.0
109 ne

  5105.2 n  

Example: 26 Eight equal charges each +Q are kept at the corners of a cube. Net electric field at the centre 

will be 









04
1


k   

   (a) 
2r
kQ  (b) 

2
8
r
kQ  (c) 

2
2
r
kQ  (d) Zero 

Solution: (d)  Due to the symmetry of charge. Net Electric field at centre is zero. 

   Note  :      

 

 

 

 

Example: 27 q, 2q, 3q and 4q charges are placed at the four corners A, B, C and D of a square. The field 
at the centre O of the square has the direction along.     

A B 

x 

Q – 3 Q 

+q 

a 

a 

a 

+q 

+q 

E=0 

Equilateral 
triangle 

a a 

a 

a 

q 

q q 

q 

E = 
0 

Square 

2q q 

O 

A B 
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(a) AB (b) CB (c) AC (d) BD 

Solution: (b) By making the direction of electric field due to all charges at centre. Net electric field has the 
direction along CB  

Example: 28 Equal charges Q are placed at the vertices A and B of an equilateral triangle ABC of side a. 
The magnitude of electric field at the point A is       

   (a) 2
04 a
Q


 (b) 2

04
2
a
Q


 (c) 2

04
3
a
Q


 (d) 2

02 a
Q


 

Solution: (c)  As shown in figure Net electric field at A  

   60cos222
CBCB EEEEE   

   2
0

.
4

1
a
QEE CB 

      

   So, 2
04

3
a
QE


  

Example: 29 Four charges are placed on corners of a square as shown in figure having side of 5 cm. If Q 
is one micro coulomb, then electric field intensity at centre will be     

   (a) CN /1002.1 7 upwards   

   (b) CN /1004.2 7 downwards  

   (c) CN /1004.2 7 upwards   

   (d) CN /1002.1 7 downwards 

Solution: (a)  |||| AC EE   so resultant of AC EE &  is ACCA EEE  directed toward Q 

   Also |||| DB EE  so resultant of BE and DE  i.e. 

   DBBD EEE   directed toward – 2Q charge hence Net electric field at centre is 

      22
BDCA EEE       .… (i) 

   By proper calculations CNEA /1072.0

10
2

5

10109|| 7
2

2

6
9 















 

60
o 

A 

B C 
+Q +Q 

FB FC 
E 

a 

a 

a 

Q – 2Q 

+ 2Q – Q 

– 2Q Q 

+2Q – 
Q 

O 

A B 

C D 

ECA 

EC 

EB EA 

ED 

EBD Enet 
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   CNEB /1044.1

10
2

5

102109|| 7
2

2

6
9 

















;  CNEC /1044.1

10
2

5

102109|| 7
2

2

6
9 

















 

   CNED /1072.0

10
2

5

10109|| 7
2

2

6
9 















;    So,  N/C.||E||E||E ACCA

710720   

   and ./1072.0|||||| 7 CNEEE DBBD   Hence from equation – (i) 

CNE /1002.1 7 upwards 

Example: 30 Infinite charges are lying at x = 1, 2, 4, 8…meter on X-axis and the value of each charge is 
Q. The value of intensity of electric field and potential at point x = 0 due to these charges 
will be respectively  

   (a) Q91012   N/C, 1.8  104 V   (b) Zero, 1.2  104V 

   (c) Q9106   N/C, 9  103 V   (d) Q9104   N/C , 6  103 
V 

Solution: (a)  By the superposition, Net electric field at origin 

   




  ...
8
1

4
1

2
1

1
1

2222kQE  

   



  ...

64
1

16
1

4
11kQE   

    ...
64
1

16
1

4
11  is an infinite geometrical progression it’s sum can be obtained by using 

the formula 
r

aS


 1
 ; Where a = First term, r = Common ratio.  

   Here 1a  and 
4
1

r  so, 
3
4

4/11
1.....

64
1

16
1

4
11 


 . 

Hence CNQQE /1012
3
4109 99    

 Electric potential at origin 



























.......
8
101

4
101

2
101

1
101

4
1 6666

0
V  

     
























  

2
11

1109............
8
1

4
1

2
1110109 369 volt4108.1   

x = 0 x = 1 x = 2 x = 4 x = 8 
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   Note :   In the arrangement shown in figure +Q and – Q are alternatively 

and equally spaced from each other, the net potential at the origin O is 

x
Q

V e 2log
.

4
1

0
    [IIT 1998] 

 

 

 

  
Example: 31 Potential at a point x-distance from the centre inside the conducting sphere of radius R and 

charged with charge Q is      [MP PMT 2001] 

   (a) 
R
Q  (b) 

x
Q  (c) 

2x
Q  (d) xQ  

Solution: (a) Potential inside the conductor is constant. 

Example: 32 The electric potential at the surface of an atomic nucleus (Z = 50) of radius V5109   is  

    (a) 80 V (b) V6108   (c) 9 V (d) V5109   

Solution: (b) V
r
neV 6

15

19
99 108

109
106.150109109 









 

Example: 33 Eight charges having the valves as shown are arranged symmetrically on a circle of radius 
0.4m in air. Potential at centre O will be  

 

 

 

 

 

 

(a) volt41063   (b) volt101063   (c) volt61063   (d) Zero 

Solution: (a) Due to the principle of superposition potential at O 

     voltV 4
6

9
6

0
1063

4.0
1028109

4.0
1028

4
1











 

Example: 34 As shown in the figure, charges +q and –q are placed at the vertices B and C of an isosceles 
triangle. The potential at the vertex A is       

 

 

 

 
 

+Q – Q +Q – Q 

x 2x 3x 4x O 

+5 C 

+11 C 

– 5 C 

+7 C 

– 5 C +7 C 

+15 C 

– 7 C 

O 

A 

B C 
–q +q 

a 

b b 
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(a) 
220

2.
4

1

ba

q


 (b) 

220
.

4
1

ba

q


 (c) 

220

)(.
4

1

ba

q






 (d) Zero 

Solution: (d) Potential at A = Potential due to (+q) charge + Potential due to (– q) charge 

                 0)(
4

1.
4

1
220220










ba

q

ba

q


 

Example: 35 A conducting sphere of radius R is given a charge Q. consider three points B at the surface, 
A at centre and C at a distance R/2 from the centre. The electric potential at these points 
are such that   [DCE 1994] 
(a) VA = VB = VC  (b) VA = VB  VC  (c) VA  VB  VC (d) VA  VB = VC 

Solution: (a) Potential inside a conductor is always constant and equal to the potential at the surface. 

Example: 36 Equal charges of 910
3

10   coulomb are lying on the corners of a square of side 8 cm. The 

electric potential at the point of intersection of the diagonals will be     

  (a) 900 V (b) V2900  (c) V2150  (d) V21500  

Solution: (d) Potential at the centre O 

  
2/

.
4

14
0 a

QV


  given CQ 910
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 A point charge Q is placed outside a hollow spherical conductor of radius R, at a distance 

(r > R) from its centre C. The field at C due to the induced charges on the conductor is 











04
1


K  

 (a) Zero    (b) 
 2Rr
QK


 

(c) 
2r
QK  directed towards Q  (d) 

2r
QK  directed 

away from Q 
Solution: (c) A according to the figure shown below. The total field at C must be zero. The field at C 

due to the point charge is 2r
QKE   towards left. The field at C due to the induced 

charges must be 2r
KQ  towards right i.e. directed towards Q. 

 

 

 
 

 
  
 A point charge q is placed at a distance of r from the centre of an uncharged 
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 Tricky example: 3  

 Tricky example: 4  
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conducting sphere of radius R (< r). The potential at any point on the sphere is 

 (a) Zero  (b) 
r
q.

4
1

0
 (c) 

2
0

.
4

1
r
qR


 (d) 

R
qr 2

0
.

4
1


 

Solution: (c) Since, potential V is same for all points of the sphere. Therefore, we can calculate its 
value at the centre of the sphere. 

 '.
4

1

0
V

r
qV 


;  where V = potential at centre due to induced charge = 0 (because 

net induced charge will be zero)    
r
qV .

4
1

0
 . 

 

 Potential Due to Concentric Spheres. 

To find potential at a point due to concentric sphere following guideline are to be 
considered  

Guideline 1: Identity the point (P) at which potential is to be determined. 

Guideline 2: Start from inner most sphere, you should know where point (P) lies w.r.t. 
concerning sphere/shell (i.e. outside, at surface or inside)  

Guideline 3: Then find the potential at the point (P) due to inner most sphere and then due to 
next and so on. 

Guideline 4: Using the principle of superposition find net potential at required 
shell/sphere. 

Standard cases 
 

Case (i) : If two concentric conducting shells of radii r1 and r2(r2 > r1) carrying uniformly 
distributed charges Q1 and Q2 respectively. What will be the potential of each shell 
To find the solution following guidelines are to be taken. 
Here after following the above guideline potential at the surface of inner shell is 
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V


  

and potential at the surface of outer shell  
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Case (ii) : The figure shows three conducting concentric shell of radii a, b and c (a < b < c) 
having charges Qa, Qb and Qc respectively what will be the potential of each shell 
After following the guidelines discussed above 

 Potential at A; 






 
c
Q

b
Q

a
Q

V cba
A

04
1


 

 Potential at B; 








c
Q

b
Q

b
Q

V cba
B

04
1


 

 Potential at C; 








c
Q

c
Q

c
Q

V cba
C

04
1
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Case (iii) : The figure shows two concentric spheres having radii r1 and r2 respectively (r2 > r1). If 
charge on inner sphere is +Q and outer sphere is earthed then determine. 
(a) The charge on the outer sphere 
(b) Potential of the inner sphere 

(i) Potential at the surface of outer sphere 0.
4

1.
4

1

2020
2 

r
Q'

r
QV


 

  QQ'   

(ii) Potential of the inner sphere 
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1
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4
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

210

11
4 rr
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Case (iv) : In the case III if outer sphere is given a charge +Q and inner sphere is earthed then 
(a) What will be the charge on the inner sphere 
(b) What will be the potential of the outer sphere 
(i) In this case potential at the surface of inner sphere is zero, so if Q'  is the charge induced on 
inner sphere 

 then 0
4

1

210
1 









r
Q

r
Q'V


i.e.,   Q

r
rQ'
2

1  

 (Charge on inner sphere is less than that of the outer sphere.) 
(ii) Potential at the surface of outer sphere 
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Example: 37 A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10 
volts. The potential at the centre of the sphere is   

(a) Zero   (b) 10 V 

(c) Same as at a point 5 cm away from the surface (d) Same as at a point 25 
cm away from the surface 

Solution: (b) Inside the conductors potential remains same and it is equal to the potential of surface, so 
here potential at the centre of sphere will be 10 V 

Q 
+Q 

r1 

r2 

Qc 
Qb 

Qa 
c 

b a B A 

r2 

r1 

+Q 

Examples based on concentric 
spheres
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Example: 38 A sphere of 4 cm radius is suspended within a hollow sphere of 6 cm radius. The inner 
sphere is charged to a potential 3 e.s.u. When the outer sphere is earthed. The charge on 
the inner sphere is   [MP PMT 1991] 

    (a) 54 e.s.u. (b) 
4
1 e.s.u. (c) 30 e.s.u. (d) 36 e.s.u. 

Solution: (d) Let charge on inner sphere be +Q. charge induced on the inner surface of outer sphere will 
be –Q. 

So potential at the surface of inner sphere (in CGS) 

 
64

3 QQ
  

      36Q  e.s.u. 

 
Example: 39 A charge Q is distributed over two concentric hollow spheres of radii r and )( rR   such that 

the surface densities are equal. The potential at the common centre is    

   (a) 
)(4
)(

0

22

rR
rRQ





 (b) 
rR

Q


 (c) Zero (d) 
)(4
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22

0 rR
rRQ



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Solution: (d) If 1q  and 2q  are the charges on spheres of radius r and R respectively, in accordance with 
conservation of charge 

      21 qqQ   ….(i) 

    and according to the given problem 21    

i.e.,  2
2

2
1

44 R
q

r
q
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1

R
r

q
q

  …. (ii) 

So equation (i) and (ii) gives  
)( 22
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1 rR
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Example: 40 A solid conducting sphere having a charge Q is surrounded by an uncharged concentric 
conducting hollow spherical shell. Let the potential difference between the surface of the 
solid sphere and that of the outer surface of the hollow shell be V. If the shell is now given 
a charge of – 3Q, the new potential difference between the two surfaces is   

    (a) V (b) 2V (c) 4V (d) –2V 
Solution: (a) If a and b are radii of spheres and spherical shell respectively, potential at their surfaces 

will be  

 
a
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b
QV .

4
1

0
shell 
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and so according to the given problem. 
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           …. (i) 

Now when the shell is given a charge –3Q the potential at its surface and also inside will 

change by 
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So that now 



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Example: 41 Three concentric metallic spheres A, B and C have radii a, b and c )( cba   and surface 
charge densities on them are  ,  and   respectively. The valves of AV  and BV  will be   
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Solution: (a) Suppose charges on A, B and C are ba qq ,  and cq  

    Respectively, so 2
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 Electric Lines of Force. 

(1) Definition : The electric field in a region is represented by continuous lines (also called 
lines of force). Field line is an imaginary line along which a positive test charge will move if left 
free. 

Electric lines of force due to an isolated positive charge, isolated negative charge and due 
to a pair of charge are shown below 

 

+ – + –  
N 

+ + 

   
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B 
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b c 
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(2) Properties of electric lines of force 

(i) Electric field lines come out of positive charge and go into the negative charge. 

(ii) Tangent to the field line at any point gives the direction of the field at that point. 

    

 

 

 

(iii) Field lines never cross each other. 

(iv) Field lines are always normal to conducting surface. 

 

 

 

 

 

(v) Field lines do not exist inside a conductor. 

(vi) The electric field lines never form closed loops. (While magnetic lines of forces form 
closed loop) 

 

 

 

 

 

(vii) The number of lines originating or terminating on a charge is proportional to the 
magnitude of charge. In the following figure electric lines of force are originating from A and 
terminating at B hence QA is positive while QB is negative, also number of electric lines at force 
linked with QA are more than those linked  with QB hence |Q||Q| BA   
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(viii) Number of lines of force per unit area normal to the area at a point represents 
magnitude of intensity (concept of electric flux i.e., EA ) 

(ix) If the lines of forces are equidistant and parallel straight lines the field is uniform and 
if either lines of force are not equidistant or straight line or both the field will be non uniform, 
also the density of field lines is proportional to the strength of the electric field. For example 
see the following figures. 

 

    

 

 

 

 

    
            

(3) Electrostatic shielding : Electrostatic shielding/screening is the phenomenon of 
protecting a certain region of space from external electric field. 
Sensitive instruments and appliances are affected seriously with 
strong external electrostatic fields. Their working suffers and 
they may start misbehaving under the effect of unwanted fields. 

The electrostatic shielding can be achieved by protecting 
and enclosing the sensitive instruments inside a hollow 
conductor because inside hollow conductors, electric fields is 
zero. 

(i) It is for this reason that it is safer to sit in a car or a bus during lightening rather than 
to stand under a tree or on the open ground. 

(ii) A high voltage generator is usually enclosed in such a cage which is earthen. This would 
prevent the electrostatic field of the generator from spreading out of the cage. 

(iii) An earthed conductor also acts as a screen against the electric field. When conductor is 
not earthed field of the charged body C due to 
electrostatic induction continues beyond AB. If 
AB is earthed, induced positive charge 
neutralizes and the field in the region beyond 
AB disappears. 
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 Equipotential Surface or Lines. 
If every point of a surface is at same potential, then it is said to be an equipotential surface  

     or 
for a given charge distribution, locus of all points having same potential is called 

“equipotential surface” regarding equipotential surface following points should keep in mind : 

(1) The density of the equipotential lines gives an idea about the magnitude of electric field. 
Higher the density larger the field strength.  

(2) The direction of electric field is perpendicular to the equipotential surfaces or lines.  

(3) The equipotential surfaces produced by a point charge or a spherically charge 
distribution are a family of concentric spheres.  

 

 

 

 

 

 
 

(4) For a uniform electric field, the equipotential surfaces are a family of plane 
perpendicular to the field lines. 

(5) A metallic surface of any shape is an equipotential surface e.g. When a charge is given 
to a metallic surface, it distributes itself in a manner such that its every point comes at same 
potential even if the object is of irregular shape and has sharp points on it. 

 

 

   

 

  

 
 

If it is not so, that is say if the sharp points are at higher potential then due to potential 
difference between these points connected through metallic portion, charge will flow from 

V = V2 

V = V1 
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points of higher potential to points of lower potential until the potential of all points become 
same.  

(6) Equipotential surfaces can never cross each other  

(7) Equipotential surface for pair of charges 

 

 

 

 

 

 

 

Concepts 

 Unit field i.e. 1N/C is defined arbitrarily as corresponding to unit density of lines of force. 

 Number of lines originating from a unit charge is 
0

1


 

 It is a common misconception that the path traced by a positive test charge is a field line but actually the 
path traced by a unit positive test charge represents a field full line only when it moves along a straight line. 

 Both the equipotential surfaces and the lines of force can be used to depict electric field in a certain region of 
space. The advantage of using equipotential surfaces over the lines of force is that they give a visual picture 
of both the magnitude and direction of the electric field. 

 

 

 

 
Example: 42 Three positive charges of equal value q are placed at the vertices of an equilateral triangle. 

The resulting lines of force should be sketched as in     

 

(a)  (b)  (c)  (d) 

 

 

 

 

Solution (c) Option (a) shows lines of force starting from one positive charge and terminating at 
another. Option (b) has one line of force making closed loop. Option (d) shows all lines 
making closed loops. All these are not correct. Hence option (c) is correct 

– + + + 

Pair of two equal and opposite 
charges 

Pair of two equal and similar 
charges 

 

 

 

Examples based on electric lines of 
force
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Example: 43 A metallic sphere is placed in a uniform electric field. The lines of force follow the path (s) 
shown in the figure as         

 

 

 

    

 

   (a) 1 (b) 2 (c) 3 (d) 4 

Solution: (d)  The field is zero inside a conductor and hence lines of force cannot exist inside it. Also, due 
to induced charges on its surface the field is distorted close to its surface and a line of force 
must deviate near the surface outside the sphere. 

Example: 44 The figure shows some of the electric field lines corresponding to an electric field. The 
figure suggests 

[MP PMT 1999] 

 

 

 

    

 

   (a) CBA EEE   (b) CBA EEE   (c) BCA EEE   (d) BCA EEE   

Solution: (c)   

 Example: 45 The lines of force of the electric field due to two charges q and Q are sketched in the figure. 
State if 

    (a) Q is positive and qQ   

(b) Q is negative and qQ   

    (c) q is positive and qQ   

(d) q is negative and qQ   

Solution: (c) q is +ve because lines of force emerge from it and qQ   because more lines emerge from 

q and less lines terminate at Q. 

Example: 46 The figure shows the lines of constant potential in a region in which an electric field is 
present. The magnitude of electric field is maximum at     
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    (a) A (b) B (c) C (d) Equal at A, B and C 

Solution: (b)  Since lines of force are denser at B hence electric field is maximum at B 

Example: 47 Some equipotential surface are shown in the figure. The magnitude and direction of the 
electric field is  

 

 

 

 

 

 

 

(a) 100 V/m making angle 120o with the x-axis (b) 100 V/m making angle 60o with the x-
axis 

(c) 200 V/m making angle 120o with the x-axis (d) None of the above  

Solution: (c) By using cosdrEdV   suppose we consider line 1 and line 2 then 

(30 – 20) = E cos 60o (20 – 10) × 10–2  

 

So mvoltE /200  making in angle 120o with x-axis  

 

 

 

 

 
  
 Which of the following maps cannot represent an electric field 

 (a)    (b)   (c)   (d)  
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c d 

a b 
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 Solution: (a) If we consider a rectangular closed path, two parallel sides of it considering with 
lines of force 
as shown, then we find that work done along the closed path 
abcd is abE1 – cdE2  0. Hence the field cannot represent a 
conservative field. But electric field is a conservative field. 
Hence a field represented by these lines cannot be an electric 
field. 

 
 
 A charge Q is fixed at a distance d in front of an infinite metal plate. The lines of force 

are represented by 

 

 

 (a)    (b)      (c)      (d)  

 

 

 

Solution: (a) Metal plate acts as an equipotential surface, therefore the field lines should act 
normal to the surface of the metal plate. 

 

 Relation Between Electric Field and Potential. 

In an electric field rate of change of potential with distance is known as potential 
gradient. It is a vector quantity and it’s direction is opposite to 
that of electric field. Potential gradient relates with electric 

field according to the following relation ;
dr
dVE   This relation 

gives another unit of electric field is 
meter
volt . In the above 

relation negative sign indicates that in the direction of electric 
field potential decreases. 

In space around a charge distribution we can also write kEjEiEE zyx
ˆˆˆ 


  

where ,
dx
dVE x   

dy
dVEy   and 

dz
dVE z   

With the help of formula ,
dr
dVE  potential difference between any two points in an 

electric field can be determined by knowing the boundary conditions 
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For example: Suppose A, B and C are three points in an uniform electric field as shown in 
figure. 

(i) Potential difference between point A and B is  

    
B

AAB drEVV   

Since displacement is in the direction of electric field, hence  = 
0o   

So,    
B

A

B

AAB EddrEdrEVV 0cos  

In general we can say that in an uniform electric field 
d
VE   or 

d
VE ||  

    

Another example                     
d
VE   

 
 
 

(ii) Potential difference between points A and C is : 

   )(cos)(cos ABEACEdrEVV
C

AAC    = – Ed 

Above relation proves that potential difference between A and B is equal to the potential 
difference between A and C i.e. points B and C are at same potential. 

Concept 

 Negative of the slope of the V-r graph denotes intensity of electric field i.e. E
r
V

tan  

 

 

 
Example: 48 The electric field, at a distance of 20 cm from the centre of a dielectric sphere of radius 10 

cm is 100 V/m. The ‘E’ at 3 cm distance from the centre of sphere is    

(a) 100 V/m  (b) 125 V/m  (c) 120 V/m  (d) Zero  

Solution: (c) For dielectric sphere i.e. for non-conducting sphere 2
.
r
qkEout   and 3R

kqrEin    

22 )1020(
100




KQEout   KQ = 100  (0.2)2 so 32

222

)1010(
)103()2.0(100








inE = 120 V/m  

  

 C 

B A 
d 

 

+ 
+ 

+ 

+ 

+ 
+ 

– 
– 

– 

– 

– 
– 

E

 

V1 = V V2 = 0 
d 

+ – 

E = V/d Example based on E = – dV/dr 
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Example: 49 In x-y co-ordinate system if potential at a point P(x, y) is given by axyV  ; where a is a 
constant, if r is the distance of point P from origin then electric field at P is proportional 
to    [RPMT 2000] 

   (a) r  (b) r–1 (c) r—2  (d) r2  

Solution: (a) By using  
dr
dVE   ay

dx
dVE x  , ax

dy
dVEy   

Electric field at point P aryxaEEE yx  2222  i.e., E  r  

Example: 50 The electric potential V at any point x, y, z (all in metres) in space is given by V = 4x2 volt. 
The electric field at the point (1m, 0, 2m) in volt/metre is  

(a) 8 along negative X-axis   (b) 8 along positive X-axis 

(c) 16 along negative X-axis   (d) 16 along positive Z-
axis 

Solution: (a) By using 
dx
dVE    xx

dx
dE 8)4( 2  . Hence at point (1m, 0, 2m). E = – 8 volt/m i.e. 8 along 

– ve x-axis. 

Example: 51 The electric potential V is given as a function of distance x (metre) by V = (5x2 + 10x – 9) volt. 
Value of electric field at x = 1m is       

(a) – 20 V/m  (b) 6 V/m  (c) 11 V/m  (d) – 23 V/m  

Solution: (a) By using  
dx
dVE  ;   )1010()9105( 2  xxx

dx
dE ,     

   at            x = 1m        mVE /20  

Example: 52 A uniform electric field having a magnitude E0 and direction along the positive X-axis 
exists. If the electric potential V, is zero at X = 0, then, its value at X = +x will be   

(a) V(x)= +xE0 (b) V(x)= – xE0 (c) V(x)= x2E0 (d) V(x)= – x2E0  

Solution: (b) By using  
)(
)(

12

12

rr
VV

r
VE








 ;    
0

}0)({
0 




x
xVE    V(x) = – xE0  

Example: 53 If the potential function is given by V = 4x + 3y, then the magnitude of electric field 
intensity at the point (2, 1) will be       

(a) 11 (b) 5 (c) 7 (d) 1 

Solution: (b) By using i.e., 22
yx EEE  ; 4)34(  yx

dx
d

dx
dVE x   

   and              3)34(  yx
dy
d

dy
dVEy  

               CNE /5)3()4( 22   
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 The variation of potential with distance R from a fixed point is as shown below. The 

electric field at mR 5  is        

(a) 2.5 volt/m 

(b) – 2.5 volt/m 

(c) mvolt /
5
2  

(d) mvolt /
5
2

  

Solution: (a) Intensity at 5 m is same as at any point between B and C because the slope of BC is 
same throughout (i.e. electric field between B and C is uniform). Therefore electric 

field at R = 5m is equal to the slope of line BC hence by 
dr
dVE 

 ;  

 
m
VE 5.2

46
)50(





  

Note  :   At R = 1m , 
m
VE 5.2

)02(
)05(





  

          and at mR 3  potential is constant so E = 0. 

 
 

 Work Done in Displacing a Charge.  

(1) Definition : If a charge Q displaced from one point to another point in electric field 
then work done in this process is  VQW    where V = Potential difference between the two 

position of charge Q. ( cos. rErEV   where  is the angle between direction of electric 

field and direction of motion of charge). 

(2) Work done in terms of rectangular component of E  and r  :  If charge Q is given a 

displacement )ˆˆˆ( 321 krjrirr   in an electric field ).ˆˆˆ( 321 kEjEiEE   The work done is 

)().( 332211 rErErEQrEQW  . 

 Conservation of Electric Field. 

As electric field is conservation, work done and hence potential difference between two 
point is path independent and depends only on the position of points between. Which the charge 
is moved.  

 

5 
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3 
2 
1 
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Distance R in 
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5 
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II 

III 

WI = WII = 
WIII 

 Tricky example: 7  
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Concept 
 

 No work is done in moving a charge on an equipotential surface. 
 

 

 
Example: 54 A charge (– q) and another charge (+Q) are kept at two points A and B respectively. 

Keeping the charge (+Q) fixed at B, the charge (– q) at A is moved to another point C such 
that ABC forms an equilateral triangle of side l. The network done in moving the charge (– 
q) is      [MP PET 2001] 

   (a) 
l
Qq

04
1


 (b) 2
04

1
l
Qq


 (c) Qql

04
1


 (d) Zero 

Solution: (d) Since 
l
kQVV CA    

so  0)(  AC VVqW  

 

 

Example: 55 The work done in bringing a 20 coulomb charge from point A to point B for distance 0.2 m is 
2 Joule. The potential difference between the two points will be (in volt)  

(a) 0.2 (b) 8 (c) 0.1 (d) 0.4 

Solution: (c) VQW  .   2 = 20  V    V = 0.1 volt  

Example: 56 A charge +q is revolving around a stationary +Q in a circle of radius r. If the force between 
charges is F then the work done of this motion will be  

[CPMT 1975, 90, 91, 97; NCERT 1980, 83; EAMCET 1994; MP PET 1993, 95;  

MNR 1998; AIIMS 1997; DCE 1995; RPET 1998] 

(a) F × r  (b) rF 2  (c) 
r
F
2

 (d) 0 

Solution: (d) Since +q charge is moving on an equipotential surface so work done is zero. 

 

 

Example: 57 Four equal charge Q are placed at the four corners of a body of side ‘a’ each. Work done in 
removing a charge – Q from its centre to infinity is     

WI = WII = 
W

I 
II 

III 
A B 

+ Q + q 

Examples based on work 
done

A 

B C 

l l 

l + Q 

– q 
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(a) 0 (b) 
a

Q

0

2

4
2


 (c) 
a
Q

0

22


 (d) 
a

Q

0

2

2
 

Solution: (c) We know that work done in moving a charge is W = QV  

Here   )( 0  VVQW    0V   W = Q × V0  

Also  
a
Q

a
Q

a
QV

000
0

2
4

24
2/

.
4

14


  

So,  
a
QW
0

22


  

Example: 58 Two point charge 100 C and 5 C are placed at point A and B respectively with AB = 40 cm. 
The work done by external force in displacing the charge 5 C from B to C, where BC = 30 

cm, angle 229

0
/109

4
1 and

2
CNmABC 


       [MP PMT 1997] 

(a) 9 J  (b) J
20
81  (c) J

25
9  (d) J

4
9

  

Solution: (d) Potential at B due to +100 C charge is 

voltVB
6

2

6
9 10

4
9

1040
10100109 










 

Potential at C due to +100 C charge is 

voltVC
6

2

6
9 10

5
9

1050
10100109 








      

Hence work done in moving charge +5C from B to C   
)(105 6

BC VVW    







   666 10

4
910

5
9105W  J

4
9

  

Example: 59 There is an electric field E in x-direction. If the work done in moving a charge 0.2 C 
through a distance of 2 metres along a line making an angle 60o with the x-axis is 4J, 
what is the value of E  [CBSE 1995] 

(a) 4 N/C  (b) 8 N/C  (c) CN /3  (d) 20 N/C  

Solution: (d) By using  VqW   and cosrEV   

So, cosrqEW    

 60cos22.04  EjW  

 E = 20 N/C  

Example: 60 An electric charge of 20 C is situated at the origin of X-Y co-ordinate system. The potential 
difference between the points. (5a, 0) and (– 3a, 4a) will be 

(a) a  (b) 2a  (c) Zero (d) 
2
a  

Solution: (c) 
a

kQVA 5
  and 

a
kQVB 5

    

 0 BA VV  

O x 
60o 

2m 

0.2
C 

A 

Q 

5a 

5a 

B (–3a, 
4a) 

A (5a, 0) 

Q Q 

–Q 

A B 

C D 
Q Q 

O 

a 

a 

a a 

A 

C 

50 cm 

30 cm 
40

 
cm

 

+ 100 C 

+ 50 C  / 2 

B 
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Example: 61 Two identical thin rings each of radius R, are coaxially placed a distance R apart. If Q1 and 

Q2 are respectively the charges uniformly spread on the two rings, the work done in moving 
a charge q from the centre of one ring to that of the other is  

(a) Zero (b) 
24

)12)((

0

21

R
QQq



  (c) 
R

QQq

0

21

4
2)(


  (d) 

24

)12(

0

2

1

R

Q
Q

q












 

 
 

Solution: (b) Potential at the centre of first ring 
22

0

2

0

1

44 RR

Q
R

QVA





 

Potential at the centre of second ring 
22

0

1

0

2

44 RR

Q
R

QVB





 

Potential difference between the two centres 
24

))(12(

0

21

R
QQ

VV BA



  

 Work done 
24

))(12(

0

21

R
QQq

W



  

 
 
 A point charge q moves from point A to point D along the path ABCD in a uniform 

electric field. If the co-ordinates of the points A, B, C and D are (a, b, 0), (2a, 0, 0), (a, 
– b, 0) and (0, 0, 0) then the work done by the electric field in this process will be  

(a) – qEa  

(b) Zero  

(c) 2E (a + b)q 

(d) 
b

qEa
2

 

 

Solution: (a) As electric field is a conservative field 

Hence the work done does not depend on path  

 

 

  AODABCD WW   ODAO WW   

 = Fb cos 90o + Fa cos 180o  = 0 + qEa (– 1)= – qEa 
 

 Equilibrium of Charge. 

R 

Q2 Q1 

R R 

A B 
1 2 

Y 

X 

C 

B D 

A 
E


 

X 

Y 

C 

B D 

E


 A (a,b,0) 

a2 + b2 

a2 + b2 

O 
  

 a 

b 

b 

a2 + b2 

 Tricky example: 8   
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(1) Definition : A charge is said to be in equilibrium, if net force acting on it is zero. A 
system of charges is said to be in equilibrium if each charge is separately in equilibrium.  

(2) Type of equilibrium : Equilibrium can be divided in following type: 

(i) Stable equilibrium : After displacing a charged particle from it's equilibrium position, 
if it returns back then it is said to be in stable equilibrium. If U is the potential energy then in 

case of stable equilibrium 2

2

dx
Ud  is positive i.e., U is minimum. 

(ii) Unstable equilibrium : After displacing a charged particle from it's equilibrium 
position, if it never returns back then it is said to be in unstable equilibrium and in unstable 

equilibrium 2

2

dx
Ud  is negative i.e., U is maximum. 

(iii) Neutral equilibrium : After displacing a charged particle from it's equilibrium 
position if it neither comes back, nor moves away but remains in the position in which it was 

kept it is said to be in neutral equilibrium and in neutral equilibrium 
2

2

dx
Ud  is zero i.e., U is 

constant 

(3) Guidelines to check the equilibrium  

(i) Identify the charge for which equilibrium is to be analysed. 

(ii) Check, how many forces acting on that particular charge. 

(iii) There should be atleast two forces acts oppositely on that charge. 

(iv) If magnitude of these forces are equal then charge is said to be in equilibrium then identify the 
nature of equilibrium. 

(v) If all the charges of system are in equilibrium then system is said to be in equilibrium  

(4) Different cases of equilibrium of charge  

Case – 1 : Suppose three similar charge 
qQ ,1  and 2Q  are placed along a straight 

line as shown below 

 

 

 

 

Charge q will be in equilibrium if 
|||| 21 FF     

i.e., 
2

2

1

2

1










x
x

Q
Q  ; This is the condition of 

Case – 2 : Two similar charge 1Q  and 2Q  

are placed along a straight line at a 
distance x from each other and a third 
dissimilar charge q is placed in between 
them as shown below 

 

 
 

Charge q will be in equilibrium if 
|||| 21 FF    

i.e.,    
2

2

1

2

1










x
x

Q
Q  . 

x 

x1 x2 

q 
Q2 

A B 
O F1 F2 Q1 

x 

x1 x2 

q 
Q1 Q2 

A B O F2 F1 
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equilibrium of charge q. After following 
the guidelines we can say that charge q is 
in stable equilibrium and this system is not 
in equilibrium  

Note  :  
12

1
1 /QQ

xx


  

 and      
21

2
1 /QQ

xx


  

e.g. if two charges +4C and +16 C are 
separated by a distance of 30 cm from each 
other then for equilibrium a third charge 
should be placed between them at a 

distance cmx 10
4/161

30
1 


  or 

cmx 202   

 

Note  :  Same short trick can be used here 

to find the position of charge q as we 
discussed in Case–1 i.e.,  

 
12

1
1 /QQ

xx


  and 
21

2
1 /QQ

xx


  

  It is very important to know that 
magnitude of charge q can be determined if 
one of the extreme charge (either 1Q  or 

)2Q  is in equilibrium i.e. if 2Q  is in 

equilibrium then 
2

2
1|| 








x
x

Qq  and if 1Q  is 

in equilibrium then 
2

1
2|| 








x
x

Qq (It should 

be remember that sign of q is opposite to that 
of )or( 21 QQ ) 

Case – 3 : Two dissimilar charge 1Q  and 2Q  are placed along a straight line at a 
distance x from each other, a third charge q should be placed out side the line 
joining 1Q  and 2Q  for it to experience zero net force. 

 

          (Let |Q2| < |Q1|) 

Short Trick :  

For it's equilibrium. Charge q lies on the side of chare which is smallest in magnitude 

and 
121 


/QQ
xd  

 

(5) Equilibrium of suspended charge in an electric field 

(i) Freely suspended charged particle : To suspend a charged a particle freely in air under 
the influence of electric field it’s downward weight should be balanced by upward electric force 
for example if a positive charge is suspended freely in an electric field as shown then   
  

 

        

 

                          

x d 

Q1 – Q2 q 

+Q 

F = QE 

mg 

E


 

E


 

+Q 

F = QE 

mg 

+ + + + + + + + + 

– – – – –  – – – – 
F = QE 

mg 

+Q d V 

V
mgd

E
mgneQ   

or or 
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In equilibrium mgQE   
Q
mgE   

Note :  In the above case if direction of electric field is suddenly reversed in any figure 

then acceleration of charge particle at that instant will be a = 2g.    
(ii) Charged particle suspended by a massless insulated string (like simple pendulum) : 

Consider a charged particle (like Bob) of mass m, having charge Q is suspended in an electric 
field as shown under the influence of electric field. It turned through an angle (say ) and comes 
in equilibrium. 

So, in the position of equilibrium (O position) 

QET sin     ….(i) 

mgT cos     ….(ii) 

By squaring and adding equation (i) and (ii)    22 mgQET    

Dividing equation (i) by (ii) 
mg
QE

tan    
mg
QEθ 1tan   

(iii) Equilibrium of suspended point charge system : Suppose two small balls having 
charge +Q on each are suspended by two strings of equal length l. Then for equilibrium position 
as shown in figure. 

 

eFT sin   ….(i) 

mgT cos   ….(ii) 

   222 mgFT e   

and 
mg
Fetan  ; here 2

2

04
1

x
QFe 

  and sin
2

lx
  

(iv) Equilibrium of suspended point charge system in a liquid : In the previous 
discussion if point charge system is taken into a liquid of density  such that  remain same 

then  

In equilibrium sin'TFe'   and  cos)( 'TgVmg   

 2
0

2

)(4)(
tan

xgVmgK
Q

gVmg
Fe'








  

QE 

E


 

 

l 

mg 

T sin  

T cos  

T 

O 

O 

T sin  

T cos  T 

Fe 

 

mg 

+Q 

l l 
  

x +Q 

T sin 
 

T cos 
 T 

Fe 

 

(mg – 
Vg) 

+Q 

l l 
  

x +Q 
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When this system was in air 
2

0

2

4
tan

mgx
Q

mg
Fe


   

 

 So equating these two gives us 






 










m
VVm

mK
Vmkm 1

1
)(

11  

If   is the density of material of ball then 













σ
ρ

K
1

1  

 

 

Example: 62 A charge q is placed at the centre of the line joining two equal charges Q. The system of the 
three charges will be in equilibrium. If q is equal to   

   [CPMT 1999; MP PET 1999, MP PMT 1999; CBSE 1995; Bihar MEE 1995; IIT 1987] 

    (a) 
2
Q

  (b) 
4
Q

  (c) 
4
Q

  (d) 
2
Q

  

Solution: (b) By using Tricky formula 
22/







x
xQq   

      
4
Qq   since  q should be negative so 

4
Qq  . 

QE 

mg 

Q 
Examples based on equilibrium of 

charge
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Example: 63 Two point charges +4q and +q are placed at a distance L apart. A third charge Q is so placed 

that all the three charges are in equilibrium. Then location and magnitude of third charge 

will be   [IIT-JEE 1975] 

(a) At a distance
3

L
 from +4q charge,

9

4q
  

(b)  At a distance 
3

L
 from +4q charge, 

9

4q
  

(c) At a distance 
3

2L
 from  +4q charge,

9

4q
  

(d) At a distance 
3

2L
from +q charge,  

9

4q
  

Solution: (c) Let third charge be placed at a distance 1x  from +4q charge as shown  

Now 

q

q

L
x

4
1

1




3

2L
  

3
2

L
x   

For equilibrium of q, 
9

43/
4

2
q

L

L
qQ 








 

9

4q
Q  . 

Example: 64 A drop of 610  kg water carries 610  C charge. What electric field should be applied to 

balance it’s weight (assume g = 10 m/sec2)        [MP PET 2002] 

(a) ,/10 mV Upward (b) ,/10 mV  Downward (c) 0.1 V/m Downward (d) ,/1.0 mV  Upward 

Solution: (a)  In equilibrium QE = mg 

Q

mg
E   =

6

6

10

1010


 
 = 10 V/m; Since charge is positive so electric field will be upward. 

Example: 65 A charged water drop of radii 0.1 m  is under equilibrium in some electric field. The charge 

on the drop is equivalent to electronic charge. The intensity of electric field is   [RPET 1997] 

   (a) CN /61.1  (b) CN /2.25  (c) CN /262  (d) CN /1610  

Solution: (c)  In equilibrium QE = mg ;  
Q

gr

Q

mg
E

.
3

4 3













19

336

106.1

1010)101.0()14.3(

3

4







 = 262 N/C 

Example: 66 The bob of a pendulum of mass 8 g  carries an electric charge of 10102.39   coulomb in an 

electric field of metervolt /1020 3 and it is at rest. The angle made by the pendulum with the 

vertical will be  

(a) 27o (b) 45o (c) 87o (d) 127o 

Solution: (b) qET sin , mgT cos  

  
mg

qE
tan  

L 

x1 x2 

Q 
+4q +q 

E


 

T cos  

qE 

 

mg 

T sin  

T 

 
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   1
8.9108

1020102.39
tan

6

310











   

 o45  

Example: 67 Two small spherical balls each carrying a charge Q = 10 C  (10 micro-coulomb) are 

suspended by two insulating threads of equal lengths 1 m each, from a point fixed in the 

ceiling. It is found that in equilibrium threads are separated by an angle 60o between them, 

as shown in the figure. What is the tension in the threads. (Given : 
 

29

0

/109
4

1
CNm


)     [MP PET 2001] 

(a) 18 N 

(b) 1.8 N 

(c) 0.18 N 

(d) None of these 

Solution: (b) From the geometry of figure  

r = 1m 

In the condition of equilibrium e
o FT 30sin   

2

26
9

1

)1010(
.109

2

1 
T  

 T= 1.8 N  

Example: 68 Two similar balloons filled with helium gas are tied to L m long strings. A body of mass m is 

tied to another ends of the strings. The balloons float on air at distance r. If the amount of 

charge on the balloons is same then the magnitude of charge on each balloon will be  

   (a) 

2/1
2

tan
2 













k

mgr
  

   (b) 

2/1

2
tan

2










mgr

k
  

   (c) 
2/1

cot
2 










k

mgr
 

   (d) 

2/1

tan
2











mgr

k
 

Solution: (a) In equilibrium  

   mgR 2     …. (i)  sinTFe  …. (ii)   cosTR   …. (iii)  

    From equation (i) and (iii) 

   mgT cos2   …. (iv) 

   Dividing equation (ii) by equation (iv) T cos  

m 

mg 

L L 
  

T sin  
Fe 

R R 

r 

T 

60
o 

Q Q 

+10 C Fe 

1m 1m 

30o 

r 

T sin 

30o 

T cos 30o T 

mg 

30o 

+10 C 

30o 

m 

L L 
  

r 

Q Q 
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mg

Fetan
2

1
   

mg

r

Q
k

2

2

tan
2

1
 

2/1
2

tan
2 













 

k

mgr
 

 
 
 

 Time Period of Oscillation of a Charged Body. 

(1) Simple pendulum based : If a simple pendulum having length l and mass of bob m 

oscillates about it's mean position than it's time period of oscillation 
g

l
T π2  

 

  

 

Case – 1  : If some charge say +Q is given to bob 

and an electric field E is applied in the direction 

as shown in figure then equilibrium position of 

charged bob (point charge) changes from O to 

O. 

 

 

 

 

 

 

 

On displacing the bob from it’s equilibrium 

position 0. It will oscillate under the effective 

acceleration g, where 

    22
QEmgmg'    

 22 /mQEgg'   

Hence the new time period is  
g'

l
T 21   

  

  2
1

22

1 2

QE/mg

l
T



 π  

Since g'>g, hence T1 < T  

Case – 2  : If electric field is applied in the 

downward direction then. 

Effective acceleration 

mQEgg' /  

So new time period 

 QE/mg

l
T


 π22  

T2 < T 

Case – 3  : In case 2 if electric field is applied 

in upward direction then, effective acceleration. 

 mQEgg' /  

So new time period 

 
 QE/mg

l
T


 π23  

 T3 > T  

 

Case – 4  : In the case 3,  

if 
2

3

T
T   i.e., 

 mQEg

l

/
2


  

g

l
2

2

1
   QE = 3 mg 

 

 

i.e., effective vertical force (gravity + electric) 

l 

O 

QE 

mg 
mg

 

O 

E


 

 
d 

l 

O 

mg + QE 

 T l 

E


 

mg  

 

l 

QE 

E


 

mg 

QE 

O 

E

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i.e. time period of pendulum will decrease. 

 

 

  

 

 

on the bob = mg – 3 mg = – 2 mg, hence the 
equilibrium position O of the bob will be above 
the point of suspension and bob will oscillate 
under on effective acceleration 2g directed 

upward. 

Hence new time period 
g

l
T

2
24 π ,   T4 < T 

 

(2) Charged circular ring : A thin stationary ring of radius R has a positive charge +Q unit. 
If a negative charge – q (mass m) is placed at a small distance x from the centre. Then motion of 

the particle will be simple harmonic motion. 

Electric field at the location of – q charge 

 2

3
220

.
4

1

Rx

Qx
E






 

Since x<< R, So 2x  neglected hence 
3

0

.
4

1

R

Qx
E


    

Force experienced by charge – q is
3

0

.
4

1

R

Qx
qF


   

xF   hence motion is simple harmonic  

Having time period 
qQ

mRπε
πT 0

3
4

2   

(3) Spring mass system : A block of mass m containing a negative charge – Q is placed on a 
frictionless horizontal table and is connected to a wall through an 

unstretched spring of spring constant k as shown. If electric field E 
applied as shown in figure the block experiences an electric force, 
hence spring compress and block comes in new position. This is called 
the equilibrium position of block under the influence of electric field. 

If block compressed further or stretched, it execute oscillation having 

time period 
k

m
πT 2 . Maximum compression in the spring due to 

electric field = 
k

QE
 

 Neutral Point. 

A neutral point is a point where resultant electrical field is zero. It is obtained where two 
electrical field are equal and opposite. Thus neutral points can be obtained only at those points 

where the resultant field is subtractive. Thus it can be obtained. 

(1) At an internal point along the line joining two 
like charges (Due to a system of two like point 
charge) : Suppose two like charges. 1Q  and 2Q  are 

separated by a distance x from each other along a line 
as shown in following figure. 

 

 

(2) At an external point along the line joining two 
like charges (Due to a system of two unlike point 
charge) : Suppose two unlike charge 1Q and 2Q  

separated by a distance x from each other. 

 

 

 

x 

x1 x2 

Q1 
N 

Q2 

l 

N 
Q1 

Q2 

x 

x O 

R 
– q 

+Q + 
+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ + 

m, – Q 

E 

k 



 
 

 
 50 Electrostatics 

 

 
 

If N is the neutral point at a distance 1x from 1Q  and at 

a distance  12 xxx   from 2Q  then – 

At N ||| 21 toduetodue QE.F.QE.F.|   

i.e.,  
2
1

1

0

.
4

1

x

Q


=

2
2

2

0

.
4

1

x

Q



2

2

1

2

1















x

x

Q

Q
 

Short rick : 
12

1
1 /QQ

x
x


  and 

21

2
1 /QQ

x
x


   

Note :  In the above formula if 21 QQ  , neutral 

point lies at the centre so remember that 
resultant field at the midpoint of two equal 
and like charges is zero. 

 

 

Here neutral point lies outside the line joining two unlike 
charges and also it lies nearer to charge which is smaller 
in magnitude. 

If 21 QQ   then neutral point will be obtained on the 

side of 1Q , suppose it is at a distance l from 1Q  

Hence at neutral point ; 
 2

2
2
1

lx

kQ

l

kQ




2

2

1 











lx

l

Q

Q
 

Short rick :  
 112 


/QQ

x
l   

Note :  In the above discussion if |||| 21 QQ   

neutral point will be at infinity. 

 

 Zero Potential Due to a System of Two Point Charge. 

If both charges are like then resultant potential is not zero at any finite point because 
potentials due to like charges will have same sign and can therefore never add up to zero. Such 

a point can be therefore obtained only at infinity. 

If the charges are unequal and unlike then all such points where resultant potential is zero 
lies on a closed curve, but we are interested only in those points where potential is zero along 

the line joining the two charges. 

Two such points exist, one lies inside and one lies outside the charges on the line joining 
the charges. Both the above points lie nearer the smaller charge, as potential created by the 
charge larger in magnitude will become equal to the potential created by smaller charge at the 

desired point at larger distance from it. 
 

I. For internal point : 

 

 

 

 

 

(It is assumed that 21 QQ  ). 

 
 1

2

1

1

xx

Q

x

Q


       

 112
1




/QQ

x
x  

II. For External point : 

 

 

 

 

 

 
 1

2

1

1

xx

Q

x

Q


        

 112
1




/QQ

x
x  

 

 

 

Example: 69 Two similar charges of +Q as shown in figure are placed at points A and B. – q charge is 

placed at point C midway between A and B. – q charge will oscillate if     [RPET 1988] 

 

(a) It is moved towards A  

x 

x1 x2 

Q1 
P 

Q2 

x1 

Q1 Q2 

x 

P 

D 

C – q 

A B 

N 
Examples based on oscillation of charge and neutral 

point 
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(b) It is moved towards B  

(c) It is moved along CD  

(d) Distance between A and B is reduced 

Solution: (c) When – q charge displaced along CD, a restoring force act on it which causes oscillation. 

Example: 70 Two point charges (+Q) and (– 2Q) are fixed on the X-axis at positions a and 2a from origin 

respectively. At what position on the axis, the resultant electric field is zero    [MP PET 2001] 

   (a) Only ax 2  (b) Only ax 2  (c) Both ax 2  (d) 
2

3a
x   only 

Solution: (b) Let the electric field is zero at a point P distance d from the charge +Q so at P. 

0
)(

)2(.
22







da

Qk

d

Qk
 

 
22 )(

21

dad 
    

)12( 


a
d  

 

 

Since d > a i.e. point P must lies on negative x-axis as shown at a distance x from origin 

hence aa
a

adx 2
12




 . Actually P lies on negative x-axis so ax 2 . 

Example: 71 Two charges 9e and 3e are placed at a distance r. The distance of the point where the 

electric field intensity will be zero is        [MP PMT 1989] 

   (a) 
 13 

r
 from 9e charge   (b) 

311 

r
 from 9e 

charge 

   (c) 
 31 

r
 from 3e charge   (d) 

311 

r
 from 3e 

charge 

Solution: (b)  Suppose neutral point is obtained at a distance 1x  from charge 9e and 2x  from charge 3e 

 

   By using 

1

2

1

1
Q

Q

x
x



 =

e

e

r

9

3
1  














3

1
1

r
 

Example: 72 Two point charges – Q and 2Q are separated by a distance R, neutral point will be obtained 

at  

   (a) A distance of 
)12( 

R
 from  – Q charge and lies between the charges. 

   (b) A distance of
)12( 

R
 from – Q charge on the left side of it  

   (c) A distance of 
)12( 

R
from 2Q charge on the right side of it 

+Q +Q 

P + Q – 2Q 

x 

d 

a 
2a 

r 

x1 x2 

N 
9e 3e 
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(d) A point on the line which passes perpendicularly through the centre of the line joining – 
Q and 2Q charge. 

Solution: (b) As already we discussed neutral point will be obtained on the side of charge which is 

smaller in magnitude i.e. it will obtained on the left side of – Q charge and at a distance. 

   

1
2





Q

Q

R
l  

)12( 


R
l  

Example: 73 A charge of + 4C is kept at a distance of 50 cm from a charge of – 6C. Find the two points 

where the potential is zero 

(a) Internal point lies at a distance of 20 cm from 4C charge and external point lies at a 

distance of 100 cm from 4C charge. 

(b) Internal point lies at a distance of 30 cm from 4C charge and external point lies at a 

distance of 100 cm from 4C charge  

(c) Potential is zero only at 20 cm from 4C charge between the two charges 

(d) Potential is zero only at 20 cm from – 6C charge between the two charges  

Solution: (a)  For internal point X, cm

Q

Q

x
x 20

1
4

6

50

1
1

2

1 

















  and for external point Y, 

cm

Q

Q

x
x 100

1
4

6

50

1
1

2

1 

















  

 
  

   Two equal negative charges – q are fixed at points (0, a) and (0, – a) on the y-axis. A 

positive charge Q is released from rest at the point (2a, 0) on the x-axis. The charge Q 

will 

[IIT-JEE 1984, Bihar MEE 1995, MP PMT 1996] 

(a) Execute simple harmonic motion about the origin 

(b) Move to the origin and remains at rest 

(c) Move to infinity 

(d) Execute oscillatory but not simple harmonic motion. 

Solution: (d) By symmetry of problem the components of force on Q due to charges at A and B along 

y-axis will cancel each other while along x-axis will add up and will be along CO. 

Under the action of this force charge Q will move towards O. If at any time charge Q 

is at a distance x from O. 

212222
0 )()(4

1
2cos2

xa

x

xa

qQ
FF










  

i.e., 
  23220

2
.

4

1

xa

qQx
F






 

As the restoring force F is not linear, motion will be 

oscillatory (with amplitude 2a) but not simple 

50c
m 

100cm 

4C 
X Y 

– 6C 

20cm 

2a 

x 

a 

a 

O 
C 

 

A 

B 

– q 

Q 

– q 

 Tricky example: 9  
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harmonic. 

 
 

 

 Electric Potential Energy. 

(1) Potential energy of a charge : Work done in bringing the given charge from infinity to 

a point in the electric field is known as potential energy of the charge. Potential can also be 

written as potential energy per unit charge. i.e.  
Q

U

Q

W
V  . 

(2) Potential energy of a system of two charges : Since work done in bringing charge Q2 

from  to point B is ,2 BVQW   where VB is potential of point B due to charge Q1 i.e. 
r

Q
VB

1

04

1


   

   

So,   
r

QQ
UW 21

0

2 .
4

1


  

 

This is the potential energy of charge Q2, similarly potential energy of charge Q1 will be 

r

QQ
U 21

0

1 .
4

1


  

Hence potential energy of Q1 = Potential energy of Q2 = potential energy of system 
r

QQ
kU 21 (in 

C.G.S.  
r

QQ
U 21 ) 

Note :  Electric potential energy is a scalar quantity so in the above formula take sign of Q1 

and Q2. 

(3) Potential energy of a system of n charges : In a system of n charges electric potential 

energy is calculated for each pair and then all energies so obtained are added algebraically. i.e.  









 .........

4

1

23

32

12

21

0 r

QQ

r

QQ
U


 and in case of continuous distribution of charge. As  VdQdU .     

 dQVU  

e.g. Electric potential energy for a system of three charges  

Potential energy 









31

13

23

32

12

21

04

1

r

QQ

r

QQ

r

QQ


  

While potential energy of any of the charge say Q1 is 









31

13

12

21

04

1

r

QQ

r

QQ


 

Q1 

r 

Q2 

A B 

Q1 

Q2 Q3 

r31 

r23 

r12 
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Note :  For the expression of total potential energy of a system of n charges consider 
2

)1( nn
 

number of pair of charges. 

(4) Electron volt (eV) : It is the smallest practical unit of energy used in atomic and 

nuclear physics. As electron volt is defined as “the energy acquired by a particle having one 

quantum of charge 1e when accelerated by 1volt” i.e. 
C

J
CeV

1
106.11 19    J19106.1   = 1.6  

10–12 erg  

Energy acquired by a charged particle in eV when it is accelerated by V volt is E = (charge in 

quanta) × (p.d. in volt)  

Commonly asked examples :  

S.No. Charge Accelerated by 

p.d. 

Gain in K.E. 

(i) Proton  5  104 V K = e  5  104 V = 5  104 eV = 8  10–15 J  [JIPMER 1999] 

(ii) Electron  100 V K = e  100 V = 100 eV = 1.6  10–17 J [MP PMT 2000; AFMC 

1999] 

(iii) Proton  1 V K = e  1 V = 1 eV = 1.6  10–19 J [CBSE 1999] 

(iv) 0.5 C  2000 V K = 0.5  2000 = 1000 J  [JIPMER 2002] 

(v) -

particle 

 106 V K = (2e)  106 V = 2 MeV [MP PET/PMT 1998] 

 

(5) Electric potential energy of a uniformly charged sphere : Consider a uniformly 
charged sphere of radius R having a total charge Q. The electric potential energy of this sphere 

is equal to the work done in bringing the charges from infinity to assemble the sphere. 

      
R

Q
U

0

2

20

3


  

(6) Electric potential energy of a uniformly charged thin spherical shell : 

     
R

Q
U

0

2

8
  

(7) Energy density : The energy stored per unit volume around a point in an electric field 

is given by  

2
0

2

1

Volume
E

U
Ue  . If in place of vacuum some medium is present then 2

0
2

1
EU re   

 

Concepts 

 Electric potential energy is not localised but is distributed all over the field 

 If a charge moves from one position to another position in an electric field so it’s potential energy change and 
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work done in this changing is if UUW   

 If two similar charge comes closer potential energy of system increases while if two dissimilar charge comes 

closer potential energy of system decreases. 

 

 

Example: 74 If the distance of separation between two charges is increased, the electrical potential 

energy of the system 

[AMU 1998] 

(a) May increases or decrease  (b) Decreases  

(c) Increase   (d) Remain the same 

Solution: (a) Since we know potential energy  
r

QQ
kU 21.  

As r increases, U decreases in magnitude. However depending upon the fact whether both 

charges are similar or disimilar, U may increase or decrease. 

Example: 75 Three particles, each having a charge of 10C are placed at the corners of an equilateral 

triangle of side 10cm. The electrostatic potential energy of the system is (Given 

)/109
4

1 229

0

CmN 


 

  [AMU 1998] 

(a) Zero  (b) Infinite (c) 27 J  (d) 100 J  

Solution: (c) Potential energy of the system,  



















3
1.0

)1010(
109

26
9U    = 27 J 

 

 

Example: 76 Three charges Q, +q and +q are placed at the vertices of a right-angled isosceles triangle as 

shown. The net electrostatic energy of the configuration is zero if Q is equal to    [IIT (Screening) 2000] 

 

(a) 
21 

q
 

(b) 
21

2



 q
 

(c) – 2 q   

(d) +q  

Solution: (b) Potential energy of the configuration 0
2

.
.

.
2


a

Qq
k

a

qk

a

Qq
kU    

12

2






q
Q  

10C 10C 

10C 

10 cm 

10 cm 

10 cm 

Examples based on electric potential 
energy 

+q +q 

Q 

a 

 
Q q 

U = 0 
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Example: 77 A charge 10 e.s.u. is placed at a distance of 2 cm from a charge 40 e.s.u. and 4 cm from 

another charge of 20 e.s.u. The potential energy of the charge 10 e.s.u. is (in ergs)    [CPMT 1976] 

(a) 87.5 (b) 112.5 (c) 150  (d) 250 

Solution: (d) Potential energy of 10 e.s.u. charge is 

  .250
4

2010

2

4010
ergU 





  

 

 

Example: 78 In figure are shown charges q1 = + 2 × 10–8 C and q2 = – 0.4 × 10–8 C. A charge q3 = 0.2 × 10–

8 C in moved along the arc of a circle from C to D. The potential energy of q3    [CPMT 1986] 

 

 

(a) Will increase approximately by 76% 

(b) Will decreases approximately by 76% 

(c) Will remain same 

(d) Will increases approximately by 12%  

Solution: (b) Initial potential energy of q3  
93231 109

18.0











qqqq
U i  

  Final potential energy of q3   
93231 109

2.08.0











qqqq
U f  

  Change in potential energy = Uf – Ui  

  Now percentage change in potential energy 100



i

if

u

UU
 

  























18.0

1001
2.0

1

21
3

32

qq
q

qq

    On putting the values %76–~   

 
 

Three charged particles are initially in position 1. They are free to move and they 

come in position 2 after some time. Let U1 and U2 be the electrostatics potential 

energies in position 1 and 2. Then 

(a) U1 > U2    (b) U2 > U1  

(c) U1 = U2    (d) U2  U1 

Solution: (a) Particles move in a direction where potential energy of the system is decreased. 

 

40 esu 

10 esu 

20 esu 

4 cm 
2 cm 

C 

q1 

q3 

8
0

 

c
m

 

D 
60 cm 

80 cm 

A B 

q2 

 Tricky example: 10 

q3 

C 

A B 

q1 q2 
8

0
 c

m
 

D 
60 cm 
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 Motion of Charged Particle in an Electric Field. 

(1) When charged particle initially at rest is placed in the uniform field :  

Let a charge particle of mass m and charge Q be initially at rest in an electric field of 

strength E 

 

 

 

 

 

 

(i) Force and acceleration : The force experienced by the charged particle is QEF  . 

Positive charge experiences force in the direction of electric field while negative charge 

experiences force in the direction opposite to the field. [Fig. (A)] 

Acceleration produced by this force is 
m

QE

m

F
a    

Since the field E in constant the acceleration is constant, thus motion of the particle is 

uniformly accelerated. 

(ii) Velocity : Suppose at point A particle is at rest and in time t, it reaches the point B [Fig. 

(B)] 

V = Potential difference between A and B; S = Separation between A and B 

(a) By using atuv  ,      t
m

E
Qv  0 ,              

m

QEt
v   

(b) By using asuv 222  , s
m

QE
v  202      

m

QV
v

22      









s

V
E    

m

QV
v

2
   

(iii) Momentum : Momentum p = mv, QEt
m

QEt
mp    or  mQV

m

QV
mp 2

2
   

(iv) Kinetic energy : Kinetic energy gained by the particle in time t is 

m

tEQ

m

QEt
mmvK

2

)(

2

1

2

1 2222
2   

      or  QV
m

QV
mK 

2

2

1
 

(2) When a charged particle enters with an initial velocity at right angle to the uniform 

field :  

Fig. 
(A) 

E


 

A B 

S 

Fig. 
(B) 

+Q 

– Q F=QE 

F = QE 
E

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When charged particle enters perpendicularly in an electric field, it describe a parabolic 

path as shown 

(i) Equation of trajectory : Throughout the motion particle has uniform velocity along x-

axis and horizontal displacement (x) is given by the equation x = ut  

Since the motion of the particle is accelerated along y–axis, we will use equation of motion 

for uniform acceleration to determine displacement y. From 2

2

1
atutS   

We have 0u  (along y-axis) so 2

2

1
aty   

i.e., displacement along y-axis will increase rapidly with time (since )2ty   

From displacement along x-axis 
u

x
t    

So 
2

2

1


















u

x

m

QE
y ; this is the equation of parabola which shows 2xy   

(ii) Velocity at any instant : At any instant t, uv x   and 
m

QEt
vy   

So  
2

222
222||

m

tEQ
uvvvv yx   

If  is the angle made by v with x-axis than 
mu

QEt

v

v

x

y
tan . 

Concepts 

 An electric field is completely characterized by two physical quantities Potential and Intensity. Force 

characteristic of the field is intensity and work characteristic of the field is potential. 

 If a charge particle (say positive) is left free in an electric field, it experiences a force )( QEF   in the direction 

of electric field and moves in the direction of electric field (which is desired by electric field), so its kinetic 

energy increases, potential energy decreases, then work is done by the electric field and it is negative. 

 

 

Example: 79 An electron (mass = kg31101.9   and charge = .)106.1 19 coul  is sent in an electric field of 

intensity ./101 6 mV  How long would it take for the electron, starting from rest, to attain 

one–tenth the velocity of light 

    (a) sec12107.1   (b) sec6107.1   (c) sec8107.1   (d) sec10107.1   

Q 

E


 
Examples based on motion of 
charge 

vx 

vy 

 

v 

Y 

X 

E  

u 

P(x, y) 
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Solution: (b) By using 
m

QEt
v    

31

619
8

101.9

10)106.1(
103

10

1









t
   .107.1 10 sect   

Example: 80 Two protons are placed m1010   apart. If they are repelled, what will be the kinetic energy 

of each proton at very large distance 

    (a) J191023   (b) J19105.11   (c) J191056.2   (d) J281056.2   

Solution: (d) Potential energy of the system when protons are separated by a distance of 1010  m is  

 JU 19

10

2199

1023
10

)106.1(109 








  

    According to law of conservation of energy at very larger distance, this energy is equally 

distributed in both the protons as their kinetic energy hence K.E. of each proton will be 

.105.11 19 J  

Example: 81  A particle A has a charge +q and particle B has charge +4q with each of them having the 

same mass m. When allowed to fall from rest through the same electrical potential 

difference, the ratio of their speeds 
B

A

v

v
 will becomes        [BHU 1995; MNR 1991] 

    (a) 2 : 1 (b) 1 : 2 (c) 1 : 4 (d) 4 : 1  

Solution: (b) We know that kinetic energy QVmvK  2

2

1
. Since, m and V are same so, Qv 2  

.
2

1

4


q

q

Q

Q

v

v

B

A

B

A  

Example: 82 How much kinetic energy will be gained by an  particle in going from a point at 70 V to 

another point at 50 V       [RPET 1996] 

    (a) 40 eV (b) 40 keV (c) 40 MeV (d) 0 eV 

Solution: (a) Kinetic energy VQK      VeK )5070()2(  eV40  

Example: 83 A particle of mass 2g and charge C1  is held at a distance of 1 metre from a fixed charge of 

.1mC  If the particle is released it will be repelled. The speed of the particle when it is at a 

distance of 10 metres from the fixed charge is        [CPMT 1989] 

    (a) 100 m/s (b) 90 m/s (c) 60 m/s (d) 45 m/s 

Solution: (b) According to conservation of energy 

 

 

 

 

    Energy of moving charge at A Energy of moving charge at B 

 23
63

9
63

9 )102(
2

1

10

1010
109

1

1010
109 v









  

1m 

10m 

A B 

1 mC 1 C 

Moving 
charge Fixed 

charge 

P+ p+ 
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        81002 v      m/sec90v  

 
  

A mass of 1g carrying charge q falls through a potential difference V. The kinetic 

energy acquired by it is E. When a mass of 2g carrying the charge q falls through a 

potential difference V. What will be the kinetic energy acquired by it 

(a) 0.25 E  (b) 0.50 E  (c) 0.75 E  (d) E 

Solution: (d) In electric field kinetic energy gain by the charged particle K = qV. Which depends 

charge and potential difference applied but not on the mass of the charged particle.  
 

 Force on a Charged Conductor. 

To find force on a charged conductor (due to repulsion of like charges) imagine a small part 

XY to be cut and just separated from the rest of the conductor MLN. The field in the cavity due 

to the rest of the conductor is E2, while field due to small part is E1. Then 

 

Inside the conductor 021  EEE  or 21 EE   

Outside the conductor 
0

21



 EEE  

Thus 
0

21
2


 EE  

To find force, imagine charged part XY (having charge dA  placed in the cavity MN having 

field E2). Thus force 2)( EdAdF   or dAdF
0

2

2


 . The force per unit area or electric pressure is 

0

2

2




dA

dF
 

The force is always outwards as 2)(   is positive i.e., whether charged positively or 

negatively, this force will try to expand the charged body. 

A soap bubble or rubber balloon expands on given charge to it (charge of any kind + or –). 

 Equilibrium of Charged Soap Bubble. 

For a charged soap bubble of radius R and surface tension T and charge density .  The 

pressure due to surface tension 
R

T
4  and atmospheric pressure outP  act radially inwards and the 

electrical pressure )( elP  acts radially outward. 

The total pressure inside the soap bubble 
0

2

outin
2

4






R

T
PP  

 Tricky example: 11 

(A) 

+ + 
+ 

+ 

+ 
+ 

+ 
+ 

+ + + + 
+ 

+ 
+ 

+ 
+ 

+ + + + M 

N 

Y 

X 

E2 
E1 

E1 
E2 

Inside 
E = 0 L 

+ 

+ 

+ 

+ + 
+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ 

E2 

(B) 
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Excess pressure inside the charged soap bubble 
0

2

excessoutin
2

4






R

T
PPP . If air pressure 

inside and outside are assumed equal then outin PP  i.e., 0excess P . So, 
0

2

2

4






R

T
 

This result give us the following formulae 

(1) Radius of bubble 
2

08



 T
R   

(2) Surface tension 
0

2

8

 R
T   

(3) Total charge on the bubble TRRQ 028   

(4) Electric field intensity at the surface of the bubble 
R

kT

R

T
E





328

0

  

(5) Electric potential at the surface 
0

8
3




RT
RTkV   

ai

r 

Pout 

Pin 

PT 

ai

r 

Uncharged 

Pout 

Pin 

PT 

+ 

+ + 

+ 
Pelec 

Charged 
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 Electric Dipole. 

(1) General information : System of two equal and opposite charges separated by a small 

fixed distance is called a dipole. 

 

 

 

 

 

(i) Dipole axis : Line joining negative charge to positive charge of a dipole is called its axis. 

It may also be termed as its longitudinal axis. 

(ii) Equatorial axis : Perpendicular bisector of the dipole is called its equatorial or 

transverse axis as it is perpendicular to length. 

(iii) Dipole length : The distance between two charges is known as dipole length (L = 2l)  

(iv) Dipole moment : It is a quantity which gives information about the strength of dipole. 

It is a vector quantity and is directed from negative charge to positive charge along the axis. It 

is denoted as p


 and is defined as the product of the magnitude of either of the charge and the 

dipole length.  

i.e.     )2( lqp


  

Its S.I. unit is coulomb-metre or Debye (1 Debye = 3.3 × 10–30 C  m) and its dimensions are 

M0L1T1A1. 

Note :  A region surrounding a stationary electric dipole has electric field only.  

  When a dielectric is placed in an electric field, its atoms or molecules are 

considered as tiny dipoles.  

 

    

 

 

 Water (H2O), Chloroform (CHCl3), Ammonia (NH3), HCl, CO molecules are some 

example of permanent electric dipole. 

 

 

   

  

A B 

+q 
2l 

E
q
u

a
to

ri
a
l 

a
x
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Dipole 
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 – 
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(2) Electric field and potential due to an electric dipole : It is better to understand 

electric dipole with magnetic dipole. 

 

S.No. Electric dipole Magnetic dipole 

(i) System of two equal and opposite charges 

separated by a small fixed distance. 

 

 

 

 

System of two equal and opposite magnetic 

poles (Bar magnet) separated by a small 

fixed distance. 

 

 

 

(ii) Electric dipole moment : )2( lqp


 , directed 

from  q  to +q. It’s S.I. unit is coulomb × 

meter or Debye.  

Magnetic dipole moment : )2( lmM


 , 

directed from  S to N. It’s S.I. unit is ampere 

× meter2. 

(iii) Intensity of electric field   

 

 

 

 

 

 

 

If a, e and g are three points on axial, 

equatorial and  general position at a 

distance r from the centre of dipole  

on axial point 
3

0

2
.

4

1

r

p
Ea


  (directed from – q 

to +q) 

on equatorial point 
3

0

.
4

1

r

p
Ee


 (directed from +q 

to –q) 

on general point )1cos3(.
4

1 2

3
0

 
 r

p
Ea  

Angle between – aE


 and p


 is 0o, eE


 and p


 is 

180o, E


 and p


 is ( + ) (where 

 tan
2

1
tan  ) 

Electric Potential – At a 
2

0

.
4

1

r

p
Va


 , At e 

0V   

Intensity of magnetic field 

 

 

 

 

 

 

 

If a, e and g are three points on axial, 

equatorial and  general position at a distance 

r from the centre of dipole  

on axial point 
3

0 2
.

4 r

M
Ba




  (directed from  S 

to N) 

on equatorial point 
3

0 .
4 r

M
Be




  (directed from 

N to S) 

on general point )1cos3(.
4

2

3

0  




r

M
Ba  

Angle between – aB


 and M


 is 0o, eB


 and M


 

is 180o, B


 and M


 is ( + ) (where 

 tan
2

1
tan  ) 

 

  

A 
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
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At g 
2

0

cos
.

4

1

r

p
V




   

 

(3) Dipole (electric/magnetic) in uniform field (electric/magnetic)  

(i) Torque : If a dipole is placed in an uniform field such that dipole (i.e. p


 or M


) makes 

an angle  with direction of field then two equal and opposite force acting on dipole constitute a 

couple whose tendency is to rotate the dipole hence a torque is developed in it and dipole tries 

to align it self in the direction of field. 

 

Consider an electric dipole in placed in an 

uniform electric field such that dipole (i.e. p ) 

makes an angle  with the direction of electric 

field as shown 

 

 

 

 

 

 

 

(a) Net force on electric dipole 0netF  

(b) Produced torque  = pE sin    )( EP   

A magnetic dipole of magnetic moment M is 

placed in uniform magnetic field B by making 

an angle  as shown 

 

 

 

 

 

 

 

 

(a) Net force on magnetic dipole 0netF  

(b) torque  = MB sin    )( BM   

 

(ii) Work : From the above discussion it is clear that in an uniform electric/magnetic field 

dipole tries to align itself in the direction of electric field (i.e. equilibrium position). To change 

it’s angular position some work has to be done.  

Suppose an electric/magnetic dipole is kept in an uniform electric/magnetic field by 

making an angle 1 with the field, if it is again turn so that it makes an angle 2 with the field, 

work done in this process is given by the formula  

 

 

 

 

 

 

)cos(cos 21   pEW  

If 1 = 0o and 2 =  i.e. initially dipole is 

kept along the field then it turn through  

 

 

 

 

 

 

)cos(cos 21   MBW  

 If 1 = 0o and 2 =  then W = MB(1 – cos)  

+q +q 

–q 

–q 

1 2 

E  B  

1 2 

 
M  

F = 

qE 

F = 
qE 

 

B 

A 

–q 

+q 

 

N 

S 

F = mB 

F = mB 

M  
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so work done )cos1(  pEW  

 

(iii) Potential energy : In case of a dipole (in a uniform field), potential energy of dipole is 

defined as work done in rotating a dipole from a direction perpendicular to the field to the given 

direction i.e. if 1 = 90o and 2 =   then – 
 

 

 

 

 

 
 

)cos90(cos  pEUW   U = – pE cos 

 

 

 

 

 
 

)cos90(cos  MBUW   U = – MB cos 

 

(iv) Equilibrium of dipole : We know that, for any equilibrium net torque and net force on 

a particle (or system) should be zero. 

We already discussed when a dipole is placed in an uniform electric/magnetic field net 

force on dipole is always zero. But net torque will be zero only when  = 0o or 180o  

When  = 0o i.e. dipole is placed along the electric field it is said to be in stable equilibrium, 

because after turning it through a small angle, dipole tries to align itself again in the direction 

of electric field. 

When  = 180o i.e. dipole is placed opposite to electric field, it is said to be in unstable 

equilibrium. 

 

 

 

 

 

  = 0o    = 90O   = 180o  

Stable equilibrium  Unstable 

equilibrium  

 = 0    max = pE   = 0 

W = 0   W = pE  Wmax = 2pE  

Umin = – pE   U = 0  Umax = pE  

 

 

 

 

 = 0o     = 90O   = 180o  

Stable equilibrium    

Unstable equilibrium  

 = 0    max = MB     = 0 

W = 0      W = MB            Wmax = 2MB  

Umin = – MB        U = 0   Umax = MB 

 

(v) Angular SHM : In a uniform electric/magnetic field (intensity E/B) if a dipole 

(electric/magnetic) is slightly displaced from it’s stable equilibrium position it executes angular 

SHM having period of oscillation. If I = moment of inertia of dipole about the axis passing 

through it’s centre and perpendicular to it’s length. 
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For electric dipole :  
pE

I
T 2  and For Magnetic dipole :  

MB

I
T 2  

(vi) Dipole-point charge interaction : If a point charge/isolated magnetic pole is placed 

in dipole field at a distance r from the mid point of dipole then force experienced by point 

charge/pole varies according to the relation 
3

1

r
F   

(vii) Dipole-dipole interaction : When two dipoles placed closed to each other, they 

experiences a force due to each other. If suppose two dipoles (1) and (2) are placed as shown in 

figure then  

Both the dipoles are placed in the field of one another hence potential energy dipole (2) is  

3

1

0

212122

2
.

4

1
0cos

r

p
pEpEpU


  

then by using  
dr

dU
F  , Force on dipole (2) is 

dr

dU
F 2

2   

  









3

21

0

2

2
.

4

1

r

pp

dr

d
F


 

4

21

0

6
.

4

1

r

pp


  

Similarly force experienced by dipole (1)  
4

21

0

1

6
.

4

1

r

pp
F


  so  

4

21

0

21

6
.

4

1

r

pp
FF


  

Negative sign indicates that force is attractive. 
4

21

0

6
.

4

1
||

r

pp
F


  and 

4

1

r
F    

S. No. Relative position of dipole Force Potential energy 

(i)  

 

 

4

21

0

6
.

4

1

r

pp


 (attractive) 

3

21

0

2
.

4

1

r

pp


 

(ii)  
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3
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 (repulsive) 
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(iii)  
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Note :    Same result can also be obtained for magnetic dipole. 

(4) Electric dipole in non-uniform electric field : When an electric dipole is placed in a 

non-uniform field, the two charges of dipole experiences unequal forces, therefore the net force 

on the dipole is not equal to zero. The magnitude of the force is given by the negative derivative 

of the potential energy w.r.t. distance along the axis of the dipole i.e. 

dr

Ed
p

dr

dU
F . . 

Due to two unequal forces, a torque is produced which rotate the 

dipole so as to align it in the direction of field. When the dipole gets 

aligned with the field, the torque becomes zero and then the 

unbalanced force acts on the dipole and the dipole then moves 

linearly along the direction of field from weaker portion of the field 

to the stronger portion of the field. So in non-uniform electric field 

(i) Motion of the dipole is translatory and rotatory 

(ii) Torque on it may be zero. 

Concepts 

 For a short dipole, electric field intensity at a point on the axial line is double than at a point on the 

equatorial line on electric dipole i.e. Eaxial = 2Eequatorial 

 It is intresting to note that dipole field 
3

1

r
E   decreases much rapidly as compared to the field of a point charge 

.
1

2 










r
E  

 

 

 

Example: 84 If the magnitude of intensity of electric field at a distance x on axial line and at a distance y 

on equatorial line on a given dipole are equal, then x : y is       [EAMCET 1994] 

(a) 1 : 1  (b) 2:1  (c) 1 : 2 (d) 1:23  

Solution: (d) According to the question  
3

0
3

0

.
4

12
.

4

1

y

p

x

p


    1:)2( 3/1

y

x
 

Example: 85 Three charges of (+2q), (– q) and (– q) are placed at the corners A, B and C of an equilateral 

triangle of side a as shown in the adjoining figure. Then the dipole moment of this 

combination is  [MP PMT 1994; CPMT 1994] 

 

(a) qa  

(b) Zero  

(c) 3aq  

Examples based on electric 
dipole 
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q 
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+q 
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qE 

qE 

E > E 

A 
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+2q 

– q – q a 

a a 
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(d) qa
3

2
 

Solution: (c) The charge +2q can be broken in +q, +q. Now as shown in figure we have two equal dipoles 

inclined at an angle of 60o. Therefore resultant dipole moment will be 

60cos222 pppppnet   

        p3      

        qa3  

Example: 86 An electric dipole is placed along the x-axis at the origin O. A point P is at a distance of 20 

cm from this origin such that OP makes an angle 
3


 with the x-axis. If the electric field at P 

makes an angle  with x-axis, the value of  would be        [MP PMT 1997] 

    (a) 
3


 (b) 














 

2

3
tan

3

1
 (c) 

3

2
 (d) 
















2

3
tan 1  

Solution: (b) According to question we can draw following figure. 

As we have discussed earlier in theory 


 
3

   

 
3

tan
2

1
tan


     

2

3
tan 1  

So,  
2

3
tan

3

1


   

Example: 87 An electric dipole in a uniform electric field experiences       [RPET 2000] 

(a) Force and torque both (b) Force but no torque (c) Torque but no 
force (d) No force and no torque 

Solution: (c) In uniform electric field Fnet = 0, net  0 

Example: 89 Two opposite and equal charges 4 × 10–8 coulomb when placed 2 × 10–2 cm away, form a 

dipole. If this dipole is placed in an external electric field 4 × 108 newton/coulomb, the 
value of maximum torque and the work done in rotating it through 180o will be    [MP PET 1996 Similar to MP PMT 1987] 

(a) 64 × 10–4 Nm and 64 × 10–4 J  (b) 32 × 10–4 Nm and 32 × 10–4 J  

(c) 64 × 10–4 Nm and 32 × 10–4 J (d) 32 × 10–4 Nm and 64 × 10–4 J 

Solution: (d) max = pE  and  Wmax = 2pE       p = Q × 2l = 4 × 10–8 × 2 × 10–2 × 10–2 = 8 × 10–12 C-m  

So, max = 8 × 10–12 × 4 × 108 = 32 × 10–4 N-m and Wmax = 2 × 32 × 10–4 = 64 × 10–4 J  

Example: 90 A point charge placed at any point on the axis of an electric dipole at some large distance 

experiences a force F. The force acting on the point charge when it’s distance from the 
dipole is doubled is 

[CPMT 1991; MNR 1986] 

(a) F  (b) 
2

F
 (c) 

4

F
 (d) 

8

F
 

Solution: (d) Force acting on a point charge in dipole field varies as 
3

1

r
F   where r is the distance of 

point charge from the centre of dipole. Hence if r makes double  so new force 
8

'
F

F  . 
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Example: 91 A point particle of mass M is attached to one end of a massless rigid non-conducting rod of 
length L. Another point particle of the same mass is attached to other end of the rod. The 

two particles carry charges +q and – q respectively. This arrangement is held in a region of 
a uniform electric field E such that the rod makes a small angle  (say of about 5 degrees) 
with the field direction (see figure). Will be minimum time, needed for the rod to become 
parallel to the field after it is set free      [CPMT 1995] 

 

 

 

 

(a) 
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2
2  (b) 

qE
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
  (c) 

pE
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22

3
  (d) 

qE

mL
t

2
  

Solution: (b) In the given situation system oscillate in electric field with maximum angular displacement 
.  

It’s time period of oscillation (similar to dipole) 

  
pE

I
T 2  where I = moment of inertia of the system and qLp   

Hence the minimum time needed for the rod becomes parallel to the field is 
pE

IT
t

24


  
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
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
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t
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


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An electric dipole is placed at the origin O and is directed along the x-axis. At a point 
P, far away from the dipole, the electric field is parallel to y-axis. OP makes an angle  
with the x-axis then 

(a) 3tan   (b) 2tan   (c)  = 45o  (d) 
2

1
tan   

Solution: (b) As we know that in this case electric field makes an angle  + with the direction of 

dipole 

Where   tan
2

1
tan   

Here    + = 90o      90  

Hence  tan
2

1
)90tan(        tan

2

1
cot   

  2tan 2        2tan   

 Electric Flux. 

(1) Area vector : In many cases, it is convenient to treat area of a surface as a vector. The 

length of the vector represents the magnitude of the area and its direction is along the outward 

drawn normal to the area. 

 Area ds 

sd


 

 Tricky example: 12  
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(2) Electric flux : The electric flux linked with any surface in an electric field is basically a 

measure of total number of lines of forces passing normally through the surface.  or 

Electric flux through an elementary area ds  is defined as the scalar product of area of field 

i.e.  cosdsEdsEd   

Hence flux from complete area (S)   cosdsE  = ES cos  

If  = 0o, i.e. surface area is perpendicular to the electric field, 

so flux linked with it will be max. 

i.e. max = E ds  and  if  = 90o,  min = 0  

(3) Unit and Dimensional Formula 

S.I. unit – (volt × m) or 
2m

CN 
  

It’s Dimensional formula – (ML3T–3A– 1) 

(4) Types : For a closed body outward flux is taken to be positive, while inward flux is to 

be negative  

 

 

   

 

 

 

 Gauss’s Law. 

(1) Definition : According to this law, total electric flux through a closed surface enclosing 

a charge is 
0

1


 times the magnitude of the charge enclosed i.e. )(

1
.

0

encQ


    

(2) Gaussian Surface : Gauss’s law is valid for symmetrical charge distribution. Gauss’s 

law is very helpful in calculating electric field in those cases where electric field is symmetrical 

around the source producing it. Electric field can be calculated very easily by the clever choice 

of a closed surface that encloses the source charges. Such a surface is called “Gaussian surface”. 

This surface should pass through the point where electric field is to be calculated and must have 

a shape according to the symmetry of source. 

ds 

 

sd


 
E
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Body 

Negative-flux 

(A) 
Positive – flux 

Body 

n E 
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e.g. If suppose a charge Q is placed at the centre of a hemisphere, then to calculate the flux 

through this body, to encloses the first charge we will have to imagine a Gaussian surface. This 

imaginary Gaussian surface will be a hemisphere as shown.  

Net flux through this closed body 
0


Q

  

Hence flux coming out from given hemisphere is .
2 0


Q

  

(3) Zero flux : The value of flux is zero in the following circumstances  

(i) If a dipole is enclosed by a surface  

 

 

0;0  encQ  

 

 

(ii) If the magnitude of positive and 

negative charges are equal inside a closed 

surface 

 

 

 ,0encQ   

so,   = 0 

(iii) If a closed body (not enclosing any charge) is placed in an electric field (either 

uniform or non-uniform) total flux linked with it will be zero 

 

 

 

 

 

 

 

 

 

     0T       2aEutoin    

 

(4) Flux emergence : Flux linked with a closed body is independent of the shape and size of 

the body and position of charge inside it  
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(i) If a hemispherical body is placed in 

uniform electric field then flux linked with 

the curved surface 

  

 

 

ERcurved
2   

(ii) If a hemispherical body is placed in 

non-uniform electric field as shown below. 

then flux linked with the curved surface. 

 

 

ERcurved
22   

(v) If charge is kept at the centre of cube 
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

   

    
06


Q

face    

   

 
08


Q

corner     
012


Q

edge   

 

(iv)  If charge is kept at the centre of a face  

 

 

    

 

First we should enclosed the charge by 
assuming a Gaussian surface (an identical 

imaginary cube) 

 
0


Q

total   

    
02


Q

cube   (i.e. from 5 face 

only) 

    
00 1025

1




QQ
face 










 . 

 

Concept 

 In C.G.S. 



4

1
0  .  Hence if 1C charge is enclosed by a closed surface so flux through the surface will be 

 4 . 

 

 

Example: 91 Electric charge is uniformly distributed along a long straight wire of radius 1 mm. The 

charge per cm length of the wire is Q coulomb. Another cylindrical surface of radius 50 cm 

and length 1 m symmetrically encloses the wire as shown in the figure. The total electric 

flux passing through the cylindrical surface is  [MP PET 2001] 

E
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n̂  
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n̂  

R 

Example based on electric flux and Gauss’s 
law 
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(a) 
0

Q
 

(b) 
0

100



Q
 

(c) 
)(

10

0

Q
 

(d) 
)(

100

0

Q
 

Solution: (b)  Given that charge per cm length of the wire is Q. Since 100 cm length of the wire is 

enclosed so QQenc 100  

 Electric flux emerging through cylindrical surface 
0

100




Q
 . 

Example: 92  A charge Q is situated at the corner A of a cube, the electric flux through the one face of the 

cube is  

[CPMT 2000] 

 

 

 

 
 

(a) 
06

Q
 (b) 

08

Q
 (c) 

024 

Q
 (d) 

02

Q
 

Solution: (c) For the charge at the corner, we require eight cube to symmetrically enclose it in a 

Gaussian surface. The total flux 
0


Q

T  . Therefore the flux through one cube will be 

.
8 0


Q

cube   The cube has six faces and flux linked with three faces (through A) is zero, so 

flux linked with remaining three faces will .
8 0


 Now as the remaining three are identical 

so flux linked with each of the three faces will be 
00 24

1
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1
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1



QQ
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
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









 . 

Example: 93  A square of side 20 cm is enclosed by a surface of sphere of 80 cm radius. Square and 
sphere have the same centre. Four charges + 2 × 10–6 C, – 5 × 10– 6 C, – 3 × 10– 6 C, +6 × 10– 6 
C are located at the four corners of a square, then out going total flux from spherical 
surface in N–m2/C will be   [RPMT 1989] 

(a) Zero (b) (16 ) × 10– 6  (c) (8) × 10–6  (d) 36 × 10–6  

Solution: (a) Since charge enclosed by Gaussian surface is 

 0)106103105102( 6666
.  

enc    so  0  

Example: 94 In a region of space, the electric field is in the x-direction and proportional to x, i.e., 

ixEE ˆ
0 . Consider an imaginary cubical volume of edge a, with its edges parallel to the 

axes of coordinates. The charge inside this cube is  

50 

cm 

1 m 

+ 
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+ 
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(a) Zero  (b) 3
00 aE  (c) 3

0
0

1
aE


 (d) 2

00
6

1
aE  

Solution: (b) The field at the face ABCD = .ˆ00 ixE  

 Flux over the face ABCD = – (E0x0)a2  

The negative sign arises as the field is directed into the 

cube. 

The field at the face EFGH = .ˆ)( 00 iaxE   

 Flux over the face EFGH = 2
00 )( aaxE   

The flux over the other four faces is zero as the field is 

parallel to the surfaces. 

  Total flux over the cube qaE
2

12
0   

where q is the total charge inside the cube.      .3
00 aEq    

 

 

  

In the electric field due to a point charge + Q a spherical closed surface is drawn as 

shown by the dotted circle. The electric flux through the surface drawn is zero by 

Gauss’s law. A conducting sphere is inserted intersecting the previously drawn 

Gaussian surface. The electric flux through the surface  

(a) Still remains zero  

(b) Non zero but positive 

(c) Non-zero but negative  

(d) Becomes infinite 

Solution: (b) Due to induction some positive charge will lie within the Gaussian surface drawn and 

hence flux becomes something positive. 

 

 Application of Gauss’s Law. 

Gauss’s law is a powerful tool for calculating electric field in case of symmetrical charge 

distribution by choosing a Gaussian surface in such away that E  is either parallel or 

perpendicular to it’s various faces.  

e.g. Electric field due to infinitely long line of charge : Let us 

consider a uniformly charged wire of infinite length having a constant 

linear charge density is .
length

charge








 Let P be a point distant r from the 

wire at which the electric field is to be calculated. 

 

 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

P l 

1 

2 

a 

n̂  

n̂  

D 

C G 

a 

a 
X 

H 

B 

A 
E 

F 

a 

x0 

Y 

Z 

 Tricky example: 13 
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Draw a cylinder (Gaussian surface) of radius r and length l around the line charge which 

encloses the charge Q ( lQ . ). Cylindrical Gaussian surface has three surfaces; two circular 

and one curved for surfaces (1) and (2) angle between electric field and normal to the surface is 

90o i.e., .90 o   

So flux linked with these surfaces will be zero. Hence total flux will pass through curved 

surface and it is  

    cosdsE    …. (i) 

According to Gauss’s law  

  
0


Q

      …. (ii) 

Equating equation (i) and (ii)   
0

Q
dsE    
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