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On one occasion or another, most of 

us have watched a grandfather's clock or 
other timepiece based on a simple 

pendulum and marveled at this device as it 

swung back and forth majestically, often 

seeming hardly to move, yet maintaining 
remarkable accuracy day after day. The 

elegance and simplicity of this oscillator 

suggests that there is little to go wrong with 
it. After all, there is no hairspring to 

magnetize, rust, or tangle with regulator 

pins, no balance wheel to expand or 

contract with temperature or unbalance 
from one orientation to another. The 

oscillatory energy and the forces that 

shuttle it between its potential and kinetic 

forms are provided by gravity. 
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 15.1 Periodic Motion. 

A motion, which repeat itself over and over again after a regular interval of time is called a periodic motion 

and the fixed interval of time after which the motion is repeated is called period of the motion. 

Examples :  

(i) Revolution of earth around the sun (period one year) 

(ii) Rotation of earth about its polar axis (period one day) 

(iii) Motion of hour’s hand of a clock (period 12-hour) 

(iv) Motion of minute’s hand of a clock (period 1-hour) 

(v) Motion of second’s hand of a clock (period 1-minute) 

(vi) Motion of moon around the earth (period 27.3 days)  

 15.2 Oscillatory or Vibratory Motion. 

Oscillatory or vibratory motion is that motion in which a body moves to and fro or back and forth 

repeatedly about a fixed point in a definite interval of time. In such a motion, the body is confined with in well-

defined limits on either side of mean position. 

Oscillatory motion is also called as harmonic motion. 

Example : 

(i) The motion of the pendulum of a wall clock. 

(ii) The motion of a load attached to a spring, when it is pulled and then released. 
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(iii) The motion of liquid contained in U- tube when it is compressed once in one limb and left to itself. 

(iv) A loaded piece of wood floating over the surface of a liquid when pressed down and then released 

executes oscillatory motion. 

 15.3 Harmonic and Non-harmonic Oscillation. 

Harmonic oscillation is that oscillation which can be expressed in terms of single harmonic function (i.e. 

sine or cosine function). Example : tay sin  or tay cos  

Non-harmonic oscillation is that oscillation which can not be expressed in terms of single harmonic 

function. It is a combination of two or more than two harmonic oscillations. Example : tbtay  2sinsin   

 15.4 Some Important Definitions. 

(1) Time period : It is the least interval of time after which the periodic motion of a body repeats itself.  

S.I. units of time period is second. 

(2) Frequency : It is defined as the number of periodic motions executed by body per second. S.I unit of 

frequency is hertz (Hz).  

(3) Angular Frequency : Angular frequency of a body executing periodic motion is equal to product of 

frequency of the body with factor 2. Angular frequency  = 2  n  

S.I. units of  is Hz [S.I.]  also represents angular velocity. In that case unit will be rad/sec. 

(4) Displacement : In general, the name displacement is given to a physical quantity which undergoes a 

change with time in a periodic motion. 

Examples :  

(i) In an oscillation of a loaded spring, displacement variable is its deviation from the mean position.  

(ii) During the propagation of sound wave in air, the displacement variable is the local change in pressure  

(iii) During the propagation of electromagnetic waves, the displacement variables are electric and magnetic 

fields, which vary periodically. 

(5) Phase : phase of a vibrating particle at any instant is a physical quantity, which completely express the 

position and direction of motion, of the particle at that instant with respect to its mean position. 



 

 

 

 
172 Simple Harmonic Motion 

In oscillatory motion the phase of a vibrating particle is the argument of sine or cosine function involved to 

represent the generalised equation of motion of the vibrating particle. 

  )sin(sin 0  taay   here, 0  t = phase of vibrating particle. 

(i) Initial phase or epoch : It is the phase of a vibrating particle at t = 0. 

In 0  t , when t = 0; 0   here, 0  is the angle of epoch. 

(ii) Same phase : Two vibrating particle are said to be in same phase, if the phase difference between them 

is an even multiple of  or path difference is an even multiple of ( / 2) or time interval is an even multiple of (T / 

2) because 1 time period is equivalent to 2 rad or 1 wave length () 

(iii) Opposite phase : When the two vibrating particles cross their respective mean positions at the same 

time moving in opposite directions, then the phase difference between the two vibrating particles is 180o  

Opposite phase means the phase difference between the particle is an odd multiple of  (say , 3, 5, 

7…..) or the path difference is an odd multiple of  (say ,.......)
2

3
,

2


or the time interval is an odd multiple of (T 

/ 2). 

(iv) Phase difference :  If two particles performs S.H.M and their equation are  

    )sin( 11   tay   and  )sin( 22   tay  

then phase difference )()( 12   tt 12    

 15.5 Simple Harmonic Motion. 

Simple harmonic motion is a special type of periodic motion, in which a particle moves to and fro 

repeatedly about a mean position under a restoring force which is always directed towards the mean position 

and whose magnitude at any instant is directly proportional to the displacement of the particle from the mean 

position at that instant.  

Restoring force  Displacement of the particle from mean position. 

        F   – x  

        F = – kx  

Where k is known as force constant. Its S.I. unit is Newton/meter and dimension is [MT –2].  
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 15.6 Displacement in S.H.M.. 

The displacement of a particle executing S.H.M. at an instant is defined as the distance of particle from the 

mean position at that instant.  

As we know that simple harmonic motion is defined as the projection of uniform circular motion on any 

diameter of circle of reference. If the projection is taken on y-axis. 

then from the figure tay sin  

       t
T

ay
2

sin   

      tnay 2sin  

      )sin(   tay   

where a = Amplitude,  = Angular frequency, t = Instantaneous time,  

T = Time period, n = Frequency and  = Initial phase of particle 

If the projection of P is taken on X-axis then equations of S.H.M. can be given as  

   )(cos   tax  

   







 


t

T
ax

2
cos  

   )2(cos   tnax  

      Important points 

(i) tay sin         when the time is noted from the instant when the vibrating particle is at mean position. 

(ii) tay cos         when the time is noted from the instant when the vibrating particle is at extreme 

position. 

(iii) )sin(   tay  when the vibrating particle is  phase leading or lagging from the mean position. 

(iv) Direction of displacement is always away from the equilibrium position, particle either is moving away 

from or is coming towards the equilibrium position. 

(v) If t is given or phase ( ) is given, we can calculate the displacement of the particle.  

N 

a 

P 

M 
X 

O 

 =t 

Y 

X 

Y 
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If  
4

T
t   (or 

2


  ) then from equation t

T
ay

2
sin ,  we get 

4

2
sin

T

T
ay


 aa 










2
sin


 

Similarly if 
2

T
t  (or   )  then we get 0y  

Sample problems based on Displacement 

Problem 1.  A simple harmonic oscillator has an amplitude A and time period T. The time required by it to travel from 

Ax   to 2/Ax   is             [CBSE 1992; SCRA 1996] 

(a) 6/T  (b) 4/T  (c) 3/T  (d) 2/T  

Solution : (a) Because the S.H.M. starts from extreme position so tay cos  form of S.H.M. should be used.  

 t
T

A
A 2

cos
2
  t

T

 2
cos

3
cos    6/Tt   

Problem 2. A mass m = 100 gms is attached at the end of a light spring which oscillates on a friction less horizontal 

table with an amplitude equal to 0.16 meter and the time period equal to 2 sec. Initially the mass is 

released from rest at t = 0 and displacement x = – 0.16 meter. The expression for the displacement of the 

mass at any time (t) is              [MP PMT 1995] 

(a) )(cos16.0 tx   (b) )cos(16.0 tx   (c) )cos(16.0   tx  (d) )cos(16.0   tx  

Solution : (b) Standard equation for given condition  

t
T

ax
2

cos  )cos(16.0 tx           [As a = – 0.16 meter, T = 2 sec] 

Problem 3. The motion of a particle executing S.H.M. is given by )05.(100sin01.0  tx  . Where x is in meter and 

time t is in seconds. The time period is       [CPMT 1990] 

(a) 0.01 sec (b) 0.02 sec (c) 0.1 sec (d) 0.2 sec 

Solution : (b) By comparing the given equation with standard equation )sin(   tay  

  100   so 02.0
100

22









T sec 

Problem 4. Two equations of two S.H.M. are )sin(   tax  and )cos(   tby . The phase difference between 

the two is        [MP PMT 1985] 

(a) 0o (b) o (c) 90o (d) 180o   

Solution : (c) )sin(   tax  and )cos(   tby = )2/sin(  tb  
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Now the phase difference = )()
2

( 


  tt o902/    

 15.7 Velocity in S.H.M.. 

Velocity of the particle executing S.H.M. at any instant, is defined as the time rate of change of its 

displacement at that instant. 

In case of S.H.M. when motion is considered from the equilibrium position  

  tay sin  

so  ta
dt

dy
v  cos  

  tav  cos        ……(i) 

or  tav  2sin1    [As sin t = y/a] 

or  22 yav         …..(ii) 

      Important points 

(i) In S.H.M. velocity is maximum at equilibrium position. 

From equation (i)  av 
max

 when  tcos =1  i.e.  =  t = 0   

from equation (ii)   av 
max

  when  0y        

(ii) In S.H.M. velocity is minimum at extreme position. 

From equation (i)  0
min

v   when  tcos = 0  i.e  
2


  t  

From equation (ii)  0min v     when  y = a   

(iii) Direction of velocity is either towards or away from mean position depending on the position of 

particle. 

Sample problems based on Velocity 

Problem 5.  A body is executing simple harmonic motion with an angular frequency 2 rad/sec. The velocity of the body 

at 20 mm displacement. When the amplitude of motion is 60 mm is    [AFMC 1998] 

(a) 40 mm/sec (b) 60 mm/sec (c) 113 mm/sec (d) 120 mm/sec 

Solution : (c) 2222 )20()60(2  yav   = 113 mm/sec 
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Problem 6. A body executing S.H.M. has equation )64.0220sin(30.0  ty  in meter. Then the frequency and maximum 

velocity of the body is                     [AFMC 1998] 

(a) smHz /66,35  (b) smHz /66,45  (c) smHz /113,58  (d) smHz /132,35  

Solution : (a) By  comparing with standard equation )sin(   tay  we get 220;30.0  a  

 2202 n  Hzn 35  so smav /662203.0
max

   

Problem 7. A particle starts S.H.M. from the mean position. Its amplitude is A and time period is T. At the time when its 

speed is half of the maximum speed. Its displacement y is           [CBSE 1996] 

(a) A/2 (b) 2/A  (c) 2/3A  (d) 3/2A  

Solution : (c) 22 yav     22

2
ya

a



 22

2

4
ya

a
  

2

3 A
y               [As 

22

max av
v  ] 

Problem 8. A particle perform simple harmonic motion. The equation of its motion is )
6

4sin(5


 tx . Where x is its 

displacement. If the displacement of the particle is 3 units then its velocity is            [MP PMT 1994] 

(a) 3/2  (b) 6/5  (c) 20 (d) 16 

Solution : (d) 22 yav  22 354  = 16                [As  = 4, a = 5,  y = 3] 

Problem 9. A simple pendulum performs simple harmonic motion about x = 0 with an amplitude (A) and time period 

(T). The speed of the pendulum at 
2

A
x  will be     [MP PMT 1987] 

(a) 
T

A 3
 (b) 

T

A
 (c) 

T

A

2

3
 (d) 

T

A23
 

Solution : (a) 22 yav    
4

2 2
2 A

A
T

v 


T

A 3
  [As y = A/2] 

Problem 10. A particle is executing S.H.M. if its amplitude is 2 m and periodic time 2 seconds. Then the maximum 

velocity of the particle will be                 [MP PMT 1985] 

(a) 6  (b) 4  (c) 2  (d)  

Solution : (c) 
2

2
2

2
max


 

T
aav   2

max
v  

Problem 11. A S.H.M. has amplitude ‘a’ and time period T. The maximum velocity will be            [MP PMT 1985] 

(a) 
T

a4
 (b) 

T

a2
 (c) 

T

a
2  (d) 

T

a2
 

Solution : (d) 
T

a
av




2
max   
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Problem 12. A particle executes S.H.M. with a period of 6 second and amplitude of 3 cm its maximum speed in cm/sec 

is  

[AIIMS 1982] 

(a)  / 2 (b)  (c) 2 (d) 3  

Solution : (b) 
6

2
3

2
max


 

T
aav  

max
v  

Problem 13. A body of mass 5 gm is executing S.H.M. about a point with amplitude 10 cm. Its maximum velocity is 100 

cm/sec. Its velocity will be 50 cm/sec, at a distance                   [CPMT 1976] 

(a) 5 (b) 25  (c) 35  (d) 210  

Solution : (c) sec/100
max

cmav    and cma 10  so  .sec/10 rad  

  22 yav      50 = 221010 y  35y  

 15.8 Acceleration in S.H.M.. 

The acceleration of the particle executing S.H.M. at any instant, is defined as the rate of change of its 

velocity at that instant. So acceleration  )cos( ta
dt

d

dt

dv
A   

    taA  sin2    ……(i) 

    yA 2     ……(ii)   [As tay sin ] 

      Important points 

(i) In S.H.M. as y2onAccelerati   is not constant. So equations of translatory motion can not be applied. 

(ii) In S.H.M. acceleration is maximum at extreme position.   

From equation (i)  aA 2
max     when    1maximumsin t i.e.  at 

4

T
t    or 

2


 t  

From equation (ii) aA 2
max ||     when ay    

(iii) In S.H.M. acceleration is minimum at mean position  

From equation (i) 0min A      when   0sin t  i.e.   at  0t  or 
2

T
t   or  t  

From equation (ii) 0min A      when   0y  

(iv) Acceleration is always directed towards the mean position and so is always opposite to displacement  

i.e.,  yA   

 15.9 Comparative Study of Displacement, Velocity and Acceleration. 
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Displacement  tay sin  

Velocity  )
2

sin(cos


  tatav  

Acceleration )sin(sin 22   tataA  

From the above equations and graphs we can conclude 

that. 

(i) All the three quantities displacement, velocity and 

acceleration show harmonic variation with time having same 

period.  

(ii) The velocity amplitude is  times the displacement amplitude  

(iii) The acceleration amplitude is 2  times the displacement amplitude  

(iv) In S.H.M. the velocity is ahead of displacement by a phase angle  / 2 

(v) In S.H.M. the acceleration is ahead of velocity by a phase angle  / 2 

(vi) The acceleration is ahead of displacement by a phase angle of  

(vii) Various physical quantities in S.H.M. at different position : 

 

Physical quantities Equilibrium position (y = 0) Extreme Position (y =  a) 

Displacement tay sin  Minimum (Zero) Maximum (a) 

Velocity 22 yav   Maximum (a) Minimum (Zero) 

Acceleration yA 2  Minimum (Zero) Maximum ( a2 ) 

 

 15.10 Energy in S.H.M.. 

A particle executing S.H.M. possesses two types of energy : Potential energy  and  Kinetic energy 

(1) Potential energy : This is an account of the displacement of the particle from its mean position.  

The restoring force kyF  against which work has to be done  

T T
2

1

 

T
2

3

 

– a2 

2T Time 

2T T 

2T T 

2T T 

0 

0 

0 

a 

+a2 

– a 

v 

y 

– a 

+a 

+a 

Displacement  

y = a sin t 

Velocity  

v = a cos t 

Acceleration  

A = – a2 cos t 
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So     
yx

dykyFdxdwU
00

2

2

1
ky  

 potential Energy  22

2

1
ymU       [As mk /2  ] 

    tamU  222 sin
2

1
      [As tay sin ] 

 

      Important points 

(i) Potential energy maximum and equal to total energy at extreme positions  

  222
max

2

1

2

1
amkaU   when ay  ;  2/ t ;  4/Tt   

(ii) Potential energy is minimum at mean position 

  0
min

U    when 0y ;  0t ;  0t  

(2) Kinetic energy : This is because of the velocity of the particle 

Kinetic Energy  2

2

1
mvK   

   tmaK  222 cos
2

1
   [As tav  cos ] 

   )(
2

1 222 yamK     [As 22 yav  ] 

(i) Kinetic energy is maximum at mean position and equal to total energy at mean position. 

    22

2

1
max

amK   when 0y ; 0t ; 0t  

(ii) Kinetic energy is minimum at extreme position. 

   0
min

K   when ay  ;  4/Tt  , 2/ t  

(3) Total energy : Total mechanical energy = Kinetic energy + Potential energy 

   E 22222

2

1
)(

2

1
ymyam   22

2

1
am  

 Total energy is not a position function i.e. it always remains constant. 

(4) Energy position graph : Kinetic energy  (K) )(
2

1 222 yam    

              Potential Energy (U) = 22

2

1
ym  

y =– a y =+ a y = 0 

U 

Energy 

K 
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            Total Energy (E) = 22

2

1
am  

It is clear from the graph that  

(i) Kinetic energy is maximum at mean position and minimum at extreme position 

(ii) Potential energy is maximum at extreme position and minimum at mean position 

(iii) Total energy always remains constant. 

(5) Kinetic Energy  tamK  222 cos
2

1
 )2cos1(

4

1 22 tam   )'cos1(
2

1
tE   

   Potential Energy  )2cos1(
4

1
sin

2

1 22222 tamtamU   )'cos1(
2

1
tE   

    where   2'  and 22

2

1
amE   

 i.e. in S.H.M., kinetic energy and potential 

energy vary periodically with double the frequency of 

S.H.M. (i.e. with time period 2/' TT  )  

From the graph we note that potential energy or 

kinetic energy completes two vibrations in a time 

during which S.H.M. completes one vibration. Thus the 

frequency of potential energy or kinetic energy double than that of S.H.M. 

Sample problems based on Energy 

Problem 14. A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy 

changes into potential energy is                  [MP PET 2000] 

(a) 2/f  (b) f  (c) f2  (d) f4  

Solution : (c)   

Problem 15. When the potential energy of a particle executing simple harmonic motion is one-fourth of the maximum 

value during the oscillation, its displacement from the equilibrium position in terms of amplitude ‘a’ is 

[CBSE 1993; MP PMT 1994; MP PET 1995, 96; MP PMT 2000] 

(a) 4/a  (b) 3/a  (c) 2/a  (d) 3/2a   

T
2

1
 

tamPE 
222

sin
2

1
  

tamKE 
222

cos
2

1
  

22

2

1
energyTotal am  

E
n

e
rg

y
 

Time T 

E 

0 
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Solution : (c) According to problem potential energy =
4

1
maximum Energy 

 







 2222

2

1

4

1

2

1
amym  

4

2
2 a

y   2/ay   

Problem 16. A particle of mass 10 grams is executing S.H.M. with an amplitude of 0.5 meter and circular frequency of 

10 radian/sec. The maximum value of the force acting on the particle during the course of oscillation is  

[MP PMT 2000] 

(a) 25 N (b) 5 N (c) 2.5 N (d) 0.5 N 

Solution : (d) Maximum force = mass  maximum acceleration  = am 2 )5.0()10(1010 23 = 0.5 N 

Problem 17. A body is moving in a room with a velocity of 20 m/s perpendicular to the two walls separated by 5 

meters. There is no friction and the collision with the walls are elastic. The motion of the body is          [MP PMT 1999] 

(a) Not periodic    (b) Periodic but not simple harmonic 

(c) Periodic and simple harmonic  (d) Periodic with variable time period 

Solution : (b) Since there is no friction and collision is elastic therefore no loss of energy take place and the body strike 

again and again with two perpendicular walls. So the motion of the ball is periodic. But here, there is no 

restoring force. So the characteristics of S.H.M. will not satisfied. 

Problem 18. Two particles executes S.H.M. of same amplitude and frequency along the same straight line. They pass 

one another when going in opposite directions. Each time their displacement is half of their amplitude. The 

phase difference between them is        [MP PMT 1999] 

(a) 30o (b) 60o (c) 90o (d) 120o 

Solution : (d) Let two simple harmonic motions are tay sin  and )sin(   tay  

In the first case  ta
a

sin
2
  2/1sin t    

2

3
cos t  

In the second case )(sin
2

  ta
a

 

 ]sincoscos.[sin
2

1
 tt   












  sin

2

3
cos

2

1

2

1  

  sin3cos1    22 sin3)cos1(   )cos1(3)cos1( 22    

By solving we get 1cos   or  2/1cos   

i.e.         0     or  o120  
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Problem 19. The acceleration of a particle performing S.H.M. is 12 cm/sec2 at a distance of 3 cm from the mean 

position. Its time period is       [MP PET 1996; MP PMT 1997] 

(a) 0.5 sec (b) 1.0 sec (c) 2.0 sec (d) 3.14 sec 

Solution : (d) yA 2  2
3

12


y

A
 ; but  14.3

2

22
 






T  

Problem 20. A particle of mass 10 gm is describing S.H.M. along a straight line with period of 2 sec and amplitude 

of 10 cm. Its kinetic energy when it is at 5 cm. From its equilibrium position is     [MP PMT 1996] 

(a) erg25.37   (b) erg275.3   (c) erg2375   (d) erg2375.0   

Solution : (c) Kinetic energy )(
2

1 222 yam   )510(
4

4
10

2

1 22
2


 ergs2375  . 

Problem 21. The total energy of the body executing S.H.M. is E. Then the kinetic energy when the displacement is half 

of the amplitude is        [RPET 1996] 

(a) 2/E  (b) 4/E  (c) 4/3E  (d) 4/3 E  

Solution : (c) Kinetic energy  )(
2

1 222 yam  















42

1 2
22 a

am 







 22

2

1

4

3
am =

4

3E
 [As 

2

a
y  ] 

Problem 22. A body executing simple harmonic motion has a maximum acceleration equal to 24 m/sec2
 and maximum 

velocity equal to 16 meter/sec. The amplitude of simple harmonic motion is    [MP PMT 1995] 

(a) meters
3

32
 (b) meters

32

3
 (c) meters

9

1024
 (d) meters

9

64
 

Solution : (a) Maximum acceleration 242 a   …..(i) 

and maximum velocity 16a   ….(ii) 

Dividing (i) by (ii)   
2

3
  

Substituting this value in equation (ii) we get metera 3/32  

Problem 23. The displacement of an oscillating particle varies with time (in seconds) according to the equation. 

.
3

1

22
sin)( 










t
cmy


 The maximum acceleration of the particle approximately    [AMU 1995] 

(a) 5.21 cm/sec2 (b) 3.62 cm/sec2 (c) 1.81 cm/sec2 (d) 0.62 cm/sec2 

Solution : (d) By comparing the given equation with standard equation, )sin(   tay  

We find that 1a and 4/   

Now maximum acceleration a2 2
22

sec/62.0
4

14.3

4
cm


























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Problem 24. The potential energy of a particle executing S.H.M. at a distance x from the mean position is proportional 

to  

[Roorkee 1992]  

(a) x  (b) x  (c) 2x  (d) 3x   

Solution : (c) 

Problem 25. The kinetic energy and potential energy of a particle executing S.H.M. will be equal, when displacement is 

(amplitude = a)           [MP PMT 1987; CPMT 1990] 

(a) 2/a  (b) 2a  (c) 2/a  (d) 
3

2a
 

Solution : (c) According to problem    Kinetic energy = Potential energy    22222

2

1
)(

2

1
ymyam    

  222 yya     2/ay   

Problem 26. The phase of a particle executing S.H.M. is 
2


when it has    [MP PET 1985] 

 (a) Maximum velocity (b) Maximum acceleration(c) Maximum energy (d) Maximum displacement 

Solution : (b, d) Phase 2/ means extreme position. At extreme position acceleration and displacement will be maximum. 

Problem 27. The displacement of a particle moving in S.H.M. at any instant is given by tay sin . The acceleration 

after time 
4

T
t   is (where T is the time period)      [MP PET 1984] 

(a) a  (b) a  (c) 2a  (d) 2a  

Solution : (d) 

Problem 28. A particle of mass m is hanging vertically by an ideal spring of force constant k, if the mass is made to 

oscillate vertically, its total energy is                     [CPMT 1978] 

(a) Maximum at extreme position  (b) Maximum at mean position 

(c) Minimum at mean position  (d) Same at all position  

Solution : (d)  

 15.11 Time Period and Frequency of S.H.M.. 

For S.H.M. restoring force is proportional to the displacement  

  yF     or  kyF       …(i) where k is a force constant. 

For S.H.M. acceleration of the body yA 2   …(ii) 
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 Restoring force on the body  ymmAF 2   …(iii) 

From (i) and (iii) ymky 2  
m

k
  

  Time period
k

m
T 




2

2
)(   

or  Frequency (n) 
m

k

T 2

11
  

In different types of S.H.M. the quantities m and k will go on taking different forms and names. 

In general m is called inertia factor and k is called spring factor. 

Thus  
factor Spring 

factor Inertia
2T     

or   
factor Inertia

factorSpring

2

1


n  

In linear S.H.M. the spring factor stands for force per unit displacement and inertia factor for mass of the 

body executing S.H.M. and in Angular S.H.M. k stands for restoring torque per unit angular displacement and 

inertial factor for moment of inertia of the body executing S.H.M.  

For linear S.H.M. 
lacementForce/Disp

2
m

k

m
T  

onAccelerati

ntDisplaceme
2






m

m


A

y
 2

onAccelerati

ntDisplaceme
2   

or  
y

A
n

 2

1

ntDispalceme

onAccelerati

2

1
  

 15.12 Differential Equation of S.H.M.. 

For S.H.M. (linear)  Acceleration  – (Displacement) 

                    yA       

or        yA 2  

or       y
dt

yd 2

2

2

  

or    0
2

2

 ky
dt

yd
m    [As  

m

k
 ] 
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For angular S.H.M.   c    and  02

2

2
 



dt

d   

    where 
I

c
2   [As c = Restoring torque constant and I = Moment of inertia] 

Sample problems based on Differential equation of S.H.M. 

Problem 29. A particle moves such that its acceleration a is given by bxa  . Where x is the displacement from 

equilibrium position and b is a constant. The period of oscillation is      

[NCERT 1984; CPMT 1991; MP PMT 1994; MNR 1995] 

(a) b2  (b) 
b

2
 (c) 

b

2
 (d) 

b


2  

Solution : (b) We know that Acceleration = 2  (displacement)  and       bxa   (given in the problem) 

Comparing above two equation b2  b   Time period 
b

T




 22
  

Problem 30. The equation of motion of a particle is 0
2

2

 ky
dt

yd
where k is a positive constant. The time period of the 

motion is given by 

(a) 
k

2
 (b) k2  (c) 

k

2
 (d) k2  

Solution : (c) Standard equation 0
2

2

 ky
dt

yd
m and in a given equation m =1 and k = k  

So, 
k

m
T 2  

k

2
  

 15.13 Simple Pendulum. 

An ideal simple pendulum consists of a heavy point mass body suspended by a weightless, inextensible 

and perfectly flexible string from a rigid support about which it is free to oscillate. 

But in reality neither point mass nor weightless string exist, so we can 

never construct a simple pendulum strictly according to the definition.  

Let mass of the bob = m 

Length of simple pendulum = l 

Displacement of mass from mean position (OP) = x 

O 

y 
 

mg sin 
mg mg cos 

P 

l 

 

S 

T 
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When the bob is displaced to position P, through a small angle  from the vertical. Restoring force acting 

on the bob  

   sinmgF   

or    mgF    (When   is small sin    
Length

Arc~   = 
l

OP
 = 

l

x
) 

or   
l

x
mgF   

   k
l

mg

x

F



  (Spring factor) 

So time period    
factorSpring 

factor Inertia
2T  

lmg

m

/
2

g

l
2  

      Important points 

(i) The period of simple pendulum is independent of amplitude as long as its motion is simple harmonic. 

But if  is not small, sin     then motion will not remain simple harmonic but will become oscillatory. In this 

situation if 0 is the amplitude of motion. Time period 

   































16
1.......

2
sin

2

1
12

2

0
0

02

2


 T

g

l
T  

(ii) Time period of simple pendulum is also independent of mass of the bob. This is why 

(a) If the solid bob is replaced by a hollow sphere of same radius but different mass, time period remains 

unchanged. 

(b) If a girl is swinging in a swing and another sits with her, the time period remains unchanged. 

(iii) Time period lT   where l is the distance between point of suspension and center of mass of bob 

and is called effective length. 

(a) When a sitting girl on a swinging swing stands up, her center of mass will go up and so l and hence T will 

decrease. 

(b) If a hole is made at the bottom of a hollow sphere full of water and water comes out slowly through the 

hole and time period is recorded till the sphere is empty, initially and finally the center of mass will be at the 

center of the sphere. However, as water drains off the sphere, the center of mass of the system will first move 
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down and then will come up. Due to this l and hence T first increase, reaches a maximum and then decreases till 

it becomes equal to its initial value. 

(iv) If the length of the pendulum is comparable to the radius of earth then  













Rl
g

T
11

1
2  

(a) If Rl  , then 
Rl

11
      so  

g

l
T 2  

(b) If RlRl /1/1)(    so 6.84
10

104.6
22

6




 
g

R
T  minutes 

and it is the maximum time period which an oscillating simple pendulum can have 

(c) If Rl      so  hour
g

R
T 1

2
2    

(v) If the bob of simple pendulum is suspended by a wire then effective length of pendulum will increase 

with the rise of temperature due to which the time period will increase. 

  )1(0   ll    (If   is the rise in temperature, 0l  initial length of wire, l = final length of 

wire) 

  2/1

00

)1(  
l

l

T

T
 

2

1
1  

So  
2

1
1

0T

T
 i.e.  



2

1

T

T
 

(vi) If bob a simple pendulum of density  is made to oscillate in some fluid of density  (where  <) then 

time period of simple pendulum gets increased. 

As thrust will oppose its weight therefore   mgmg ' Thrust 

or  




V

gV
gg '    i.e.   












1' gg    



 


g

g'
   

  1
'

'









g

g

T

T
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(vii) If a bob of mass m carries a positive charge q and pendulum is placed in a uniform electric field of 

strength E directed vertically upwards. 

In given condition net down ward acceleration 
m

qE
gg '  

So  

m

qE
g

l
T



 2  

If the direction of field is vertically downward then time period 

m

qE
g

l
T



 2  

(viii) Pendulum in a lift :  If the pendulum is suspended from the ceiling of the lift.  

(a) If the lift is at rest or moving down ward /up ward with constant velocity. 

  
g

l
T 2   and  

l

g
n

2

1
  

(b) If the lift is moving up ward with constant acceleration a  

  
ag

l
T


 2   and  

l

ag
n




2

1
 

Time period decreases and frequency increases  

(c) If the lift is moving down ward with constant acceleration a 

  
ag

l
T


 2   and   

l

ag
n




2

1
 

Time period increase and frequency decreases  

(d) If the lift is moving down ward with acceleration  ga   

  



gg

l
T 2   and  

l

gg
n




2

1
= 0 

It means there will be no oscillation in a pendulum.  

Similar is the case in a satellite and at the centre of earth where effective acceleration becomes zero and 

pendulum will stop.  

(ix) The time period of simple pendulum whose point of suspension moving horizontally with acceleration 

a  

g 

m

qE
 

+ 

    +     +      +    +     +    +  



 

 

 

 
Simple Harmonic Motion 189 

  
2/122 )(

2
ag

l
T


    and  )/(tan 1 ga  

(x) If simple pendulum suspended in a car that is moving with constant 

speed v around a circle of radius r.  

  
2

2
2

2


















r

v
g

l
T   

(xi) Second’s Pendulum : It is that simple pendulum whose time period of vibrations is two seconds. 

Putting  T = 2 sec  and 2sec/8.9 mg   in 
g

l
T 2  we get  

  993.0
4

8.94
2







l m = 99.3 cm 

Hence length of second’s pendulum is 99.3 cm or nearly 1 meter on earth surface. 

For the moon the length of the second’s pendulum will be 1/6 meter [As 
6

Earthg
gmoon  ] 

(xii) In the absence of resistive force the work done by a simple pendulum in one complete oscillation is 

zero.  

(xiii) Work done in giving an angular displacement   to the pendulum from its mean position. 

   )cos1(  mglUW  

(xiv) Kinetic energy of the bob at mean position = work done or potential energy at extreme  

   )cos1(  mglKE
mean

 

(xv) Various graph for simple pendulum  

 

 

 

 

a 

22
ag 

 

 

a 

g 

 

l  T2 

T 

l 

l  T2 

T2 

l 

l  T2 

T 

l  

T 
g

1  

T 

g

1  

T 

 g 

T 
g

1  
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Sample problems based on Simple pendulum 

Problem 31. A clock which keeps correct time at 20oC, is subjected to 40oC.  If coefficient of linear expansion of the 

pendulum is 61012  / oC. How much will it gain or loose in time      [BHU 1998] 

(a) 10.3 sec/day  (b) 20.6 sec/day (c) 5 sec/day (d) 20 min/day 

Solution : (a) )2040(1012
2

1

2

1 6 
 
T

T
; day/864001012 5 secT    = 10.3 sec/day. 

Problem 32. The metallic bob of simple pendulum has the relative density . The time period of this pendulum is T. If 

the metallic bob is immersed in water, then the new time period is given by   [SCRA 1998] 

(a) 






 



 1
T  (b) 









 1


T  (c) 



 1
T  (d) 

1


T  

Solution : (d) Formula  







T

T '
 Here 1 for water so 

1
'







TT . 

Problem 33. The period of a simple pendulum is doubled when    [CPMT 1974; MNR 1980; AFMC 1995] 

(a) Its length is doubled   

(b) The mass of the bob is doubled 

(c) Its length is made four times 

(d) The mass of the bob and the length of the pendulum are doubled 

Solution : (c)  

Problem 34. A simple pendulum is executing S.H.M. with a time period T. if the length of the pendulum is increased by 

21% the percentage increase in the time period of the pendulum is     [BHU 1994] 

(a) 10% (b) 21% (c) 30% (d) 50% 

Solution : (a) As lT        21.1
1

2

1

2 
l

l

T

T
 TTTT %101.12  . 

Problem 35. The length of simple pendulum is increased by 1% its time period will   [MP PET 1994] 

(a) Increase by 1% (b) Increase by 0.5% (c) Decrease by 0.5% (d) Increase by 2% 
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Solution : (b) glT /2  hence lT   

Percentage increment in 
2

1
T (percentage increment in l) = 0.5%. 

Problem 36. The bob of a simple pendulum of mass m and total energy E will have maximum linear momentum equal 

to  

 [MP PMT 1986] 

(a) 
m

E2
 (b) mE2  (c) 2mE (d) mE2 

Solution : (b) 
m

P
E

2

2

    where E = Kinetic Energy, P = Momentum, m = Mass 

So mEP 2 . 

Problem 37. The mass and diameter of a planet are twice those of earth. The period of oscillation of pendulum on this 

planet will be (if it is a second’s pendulum on earth)          [IIT 1973] 

(a) 
2

1
sec (b) 22 sec (c) 2 sec (d) 

2

1
sec 

Solution : (b)  
2R

M
g  ;   2/' gg  ;  

'

'

g

g

T

T
  (T = 2 sec for second’s pendulum) 

 22'T  

 15.14 Spring Pendulum. 

A point mass suspended from a mass less spring or placed on a frictionless horizontal plane attached with 

spring (fig.) constitutes a linear harmonic spring pendulum 

Time period 
factorspring

factorinertia
2T  

   
k

m
T 2  and Frequency  

m

k
n

2

1
  

      Important points 

(i) Time period of a spring pendulum depends on the mass suspended  

   mT             or        
m

n
1

  

i.e. greater the mass greater will be the inertia and so lesser will be the frequency of oscillation and greater 

will be the time period. 

(ii) The time period depends on the force constant k of the spring 

k 

m 
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k

T
1

  or  kn   

(iii) Time of a spring pendulum is independent of acceleration due to gravity. That is why a clock based on 

spring pendulum will keep proper time every where on a hill or moon or in a satellite and time period of a 

spring pendulum will not change inside a liquid if damping effects are neglected. 

(iv) If the spring has a mass M and mass m is suspended from it, effective mass is given by 
3

M
m

ff
m

e
  

So that    
k

ff
m

T
e

2  

(v) If two masses of mass m1 and m2 are connected by a spring and made to oscillate on horizontal surface, 

the reduced mass mr is given by 
21

111

mmm r

  

So that    
k

m
T r2  

(vi) If a spring pendulum, oscillating in a vertical plane is made to oscillate on a horizontal surface, (or on 

inclined plane) time period will remain unchanged. However, equilibrium position for a spring in a horizontal 

plain is the position of natural length of spring as weight is balanced by reaction. While in case of vertical 

motion equilibrium position will be 0yL   with mgky 0  

 

 

 

 

 

(vii) If the stretch in a vertically loaded spring is 0y  then for equilibrium of mass m,  mgky 0   i.e. 

g

y

k

m 0  

So that   
g

y

k

m
T 022    

k 

L 

m 

m

g 

R 

k 

m2 m1 

m 

ky0 L + y0 
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Time period does not depends on ‘g’ because along with g, yo will also change in such a way that 
k

m

g

y
0  

remains constant  

(viii) Series combination : If n springs of different force constant are connected in 

series having force constant .......,, 321 kkk  respectively then   

  ........
1111

321


kkk

ff
k

e

 

If all spring have same spring constant then  

  
n

k
ff

k
e

  

(ix) Parallel combination : If the springs are connected in parallel then 

    321 kkk
eff

k ……. 

If all spring have same spring constant then  

  nk
ff

k
e

  

(x) If the spring of force constant k is divided in to n equal parts then spring constant of 

each part will become nk and if these n parts connected in parallel then  

  kn
ff

k
e

2   

(xi) The spring constant k is inversely proportional to the spring length. 

As   
springof Length

1

Extension

1
k  

That means if the length of spring is halved then its force constant becomes double. 

(xii) When a spring of length l is cut in two pieces of length l1 and l2 such that 21 nll  .  

If the constant of a spring is k then        Spring constant of first part 
n

nk
k

)1(
1


  

               Spring constant of second part  knk )1(2    

and ratio of spring constant 
nk

k 1

2

1   

Sample problems based on Spring pendulum 

Series combination 

m 

 k1 

 k2 

 k3 

 k3 

Parallel combination 

m 

 k2  k1 
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Problem 38. A spring of force constant k is cut into two pieces such that one pieces is double the length of the other. 

Then the long piece will have a force constant of                [IIT-JEE 1999] 

(a) k3/2  (b) k2/3  (c) k3  (d) k6  

Solution : (b)  If 21 nll   then  
n

kn
k

)1(
1


 k

2

3
       [As n = 2] 

Problem 39. Two bodies M and N of equal masses are suspended from two separate mass less springs of force 

constants 1k and 2k respectively. If the two bodies oscillate vertically such that their maximum velocities are 

equal, the ratio of the amplitude of M to that of N is    [MP PET/PMT 1997; IIT-JEE 1988; BHU 1998] 

(a) 21 / kk  (b) 21 / kk  (c) 12 / kk  (d) 12 / kk  

Solution : (d) Given that maximum velocities are equal  2211  aa   
m

k
a

m

k
a 2

2
1

1   
1

2

2

1

k

k

a

a
 . 

Problem 40. Two identical springs of constant k are connected in series and parallel as shown in figure. A mass m is 

suspended from them. The ratio of their frequencies of vertical oscillation will be  [MP PET 1993; BHU 1997] 

 

(a) 2 : 1 

(b) 1 : 1 

(c) 1 : 2 

(d) 4 : 1 

Solution : (c) For series combination 2/1 kn   

For parallel combination kn 22     so   
2

1

2

2/

2

1 
k

k

n

n
. 

Problem 41. A block of mass m attached to a spring of spring constant k oscillates on a smooth horizontal table. The other 

end of the spring is fixed to a wall. The block has a speed v when the spring is at its natural length. Before 

coming to an instantaneous rest, if the block moves a distance x from the Mean position, then    [MP PET 1996] 

(a) kmx /  (b) 
k

m

v
x

1
  (c) kmvx /  (d) kmvx /  

Solution : (c) Kinetic energy of  block 






 2

2

1
mv  = Elastic potential energy of spring 







 2

2

1
kx  

By solving we get  
k

m
vx  . 

 k 

m 

 k 

m 

 k 

 k 
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Problem 42. A block is placed on a friction less horizontal table. The mass of the block is m and springs of force 

constant k1, k2 are attached on either side with if the block is displaced a little and left to oscillate, then the 

angular frequency of oscillation will be           [MP PMT 1994] 

(a) 
2/1

21 






 

m

kk
 (b) 

2/1

21

21

)(









 kkm

kk
 (c) 

2/1

21

21

)(









 mkk

kk
 (d) 

2/1

21

2
2

2
1

)( 















mkk

kk
 

Solution : (a) Given condition match with parallel combination so 21 kkffk
e

      
m

kk

m

ffk
e 21  . 

Problem 43. A particle of mass 200 gm executes S.H.M. The restoring force is provided by a spring of force 

constant 80 N/m. The time period of oscillations is               [MP PET 1994] 

(a) 0.31 sec (b) 0.15 sec  (c) 0.05 sec (d) 0.02 sec 

Solution : (a) sec31.0
20

2

80

2.0
22 




k

m
T . 

Problem 44. The length of a spring is l and its force constant is k when a weight w is suspended from it. Its length 

increases by x. if the spring is cut into two equal parts and put in parallel and the same weight W is 

suspended from them, then the extension will be               [MP PMT 1994] 

(a) 2x (b) x (c) x/2 (d) x/4 

Solution : (d) As kxF   so 
k

x
1

  (if F = constant) 

If the spring of constant k is divided in to two equal parts then each parts will have a force constant 2k. 

If these two parts are put in parallel then force constant of combination will becomes 4k. 

 
k

x
1

            so,  
k

k

k

k

x

x

42

1

1

2   
4

2

x
x  . 

Problem 45. A mass m is suspended from a string of length l and force constant k. The frequency of vibration of the 

mass is f1. The spring is cut in to two equal parts and the same mass is suspended from one of the parts. 

The new frequency of vibration of mass is f2. Which of the following reaction between the frequencies is 

correct.  

[NCERT 1983; CPMT 1986; MP PMT 1991] 

(a) 21 2 ff   (b) 21 ff   (c) 21 2 ff   (d) 12 2 ff   

Solution : (d) kf    

If the spring is divided in to equal parts then force constant of each part will becomes double 

2
1

2

1

2 
k

k

f

f
 12 2 ff   

 15.15 Various Formulae of S.H.M.. 
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S.H.M. of a liquid in U tube 

If a liquid of density  contained in a vertical U 

tube performs S.H.M. in its two limbs. Then time 

period 
g

L
T

2
2

g

h
2  

where L = Total length of liquid column,  

h = Height of undisturbed liquid in each limb (L=2h) 

 

 

 

 

 

 

 

S.H.M. of a bar magnet in a magnetic field 

MB

I
T 2  

I = Moment of inertia of magnet  

M = Magnetic moment of magnet 

B = Magnetic field intensity 

 

 

S.H.M. of a floating cylinder 

If l is the length of cylinder dipping in liquid then 

time period  
g

l
T 2  

 

 

S.H.M. of ball in the neck of an air chamber 

 
E

mV

A
T

2
  

m = mass of the ball 

V = volume of air- chamber 

A = area of cross section of neck 

E = Bulk modulus for Air 

S.H.M. of a small ball rolling down in  

hemi-spherical bowl 

 
g

rR
T


 2  

R = radius of the bowl 

r  =radius of the ball 

 

S.H.M. of a body suspended from a wire 

YA

mL
T 2  

m = mass of the body 

L = length of the wire 

Y = young’s modulus of wire 

A = area of cross section of wire 

h 

l 

R 

N 

S F 

F 

m 

L 
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S.H.M. of a piston in a cylinder 

 
PA

Mh
T 2  

M = mass of the piston 

A = area of cross section 

h = height of cylinder 

P = pressure in a cylinder 

S.H.M of a cubical block 

L

M
T


2  

M = mass of the block 

L = length of side of cube 

 = modulus of rigidity  

S.H.M. of a body in a tunnel dug along any chord of 

earth 

 

g

R
T 2 = 84.6  minutes  

S.H.M. of body in the tunnel dug along the diameter 

of earth 

g

R
T 2  

T = 84.6 minutes  

R = radius of the earth = 6400km 

g = acceleration due to gravity = 9.8m/s2 at earth’s 

surface  

S.H.M. of   a conical pendulum 

g

L
T




cos
2   

L = length of string 

 = angle of string from the vertical 

g = acceleration due to gravity 

S.H.M. of L-C circuit 

 LCT 2  

 L = coefficient of self inductance 

 C = capacity of condenser 

 

 15.16 Important Facts and Formulae. 

(1) When a body is suspended from two light springs separately. The time period of vertical oscillations are 

T1 and T2 respectively. 

  
1

1 2
k

m
T        

2

1

2

1

4

T

m
k


  and  

2

2 2
k

m
T      

2

2

2

2

4

T

m
k


  

When these two springs are connected in series and the same mass m is attached at lower end and then 

for series combination  
21

111

kkk
   

L 

 

R R 

O 

L T 

 
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By substituting the values of  21 ,kk           
m

T

m

T

m

T
2

2
2

2

2
1

2

2

444 
   

Time period of the system
2

2

2

1 TTT   

When these two springs are connected in parallel and the same mass m is attached at lower end and then 

for parallel combination  21 kkk   

By substituting the values of  21 ,kk           
2

2

2

2

1

2

2

2 444

T

m

T

m

T

m 
  

Time period of the system 
2

2

2

1

21

TT

TT
T



  

(2) The pendulum clock runs slow due to increase in its time period whereas it becomes fast due to 

decrease in time period. 

(3) If infinite spring with force constant ..........8,4,2, kkkk  respectively are connected in series. The 

effective force constant of the spring will be 2/k . 

(4) If tay sin1   and tby cos2   are two S.H.M. then by the superimposition of these two S.H.M. we 

get  

   21 yyy


  

   tbtay  cossin   

   )sin(   tAy  this is also the equation of  S.H.M.                  

where 22 baA  and )/(tan 1 ab  

(5) If a particle performs S.H.M. whose velocity is 1v at a 1x  distance from mean position and velocity 2v  at 

distance 2x  

  
2

1

2

2

2

2

2

1

xx

vv




 ;   

2

2

2

1

2

1

2

22
vv

xx
T




   

2

2

2

1

2

1

2

2

2

2

2

1

vv

xvxv
a




 ;  

2

1

2

2

2

1

2

2

2

2

2

1
max

xx

xvxv
v




  

 15.17 Free, Damped, Forced and Maintained Oscillation. 

(1) Free oscillation  

(i) The oscillation of a particle with fundamental frequency 

under the influence of restoring force are defined as free 

oscillations 

(ii) The amplitude, frequency and energy of oscillation remains 

constant 

t 

– a 

0 

+a 

y 
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(iii) Frequency of free oscillation is called natural frequency because it depends upon the nature and 

structure of the body.  

(2) Damped oscillation  

(i) The oscillation of a body whose amplitude goes on decreasing with time are defined as damped 

oscillation 

(ii) In these oscillation the amplitude of oscillation decreases 

exponentially due to damping forces like frictional force, viscous  

force, hystersis etc.  

(iii) Due to decrease in amplitude the energy of the oscillator 

also goes on decreasing exponentially  

(3) Forced oscillation  

(i) The oscillation in which a body oscillates under the influence of an external periodic force are known as 

forced oscillation 

(ii) The amplitude of oscillator decrease due to damping forces but on account of the energy gained from 

the external source it remains constant. 

(iii) Resonance : When the frequency of external force is equal to the natural frequency of the oscillator. 

Then this state is known as the state of resonance. And this frequency is known as resonant frequency.  

(4) Maintained oscillation  

The oscillation in which the loss of oscillator is compensated by the supplying energy from an external 

source are known as maintained oscillation. 

t 

– A 

+ 

A 

0 y 
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