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|n the 1700's a number of people

investigated gas behavior in the
laboratory. Robert Boyle investigated the
relationship between the volume of a dry
ideal gas and its pressure.

A practical application illustrating
Boyles Law would be the action of a
syringe. When we draw fluids into a
syringe, we increase the volume inside the
syringe, this correspondingly decreases
the pressure on the inside where as the
pressure on the outside of the syringe is
greater and forces fluid into the syringe.




Kinetic Theory of Gases

11.1 Introduction

In gases the intermolecular forces are very weak and its molecule may fly apart in all
directions. So the gas is characterised by the following properties.

(1) It has no shape and size and can be obtained in a vessel of any shape or size.
(ii) It expands indefinitely and uniformly to fill the available space.
(iii) It exerts pressure on its surroundings.

11.2 Assumption of Kinetic Theory of Gases

Kinetic theory of gases relates the macroscopic properties of gases (such as pressure,
temperature etc.) to the microscopic properties of the gas molecules (such as speed,
momentum, kinetic energy of molecule etc.)

Actually it attempts to develop a model of the molecular behaviour which should result in
the observed behaviour of an ideal gas. It is based on following assumptions :

(1) Every gas consists of extremely small particles known as molecules. The molecules of a
given gas are all identical but are different than those of another gas.

(2) The molecules of a gas are identical, spherical, rigid and perfectly elastic point masses.
(3) Their size is negligible in comparison to intermolecular distance (107 m)

(4) The volume of molecules is negligible in comparison to the volume of gas. (The volume
of molecules is only 0.014% of the volume of the gas).

(5) Molecules of a gas keep on moving randomly in all possible direction with all possible
velocities.

(6) The speed of gas molecules lie between zero and infinity (very high speed).
(7) The number of molecules moving with most probable speed is maximum.

(8) The gas molecules keep on colliding among themselves as well as with the walls of
containing vessel. These collisions are perfectly elastic. (i.e. the total energy before collision =
total energy after the collision).

(9) Molecules move in a straight line with constant speeds during successive collisions.

(10) The distance covered by the molecules between two successive collisions is known as
free path and mean of all free paths is known as mean free path.
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(11) The time spent M a collision between two molecules is negligible in comparison to time
between two successive collisions.
(12) The number of collisions per unit volume in a gas remains constant.

(13) No attractive or repulsive force acts between gas molecules.

(14) Gravitational attraction among the molecules is ineffective due to extremely small
masses and very high speed of molecules.

(15) Molecules constantly collide with the walls of container due to which their momentum
changes. The change in momentum is transferred to the walls of the container. Consequently
pressure is exerted by gas molecules on the walls of container.

(16) The density of gas is constant at all points of the container.

11.3 Pressure of an Ideal Gas

Consider an ideal gas (consisting of N molecules each of mass m) enclosed in a cubical box
of side L.

It’s any molecule moves with velocity V in any direction where V =v_i +v_]+V_k
y y y X y z

This molecule collides with the shaded wall (A;) with velocity Y
v, and rebounds with velocity -v, .
The change in momentum of the molecule A2 —(7_XO°—‘;X A
AP =(-mv,)—(mv ) =-2mv X

As the momentum remains conserved in a collision, the

change in momentum of the wall A; is AP =2mv

After rebound this molecule travel toward opposite wall A, with velocity -v,, collide to it

X ?

and again rebound with velocity v, towards wall A,.

(1) Time between two successive collision with the wall A;.

_ Distance travelled by molecule between two successive collision 2L

At ==
Velocity of molecule v,
- 1 v,
.. Number of collision per second n=—=—-
At 2L
. v
(2) The momentum imparted per unit time to the wall by this molecule nAP = Z—T_va < = %vf

- . m
This is also equal to the force exerted on the wall A, due to this molecule .. AF = Ivf

(3) The total force on the wall A, due to all the molecules F, = %Zﬁ

(4) Now pressure is defined as force per unit area
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FE.m m . m m
P, =K:H2vf :Vva Similarly P, =VZVVZ and P, =VZV22
So P, +P, +P, =%Z(vf +v7 +v?)
3P—% v2 [As P, =P, =P, =P and v’ =V} +V] +V}]
3P =—(VZ+Vi+V3+.....)
or 3p - MN VZ4vE 43 evi+
\ N
or 3P = %vfms { As root mean square velocity of the gas molecule
VZ V3 v evi4
Vrms = N
or P :%%vfm
Tenportant points
. 1mN (mN)T
u)Pzgjrw% or P« v [As V2 ocT]

(a) If volume and temperature of a gas are constant P .« mN i.e. Pressure « (Mass of gas).
i.e. if mass of gas is increased, number of molecules and hence number of collision per

second increases i.e. pressure will increase.

(b) If mass and temperature of a gas are constant. P « (1/V), i.e., if volume decreases,
number of collisions per second will increase due to lesser effective distance between the walls
resulting in greater pressure.

(c) If mass and volume of gas are constant, P oc (v, )* T

i.e., if temperature increases, the mean square speed of gas molecules will increase and as
gas molecules are moving faster, they will collide with the walls more often with greater
momentum resulting in greater pressure.

1mN, 1M,

(i) P v Vins = §VV"“S [As M = mN = Total mass of the gas]
1 M
Pzgpvrzms |:ASPZV}

(iii) Relation between pressure and kinetic energy
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rms

Kinetic energy = % MvZ . .. Kinetic energy per unit volume (E)= %(ijz = l,ovfmS ..... (i)

and we know P = %pvfmS ..... (ii)

2

From (i) and (ii), we get P = 3 E

i.e. the pressure exerted by an ideal gas is numerically equal to the two third of the mean
kinetic energy of translation per unit volume of the gas.

Problem 1.

Solution : (d)

Problem 2.

Solution : (c)

Problem 3.

Solution : (d)

Problem 4.

Sample Problems based on Pressure

The root mean square speed of hydrogen molecules of an ideal hydrogen gas kept in a gas
chamber at 0°C is 3180 m/s. The pressure on the hydrogen gas is

(Density of hydrogen gas is 8.99 x102kg/m?, 1 atmosphere =1.01x10% N /m?)

(a) 0.1 atm (b) 1.5 atm (c) 2.0 atm (d) 3.0 atm

AsP:%pﬁm=%@99u04y@mof=3%xm5Nm2:SOMm

The temperature of a gas is raised while its volume remains constant, the pressure exerted
by a gas on the walls of the container increases because its molecules

(a) Lose more kinetic energy to the wall

(b) Are in contact with the wall for a shorter time
(c) Strike the wall more often with higher velocities
(d) Collide with each other less frequency

Due to increase in temperature root mean square velocity of gas molecules increases. So
they strike the wall more often with higher velocity. Hence the pressure exerted by a gas
on the walls of the container increases.

A cylinder of capacity 20 litres is filled with H, gas. The total average kinetic energy of

translatory motion of its molecules is 1.5x10° J . The pressure of hydrogen in the cylinder is
[MP PET 1993]

(a) 2x10% N/m? (b) 3x10% N/m? (c) 4x10% N/m? (d) 5x10% N/m?
Kinetic energy E = 1.5x10° J, volume V = 20 litre = 20x10°m?

1.5x10°
20 x10

2E 2
Pressure = —— = —
3V 3

J=5xm6Nm2.
N molecules each of mass m of gas A and 2N molecules each of mass 2m of gas B are
contained in the same vessel at temperature T. The mean square of the velocity of

molecules of gas B is v*> and the mean square of x component of the velocity of molecules of
2

. . W .
gas A is w?. The ratio — 18 [NCERT 1984; MP PMT 1990]
v

1 2
()1 (b) 2 (c) 3 (d) 3
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3kT

Solution : (d) Mean square velocity of molecule = —

Problem 5.

Solution : (a)

Problem 6.

Solution : (c)

m

For gas A, x component of mean square velocity of molecule =w?

.. Mean square velocity = 3w? = 3k—T ..... (i)
m
. kT ..
For B gas mean square velocity =v? = 32_m ..... (ii)
2 2
From (i) and (ii) < -2 g0 W _2,
v 1 vZ 3

A flask contains 10°m? gas. At a temperature, the number of molecules of oxygen are

3.0x10%2. The mass of an oxygen molecule is 5.3x102°kg and at that temperature the rms
velocity of molecules is 400 m/s. The pressure in N/m? of the gas in the flask is

(a) 8.48 x10* (b) 2.87 x10* (c) 25.44 x104 (d) 12.72 x10*
V=103m3, N=3.0x10%, m =5.3x10 *°kg, v,,s =400 m/s

=——V ==
3 vV rms 3 10 3

-26 22
poLIMN o 1 53x107x30x10% s ge 106 Nm2.

A gas at a certain volume and temperature has pressure 75 cm. If the mass of the gas is
doubled at the same volume and temperature, its new pressure is

(a) 37.5cm (b) 75 cm (c) 150 cm (d) 300 cm
P =%%Vr2ms ~ P Ocm

At constant volume and temperature, if the mass of the gas is doubled then pressure will
become twice.

11.4 Ideal Gas Equation

A gas which strictly obeys the gas laws is called as perfect or an ideal gas. The size of the
molecule of an ideal gas is zero i.e. each molecule is a point mass with no dimension. There is

no force of

attraction or repulsion amongst the molecule of the gas. All real gases are not

perfect gases. However at extremely low pressure and high temperature, the gases like
hydrogen, nitrogen, helium etc. are nearly perfect gases.

The equation which relates the pressure (P), volume (V) and temperature (T) of the given
state of an ideal gas is known as gas equation.

Ideal gas equations

For 1 mole or N4 molecule or M gram or 22.4 | PV = RT

litres of gas

For x mole of gas PV = uRT

For 1 molecule of gas R
PV =| — [T =kT

A
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For N molecules of gas PV = NkT

For 1 gm of gas oy [EJT T
M

for n gm of gas PV =nrT

(1) Universal gas constant (R) : Dimension [ML?T 267]

PV Pressure x VVolume Work done

R = —-—— = =
4T No. of moles x Temperature  No. of moles x Temperatu re

Thus universal gas constant signifies the work done by (or on) a gas per mole per kelvin.

S.T.P. value : 8.31

Joule cal 3 litrex atm
mole xkelvin ~ mole xkelvin mole x kelvin

(2) Boltzman's constant (k) : Dimension [ML*T 267]

k=R - 831 38,102 Joulekelvin

N 6.023 x102

(3) Specific gas constant (r) : Dimension [L°T ?07]

r= E; Unit : Jo;ule.
M gm x kelvin

Since the value of M is different for different gases. Hence the value of r is different for
different gases.

Problem 7.

Solution : (c)

Problem 8.

Solution : (c)

Problem 9.

Solution : (c)

Sample Problems based on Ideal gas equation

A gas at 27°C has a volume V and pressure P. On heating its pressure is doubled and volume
becomes three times. The resulting temperature of the gas will be

(a) 1800°C (b) 162°C (c) 1527°C (d) 600°C
T P \Y 2P V

From ideal gas equation PV = 4RT we get -2 =| 2 || % |=| =L Vil g
Tl Pl Vl Pl Vl

. T, =6T; =6x300 =1800 K =1527 °C.

A balloon contains 500 m®* of helium at 27°C and 1 atmosphere pressure. The volume of the
helium at - 3°C temperature and 0.5 atmosphere pressure will be

(a) 500m? (b) 700 m® (c) 900 m? (d) 1000 m®
From PV = 4RT wegetV—Z: T—Z i :[ﬂj[ij:g:VZ:SOOxg:QOOm3
L (TP, 300 Jl05) 5 5

When volume of system is increased two times and temperature is decreased half of its
initial temperature, then pressure becomes

(a) 2 times (b) 4 times (c) 1/ 4 times (d)1/ 2 times

P, (T,)(V T,/12\( V P
From PV = ;RT weget 2 =|-2| L |=| 1= —1=1:P2=—1
P, T, )LV, T, 2V, 4 4
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Problem 10.

Solution : (b)

Problem 11.

Solution : (d)

Problem 12.

Solution : (d)

Problem 13.

Solution : (a)

Problem 14.

Solution : (d)

number

The equation of state corresponding to 8g of O, is

(a) PV =8RT (b) PV=RT /4 (c) PV=RT (d) PV =RT /2
As 32 gm O, means 1 mole therefore 8 gm O, means 1/ 4molei.e. u :%

So from PV = 4RT we get PV :%RT or PV =FZ—T

A flask is filled with 13 gm of an ideal gas at 27°C and its temperature is raised to 52°C. The
mass of the gas that has to be released to maintain the temperature of the gas in the flask
at 52°C and the pressure remaining the same is
(@259 (b)2.0g (©) 159 (d)1.0g
PV « Mass of gas x Temperature
In this problem pressure and volume remains constant so M;T; = M,T> = constant
M T
My T _@r+2m) 30 12y v« 13k gm—12gm
M, T, (2+273) 325 13 13 13

i.e. the mass of gas released from the flask = 13 gm - 12 gm = 1 gm.

Air is filled at 60°C in a vessel of open mouth. The vessel is heated to a temperature T so
that 1 / 4™ part of air escapes. Assuming the volume of vessel remaining constant, the value

of Tis [MP PET 1996, 99]

(a) 80°C (b) 444°C (c) 333°C (d) 171°C
M; =M, T, =60+273 =333 K, M, =M _%:¥ [As 1 / 4™ part of air escapes]
If pressure and volume of gas remains constant then MT = constant

T oMy

_( M j:i =T, =%XT1:%X333 — M4 K =171°C

T, M, (3M/4) 3

If the intermolecular forces vanish away, the volume occupied by the molecules contained
in 4.5 kg water at standard temperature and pressure will be given by

(a) 5.6m* (b) 45m? (c) 11.2 litre (d) 11.2m?

B Mass of water _ 4.5kg
Molecular wt. of water 18 x 10 kg

U =250 , T=273 Kand P =10° N/m? (STP)
LRT 250 x 8.3 x 273

> E =5.66m°.

From PV =/RT = V =

The pressure P, volume V and temperature T of a gas in the jar A and the other gas in the jar B
at pressure 2P, volume V/4 and temperature 2T, then the ratio of the number of molecules in
the jar A and B will be [AIIMS 1982]
(a)1:1 (b)1:2 (c)2:1 (d4g:1

N

Ideal gas equation PV = uRT :(N—J RT where N = Number of molecule, Ny, = Avogadro
A

BERE-BE
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Problem 15. The expansion of an ideal gas of mass m at a constant pressure P is given by the straight
line D. Then the expansion of the same ideal gas of mass 2m at a pressure P/ 2 is given by
the straight line

Volume
A
(A E 8 B
C
(b) C b
(c) B / E
(d)A 7 Temperatur

. M M
Solution : (d) From PV o« MT or V « FT; Here (F) represents the slope of curve drawn on volume and
temperature axis.

For first condition slope (%) graph is D (given in the problem)

For second condition slope % = 4( '!J i.e. slope becomes four time so graph A is correct in

this condition.

Problem 16. If the value of molar gas constant is 8.3 J/mole-K, the n specific gas constant for hydrogen
in J/mole-K will be
(a) 4.15 (b) 8.3 (c) 16.6 (d) None of these
Universal gas constant (R) 8.3
Molecular weight of gas (M) 2

Solution : (a) Specific gas constant r = =4.15 Joule/mole-K.

Problem 17. A gas in container A is in thermal equilibrium with another gas in container B. both contain
equal masses of the two gases in the respective containers. Which of the following can be

true
P,
(a) PpVp =PV (b) Py =Pg, Vo # Vg (c) Py #Pg, Vo=V (d) =B
VA VB
Solution : (b, c) According to problem mass of gases are equal so number of moles will not be equal

i.e. up # Ug
PaVa _ PgVp
Hnp Hp

From ideal gas equation PV = u4RT .. [As temperature of the container

are equal]

Va _Ha

From this relation it is clear that if P, = P5 then v
B M

=1 i.e. Vp # Vg

Pa_#a

Similarly if V, =Vg then
Ps  us

=1 i.e. Py, # Pg.
Problem 18. Two identical glass bulbs are interconnected by a thin glass tube. A gas is filled in these

bulbs at N.T.P. If one bulb is placed in ice and another bulb is placed in hot bath, then the
pressure of the gas becomes 1.5 times. The temperatu:

N\ ] N ]
(a) 100°C 800 DQDO
DQ O
(o]
DODWOQO;}DO O LN
/ \

Ice Hot bath
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(b) 182°C
(c) 256°C
(d) 546°C
Solution : (d) Quantity of gas in these bulbs is constant i.e. Initial No. of moles in both bulb = final
number of moles
Hy o+ =y +
PV PV 1.5PV 1.5PV 2 15 1.5
- = T

R@73)  R@B)  RE73) R 73 " m

N

T =819 K=546°C.

Problem 19. Two containers of equal volume contain the same gas at pressures P, and P, and absolute
temperatures T, and T, respectively. On joining the vessels, the gas reaches a common
pressure P and common temperature T. The ratio P/T is equal to

PR P PT, +P,T. PT, + P,T, P, P,
() 2+2 (b) 22122 (c) 22— (@ L+-%
LI P Ty +Tp) (M +Tp) 2T, 2T,
P,V

PV
Solution : (d) Number of moles in first vessel u, = # and number of moles in second vessel u, = T
1 2

If both vessels are joined together then quantity of ga Initiall
remains same i.e u =y + 4, %@4

P2V) PV N P,V

RT RT, RT, Finally
P_A . P
T

2T, 2T,

Problem 20. An ideal monoatomic gas is confined in a cylinder by a spring-loaded piston if cross-section
8x10°m?2. Initially the gas is at 300K and occupies a volume of 2.4 x107° m?® and the spring
is in a relaxed state. The gas is heated by a small heater coil H. The force constant of the
spring is 8000 N/m, and the atmospheric pressure is 1.0x10°Pa. The cylinder and piston
are thermally insulated. The piston and the spring are massless and there is no friction
between the piston and cylinder. There is no heat loss through heater coil wire leads and
thermal capacity of the heater coil is negligible. With all the above assumptions, if the gas
is heated by the heater until the piston moves out slowly by o0.1m, then the final
temperature is

(b) 800 K
(c) 1200 K
(d) 300K

(a) 400 K §Gas Spring
H

Solution : (b) V; =2.4x107°m3, P, =P, =10° iz and T:=300K (given)
m

If area of cross-section of piston is A and it moves through distance x then increment in
volume of the gas = Ax
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and if force constant of a spring is k then force F = kx and pressure = % = I%
V, =V, + Ax=2.4x10"° +8x10 % x0.1=3.2x10 2 and P, = P, LU +M =2x10°
A 8x10~
PV, P,V 5 -3 5 -3
From ideal gas equation ——% = —2-2 107 x2.4x10 7 2x107 x3.2x10 7 _, T, =800 K
T, T, 300 T,

Problem 21. Two identical containers each of volume V, are joined by a small pipe. The containers
contain identical gases at temperature T, and pressure P,. One container is heated to
temperature 2T, while maintaining the other at the same temperature. The common
pressure of the gas is P and n is the number of moles of gas in container at temperature 2T,

4 2 PV, 3 RV,
a) P=2P b) P=—P c)n=--220 d)n=>--20
(a) 0 (b) 30 (c) 3 RT, (d) 2 RT,
Solution : (b, c) Initially for container A PoVo =ngRTy
PO VO v Initiall
For container B PoVo =ngRTy . ng =—— o 0
oVo onlo 0 RT, Po, Ts 0@
Total number of moles=n; +ny = 2n, (A) (B)
Since even on heating the total number of moles is conserv
Hence ng+n,=2n, ... 1
If P be the common pressure then Finally
. PV, eﬂ
For container A PV, =nR2T, Song = 9
2RT,
(A) (B)
. PV,
For container B PV, =n,RT, SNy = —
RT,

PV, PV, 2PV,

Substituting the value of ny,n, and n, in equation (i) we get +
8 0t 2 q ( 8 2RT, RT, RT,

No. of moles in container A (at temperature 2T;) = n,

{ASP =ipo}
3

Problem 22. At the top of a mountain a thermometer reads 7°C and a barometer reads 70 cm of Hg. At
the bottom of the mountain these read 27°C and 76 cm of Hg respectively. Comparison of

PV, (4 jvo 2 P,V
= PO = —

T 2RT, (3 °J2RT, 3 RT,

density of air at the top with that of bottom is
7°C, 70 cm of
(a) 75/76 y
(b) 70/76 .
¥

(c) 76/75 Y

27°C, 76 cm of
(d) 76/70

P P P, T
L 2_ _ constant .. AL 2

Solution : (a) Ideal gas equation, in terms of density =
T poT, p2 P Ty
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PTop — Prop XTBottom =E>< 300 ZE
PBottom Peottom TTop 76 280 76

11.5 Vander Waal's Gas Equation

All real gases do not obey the ideal gas equation. In order to explain the behaviour of real
gases following two modification are considered in ideal gas equation.

(i) Non-zero size of molecule : A certain portion of volume of a gas is covered by the
molecules themselves. Therefore the space available for the free motion of molecules of gas will
be slightly less than the volume V of a gas.

Hence the effective volume becomes (V - b)

(ii) Force of attraction between gas molecules : Due to this, molecule do not exert that
force on the wall which they would have exerted in the absence of intermolecular force.
Therefore the observed pressure P of the gas will be less than that present in the absence of

intermolecular force. Hence the effective pressure becomes (P +ViZJ

The equation obtained by using above modifications in ideal gas equation is called Vander
Waal’s equation or real gas equation.

Vander Waal's gas equations

For 1 mole of gas (P +V12)(V -b)=RT
au’
For p moles of gas P+V—2 (V — b)) = uRT

Here a and b are constant called Vander Waal’s constant.
Dimension : [a] = [ML’T ?] and [b] = [L3]
Units:a=Nxm% and b = m3.

11.6 Andrews Curves

The pressure (P) versus volume (V) curves for actual gases are called Andrews curves.

(1) At 350°C, part AB represents vapour phase of water,

D G
T Gas ..
. . . 1 380c Liquid
in this part Boyle’s law is obeyed | P «« — |. Part BC represents p H vapour
V region
//374.1°C
the co-existence of vapour and liquid phases. At point C, Liquid 7 mee L
vapours completely change to liquid phase. Part CD is parallel F 0 E N
- »Vapou
to pressure axis which shows that compressibility of the ¢ 350%¢ N
water is negligible. Andrews curve for V—>

(2) At 360°C portion representing the co-existence of liquid vapour phase is shorter.
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(3) At 370°C this portion is further decreased.

(4) At 374.1°C, it reduces to point (H) called critical point and the temperature 374.1°C is
called critical temperature (T.) of water.

(5) The phase of water (at 380°C) above the critical temperature is called gaseous phase.

Critical temperature, pressure and volume

The point on the P-V curve at which the matter gets converted from gaseous state to liquid
state is known as critical point. At this point the difference between the liquid and vapour
vanishes i.e. the densities of liquid and vapour become equal.

(i) Critical temperature (T.) : The maximum temperature below which a gas can be
liquefied by pressure alone is called critical temperature and is characteristic of the gas. A gas
cannot be liquefied if its temperature is more than critical temperature.

CO; (304.3 K), 02(-118°C), N, (-147.1°C) and H.O (374.1°C)

(ii) Critical pressure (P.) : The minimum pressure necessary to liquify a gas at critical
temperature is defined as critical pressure.

CO, (73.87 bar) and O, (49.7atm)

(iii) Critical volume (V.) : The volume of 1 mole of gas at critical pressure and critical
temperature is defined as critical volume.

CO- (95 x107% m3)

(iv) Relation between Vander Waal’s constants and T, P, V. :

2 2
8a a QL TRITE L R(T) g PV 3
64 P, 8

T.=——, P, =——, V., =3b,
© 27TRb’ ¢ 27p2

Sample problems based on Vander Waal gas equation

Problem 23. Under which of the following conditions is the law PV = RT obeyed most closely by a real

gas
[NCERT 1974; MP PMT 1994, 97; MP PET 1999; AMU 2001]

(a) High pressure and high temperature (b) Low pressure and low temperature

(c) Low pressure and high temperature (d) High pressure and low temperature

Solution : (c) At low pressure and high temperature real gas obey PV = RT i.e. they behave as ideal gas
because at high temperature we can assume that there is no force of attraction or repulsion
works among the molecules and the volume occupied by the molecules is negligible in
comparison to the volume occupied by the gas.
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Problem 24.

Solution : (a)

Problem 25.

Solution : (b)

Problem 26.

2
The equation of state of a gas is given by (P +%JV° =(RT +b), where a, b, c and R are

constants. The isotherms can be represented by P = AV" —BV", where A and B depend only
on temperature then

[CBSE PMT 1995]

(a) m=-—c and n=-1 (b)) m=c and n=1 (c) m=—cand n=1 (d)m=c and n=-1
aTz c 2y/-1 —C —C —C 2 -1
P+= — V¢ =RT +b= P+aT?Vv* <RIV +bV° = P =(RT +b)V * —@T*)V
By comparing this equation with given equation P = AV™ —BV" we get m=-c and n=-1.

An experiment is carried on a fixed amount of gas at different temperatures and at high

pressure such that it deviates from the ideal gas behaviour. The variation of % with P is

shown in the diagram. The correct variation will' py /gt

(a) Curve A 2.0 g

(b) Curve B 1.0

(c) Curve C g

(d) Curve D 0,0 20 4:0 60 80 100 P (atm)

. . PV
At lower pressure we can assume that given gas behaves as ideal gas so T =constant but
when pressure increase, the decrease in volume will not take place in same proportion so

Pv ..
—— will increases.
RT

The conversion of ideal gas into solids is
(a) Possible only at low pressure (b) Possible only at low temperature

(c) Possible only at low volume (d) Impossible

Solution : (d) Because there is zero attraction between the molecules of ideal gas.

11.7 Various Speeds of Gas Molecules

The motion of molecules in a gas is characterised by any of the following three speeds.

(1) Root mean square speed : It is defined as the square root of mean of squares of the

speed of different molecules i.e. v, = \/

2 2 2 2
Vi +V5 V5 V] o

N
. . . ImN ,
(i) From the expression for pressure of ideal gas P = ETV””S
3PV 3PV 3P Mass of gas
rms = = =l Asp=————
mN Mass of gas Yo, \Y

(i1) Vi

_ 3PV _ [BHRT _ \/3RT [As if M is the molecular weight
Mass of gas uM M of gas
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[As M = Nam and R = Nak]

(i) v _\/BRT _\/SNAkT _\/3kT

M N,M  Vm

. EE 3RT 3kT
. Root mean square velocity v,,, = .[— =,[— =.[—
Yol M m

Tnpontant points
(i) With rise in temperature rms speed of gas molecules increases as v, « JT .

(ii) With increase in molecular weight rms speed of gas molecule decreases as v, o L

N

e.g., rms speed of hydrogen molecules is four times that of oxygen molecules at the same
temperature.

(iii) rms speed of gas molecules is of the order of km/s

=1840 m/s.

e.g., At NTP for hydrogen gas (V,,s) = \/

3RT _\/3><8.31><273
M 2x10°

(iv) rms speed of gas molecules is \/E times that of speed of sound in gas

e
[3RT [IRT 3
AS Vrms = T and VS = % Vrms = \/;VS

(v) rms speed of gas molecules does not depends on the pressure of gas (if temperature
remains constant) because P « p (Boyle’s law) if pressure is increased n times then density will
also increases by n times but v.»s remains constant.

(vi) Moon has no atmosphere because v:ms 0of gas molecules is more than escape velocity (ve-

A planet or satellite will have atmosphere only and only if v, <v,

(vii) At T = 0; Vims = O i.e. the rms speed of molecules of a gas is zero at 0 K. This
temperature is called absolute zero.

(2) Most probable speed : The particles of a gas have a range of speeds. This is defined as
the speed which is possessed by maximum fraction of total number of molecules of the gas. e.g.,
if speeds of 10 molecules of a gas are 1, 2, 2, 3, 3, 3, 4, 5, 6, 6 km/s, then the most probable
speed is 3 km/s, as maximum fraction of total molecules possess this speed.

Most probable speed v, = /Z—P = 1/2ﬂ = 1/2k—T
Yol M m

(3) Average speed : It is the arithmetic mean of the speeds of molecules in a gas at given
temperature.
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LV VY, AV Ve
av — N

and according to kinetic theory of gases

8P 8 RT 8 kT
Average speed v, = [— =, [—— = [——
o T M 7 m

efe . O Vrms > Vav > Vmp (Order remembering trick) (RAM)

D Vrms.'Vav:Vmp: \/g\/gﬁzx/gvz‘s\/i
T

U For oxygen gas molecules vims = 461 m/s, Vay = 424.7 m/s and Vrms = 376.4 m/s

Sample Problems based on Various speeds

Problem 27. At room temperature, the rms speed of the molecules of certain diatomic gas is found to be
1930 m/s. The gas is

(a) H, (b) F, (c) O, () cl,

Solution : (a) Root means square velocity v, = S;T =1930 m/s (given)

3RT  3x8.31x300

= = =2x10 kg =2gm i.e. the gas is hydrogen.
(1930 )7 1930 x1930 9=<9 g ydrog

T T
Problem 28. Let A and B the two gases and given : M—A =4.—B ; where T is the temperature and M is the

A B

C
molecular mass. If C, and Cy are the rms speed, then the ratio —~ will be equal to

B

(a) 2 (b) 4 ()1 (d)o.5
C TA T T M
Solution : (a) AS Vs = 3RT Lo =A_ | AT B _J4=2 As—A =4 —A given

Problem 29. The rms speed of the molecules of a gas in a vessel is 400 ms™. If half of the gas leaks out
at constant temperature, the rms speed of the remaining molecules will be

(a) 800 ms™ (b) 400 V2 ms! (c) 400 ms™ (d) 200 ms™

Solution : (c) Root mean square velocity does not depends upon the quantity of gas. For a given gas and
at constant temperature it always remains same.

Problem 30. The root mean square speed of hydrogen molecules at 300 K is 1930 m/s. Then the root
mean square speed of oxygen molecules at 900 K will be

(a) 1930 J3mis (b) 836 m/s (c) 643 m/s (d) %m /s
3
% T M
Solution : (b) V,, = "L THy _ | He o, 1930 x5 32 _ 19 V3 =836 m/s.

M Vo, My,  To, 2



Problem 31.

Solution : (a)

Problem 32.

Solution : (c)

Problem 33.

Solution : (d)

Problem 34.

Solution : (b)

Problem 35.
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At what temperature is the root mean square velocity of gaseous hydrogen molecules is
equal to that of oxygen molecules at 47°C

() 20K (b) 80K (c)-73K (3K
3RT02 H,
For oxygen v, = and For hydrogen v, = [3R——
2 MOZ 2 M H,
3RT, T,
According to problem = 2 = |[3BR—2
MOZ HZ
T T T
0 _ M, :>47+273: H, - T, =@X2=20K.
Mo, My, 32 2 z 3R

Cooking gas containers are kept in a lorry moving with uniform speed. The temperature of
the gas molecules inside will

(a) Increase (b) Decrease
(c) Remain same (d) Decrease for some, while increase for
others

If a lorry is moving with constant velocity then the v, of gas molecule inside the

container will not change and we know that T «cv?2 . So temperature remains same.

The speeds of 5 molecules of a gas (in arbitrary units) are as follows : 2, 3, 4, 5, 6. The root
mean square speed for these molecules is

(a) 2.91 (b) 3.52 (c) 4.00 (d) 4.24

2, u2 L y2 L y2 4 y2 2,922 42 2 @2
Vi +V5 +V5 +Vy +V 2°+3°+4°+5°+6 100 v
Vrms =\/ L 2 3 4 > _\/ = |[— =420 =4.24
5 5 5
Gas at a pressure P, in contained as a vessel. If the masses of all the molecules are halved
and their speeds are doubled, the resulting pressure P will be equal to
[NCERT 1984; MNR 1995; MP PET 1997; MP PMT 1997; RPET 1999; UPSEAT 1999, 2000]

P
(a) 4R, (b) 2R, (o) Ry (d) ?O
2 2
P m my/2(2
p=1M™M 2 . poemv2 so —2:—2><(V—2\J =1—(LJ -2 = P, = 2P, = 2P,
3V P my (vg m; { v

Let V,v,, and v, respectively denote the mean speed, root mean square speed and most

probable speed of the molecules in an ideal monoatomic gas at absolute temperature T. The
mass of a molecule is m. Then

[IIT-JEE 1998]
(a) No molecule can have speed greater than \/Evrms
(b) No molecule can have speed less than Vinp /\/E
(C) Vip <V < Vi

(d) The average kinetic energy of a molecule is %mv %p
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Solution : (c, d) We know that v, = 1/3ﬂ’ Vg, = 1/Eﬂ and Vip = 2E
M 7z M M

Problem 36.

Solution : (c)

Problem 37.

Solution : (c)

Problem 38.

Solution : (a)

Problem 39.

Solution : (c)

Problem 4o0.

Vims *Vay ‘Vmp = J3:425:42 so Vip <Vay <Vims

Vv 3 3 . . 1 1 3 3
and ™ = \/; or v3 = Evﬁ,p .. Average kinetic energy = EmvfmS =5m Ev,%p = va %p.

Vinp

The root mean square speed of the molecules of a diatomic gas is v. When the temperature
is doubled, the molecules dissociate into two atoms. The new root mean square speed of the
atom is [Roorkee 1996]

(a) Vav () v (c) 2v (d) 4v
[3RT . . .
Vims = YRR According to problem T will becomes T/2 and M will becomes M/2 so the value

of v,,, will increase by J4 =2 times i.e. new root mean square velocity will be 2v.

The molecules of a given mass of a gas have a rms velocity of 200 m/sec at 27°C and
1.0 x10° N /m? pressure. When the temperature is 127°C and pressure is 0.5x10° N/m?, the
rms velocity in m/sec will be

[AIIMS 1985; MP PET 1992]

100 V2 400
b) 100 v/2 =
3 (b) (© 7

Change in pressure will not affect the rms velocity of molecules. So we will calculate only the
effect of temperature.

(a) (d) None of these

Vaggo
As v o oT _/@ﬁ jﬁzﬁ vy 2 20 X240
Vaoo° 400 4 Vaoo 4 J3 J3
Which of the following statement is true [IIT-JEE 1981]

(a) Absolute zero degree temperature is not zero energy temperature

(b) Two different gases at the same temperature pressure have equal root mean square
velocities

(c) The rms speed of the molecules of different ideal gases, maintained at the same
temperature are the same

(d) Given sample of 1cc of hydrogen and 1cc of oxygen both at N.T.P.; oxygen sample has a
large number of molecules

At absolute temperature kinetic energy of gas molecules becomes zero but they possess
potential energy so we can say that absolute zero degree temperature is not zero energy
temperature.

The ratio of rms speeds of the gases in the mixture of nitrogen oxygen will be

(@)1:1 (b) V3 :1 (c) V847 (@ V6 :47

o _ [BRT v, _ Moz_/g_ﬁ
e M v, My, 28 \7

A vessel is partitioned in two equal halves by a fixed diathermic separator. Two different
ideal gases are filled in left (L) and right (R) halves. The rms speed of the molecules in L



Solution : (d)
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part is equal to the mean speed of molecules in the R part. Then the ratio of the mass of a
molecule in L part to that of a molecule in R part is

3
(a) \/;

(b) vz /4 L R
(c) v2/3

(d) 37/8
- . 3KT
Root means square velocity of molecule in left part Vims =
my
S 8 KT
Mean or average speed of molecule in right part v,, = o
7T Mg

According to problem /3KT - Eﬁ 3 __8 _m _37
my T Mg m,_ zmg mg 8

Problem 41. An ideal gas (y = 1.5) is expanded adiabatically. How many times has the gas to be
expanded to reduce the root mean square velocity of molecules 2 times
(a) 4 times (b) 16 times (c) 8 times (d) 2 times
Solution : (b) To reduce the rms velocity two times, temperature should be reduced by four times (As
Vims € ﬁ)
" T]_:T TZZI, Vl:V
4
YY" T Vv, o5
From adiabatic law TV’ ! =constant we get | = | =-1=4 = 2@y [y =
Vi T, Vi
3/2 given]
: v
= V,=V,(4)321 =v,4)?=16V, . V—Z =16
1
11.8 Kinetic Energy of Ideal Gas

Molecules of ideal gases possess only translational motion. So they possess only
translational kinetic energy.

Quantity of gas Kinetic energy
- 1, 1 (3kT)_ 3 I 3KT
Kinetic energy of a gas molecule (Emotecute) =5 MVims =M —— | = ng ASV g o

rms —

Kinetic energy of 1 mole (M gram) gas (Emote) 1 1 3RT 3 3RT
_EMT=—RT ASVrms: T

==Mv?2
2
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Kinetic energy of 1 gm gas (Egram) ~3R_ 3 kNA_I__Bk_I__SrT
2M  2mN, 2m 2

Here m = mass of each molecule, M = Molecular weight of gas and N4 = Avogadro number =
6.023 x 10?3

Tnpontant points
(1) Kinetic energy per molecule of gas does not depends upon the mass of the molecule but

only depends upon the temperature of the gas.

As E =%kT or E o« T i.e. molecules of different gases say He, H, and O, etc. at same

temperature will have same translational kinetic energy though their rms speed are different.

o

(2) Kinetic energy per mole of gas depends only upon the temperature of gas.

(3) Kinetic energy per gram of gas depend upon the temperature as well as molecular
weight (or mass of one molecule) of the gas.

3kT ~ E ocl

E =—— S
gram om gram m

From the above expressions it is clear that higher the temperature of the gas, more will be
the average kinetic energy possessed by the gas molecules at T = 0, E = O i.e. at absolute zero
the molecular motion stops.

Sample Problems based on Kinetic energy

Problem 42. Read the given statements and decide which is/are correct on the basis of kinetic theory of
gases [MP PMT 2003]

(I) Energy of one molecule at absolute temperature is zero

(II)rms speeds of different gases are same at same temperature

(111) For one gram of all ideal gas kinetic energy is same at same
temperature

(1Iv) For one mole of all ideal gases mean kinetic energy is same at same
temperature

(a) All are correct (b) I and IV are correct(c) IV is correct (d) None of these

Solution : (c) If the gas is not ideal then its molecule will possess potential energy. Hence statement (I) is
wrong.

rms speed of different gases at same temperature depends on its molecular weight

(vrms oc %] . Hence statement (II) also wrong.
M

Kinetic energy of one gram gas depends on the molecular weight (Egm oc %) Hence statement

(I1I) also wrong.



Problem 43.

Solution : (c)

Problem 44.

Solution : (a)

Problem 45.

Solution : (a)

Problem 46.

Solution : (d)

Problem 47.
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But K.E. of one mole of ideal gas does not depends on the molecular weight (E :%RT].

Hence (IV) is correct.
At which of the following temperature would the molecules of a gas have twice the average
kinetic energy they have at 20°C
(a) 40°C (b) 8o°C (c) 313°C (d) 586°C
E T, 26 T,

EocT . —2= = = T, =293 x2 =586 K =313°C .
E, T, E, (20 +273)

A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K. The
ratio of the average rotational kinetic energy per O, molecule to that per N, molecule is

(a)1:1
(b)1:2
(c)2:1

(d) Depends on the moments of inertia of the two molecules

Kinetic energy per degree of freedom= %kT

As diatomic gas possess two degree of freedom for rotational motion therefore rotational
K.E.= ZKEKTJ =kT

2
In the problem both gases (oxygen and nitrogen) are diatomic and have same temperature

(300 K) therefore ratio of average rotational kinetic energy will be equal to one.

A gas mixture consists of molecules of type 1, 2 and 3 with molar masses m; >m, >M3. Vg

and K are the rms speed and average kinetic energy of the gases. Which of the following is
true [AMU (Engg.) 2000]

(a) (Vrms)l < (Vrms)z < (Vrms)3 and (R)l = (R)Z = (R)S (b) (Vrms)l = (Vrms)z = (Vrms)s and (R)l :(R)z > (K)B
(©) Wrmsh > Vems)a > Vems)s and (K)y < (K), > (K)g (@) Vel > Wrms)z > Wrm)s and (K, < (K), < (K)s

The rms speed depends upon the molecular mass v, L but kinetic energy does not depends

JM

onit Ex M?
In the problem m; >m, >m; S (Vims)1 < Vims)2 < (V)3 but (Rl) :(RZ): (R3)

The kinetic energy of one gram mole of a gas at normal temperature and pressure is (R =
8.31 J/mole-K)
[AFMC 1998; MH CET 1999; Pb. PMT 2000]

(a) 0.56x10*J (b) 1.3x10%J (c) 2.7x10%J (d) 3.4x10%J
E:%RT :%x8.31><273 =3.4x10%Joule

The average translational kinetic energy of O, (molar mass 32) molecules at a particular
temperature is 0.048 eV. The translational kinetic energy of N, (molar mass 28) molecules in
eV at the same temperature is
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(a) 0.0015 (b) 0.003 (c) 0.048 (d) 0.768

Solution : (c) Average translational kinetic energy does not depends upon the molar mass of the gas.
Different gases will possess same average translational kinetic energy at same
temperature.

Problem 48. The average translational energy and the rms speed of molecules in a sample of oxygen gas

at 300 K are 6.21x102'J and 484 m/s respectively. The corresponding values at 600 K are
nearly (assuming ideal gas behaviour)

(a) 12.42x1072* J,968m /s (b) 8.78 107! J,684m /s
(c) 6.21x107%* J,968m /s (d) 12.42x107?* J,684m /s

Solution : (d) Eo« T but v, = ﬁ

i.e. if temperature becomes twice then energy will becomes two time i.e. 2 x 6.21 x 107! =
12.42 x 10721 J

But rms speed will become V2 timesi.e. 484 x+/2 =684 mis.

Problem 49. A box containing N molecules of a perfect gas at temperature T, and pressure P,. The

number of molecules in the box is doubled keeping the total kinetic energy of the gas same
as before. If the new pressure is P, and temperature T,, then

T T
() P,=PR, T,=T, (b) PZ:Pl,T2=?1 (©) P,=2P, T,=T, (d) P2=2P1,T2=?1

Solution : (b) Kinetic energy of N molecule of gas E = % NKT

Initially E; = % N,kT, and finally E, = g N,KkT,

T
But according to problem E; =E, and N, =2N; .. %leT1 =%(2N1)kT2 =T, :?1

Since the kinetic energy constant %leTl = % N,kT, = N;T, =N,T, .. NT = constant

From ideal gas equation of N molecule PV = NkT
= PV, =P,V, s P =P [AsV; =V, and NT = constant]

Problem 50. Three closed vessels A, B and C are at the same temperature T and contain gases which
obey the Maxwellian distribution of velocities. Vessel A contains only O,, Bonly N, and C a
mixture of equal quantities of O, and N, . If the average speed of the O, molecules in vessel
A is V,, that of the N, molecules in vessel B is V,, the average speed of the O, molecules in

vessel C is (where M is the mass of an oxygen molecule) [IIT-JEE 1992]

(@) M+V,)/2 (®) v, (€) (V)2 (d) V3kT /M
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. / kT
Solution : (b) Average speed of gas molecule v,, = % . It depends on temperature and molecular mass.

So the average speed of oxygen will be same in vessel A and vessel C and that is equal to
Vl .

Problem 51. The graph which represent the variation of mean kinetic energy of molecules with
temperature t°C is

E E E E
(a) (b) (c) (d)
t t t t

Solution : (c) Mean K.E. of gas molecule E = %kT = %k(t + 273) where T = temperature is in kelvin and t = is

in centigrade
3 3 .
E= Ek t+ > x 273 k k = Boltzmann's constant

By comparing this equation with standard equation of straight line y =mx +c¢

We get m = %k and c =%273k. So the graph between E and t will be straight line with
positive intercept on E-axis and positive slope with t-axis.

11.9 Gas Laws

(1) Boyle’s law : For a given mass of an ideal gas at constant temperature, the volume of a
gas is inversely proportional to its pressure.

ie. V oc% or PV = constant or PV, =RV, [If m and T are constant]
. m m
(i) PV = P(—J = constant [As volume =—]
P P
P P.
. P_ constant or —: =—2 [As m = constant]
P P11 P2
.. N . N N
(ii) PV = P| — | = constant [As number of molecules per unit volume n= v Lo V=—]
n n
P, P
P_ constant or —f=-2%2 [As N = constant]
n n, n,
I1mN ,

rms

(iii) According to kinetic theory of gases P = IV
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. mass of gas o T [As V..

P v s

o« +/T and mN = Mass of gas]

. 1 c e .
If mass and temperature of gas remain constant then P ocv. This is in accordance with

Boyle’s law.

(iv) Graphical representation : If m and T are constant
14 P v 1/V 1/P

Sample Problems based on Boyle's law

Problem 52. At constant temperature on increasing the pressure of a gas by 5% will decrease its volume
by [MP PET 2002]

(a) 5% (b) 5.26% (c) 4.26% (d) 4.76%
Solution : (d) If P, =P then P, =P +5% of P = 1.05 P

V, PL_ P 100

From Boyle’s law PV = constant = = =—
v, P, 105P 105

V, -V -
Fractional change in volume = AV _VooVy _10-106 5
\ A 105 105

.. Percentage change in volume %xlOO% = —%xlm% =—-4.76% i.e. volume decrease by
4.76%.
Problem 53. A cylinder contained 10 kg of gas at pressure 10’ N/m?. The quantity of gas taken out of

cylinder if final pressure is 2.5x10°% N/m is (assume the temperature of gas is constant)

(a) Zero (b) 7.5 kg (c) 2.5 kg (d) 5 kg
P
Solution : (b) At constant temperature for the given volume of gas P—l _ My
2 My
7 6
§ 10 _10 :>m2:2'5><107 x 10 _ 2.5kg
2.5%x10° m, 10

.. The quantity of gas taken out of the cylinder = 10 - 2.5 = 7.5 kg.

Problem 54. If a given mass of gas occupies a volume of 10 cc at 1 atmospheric pressure and

temperature of 100°C (373.15 K). What will be its volume at 4 atmospheric pressure; the
temperature being the same [NCERT 1977]



Solution : (c)

Problem 55.

Solution : (d)

Problem 56.

Solution : (c)
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(a) 100 cc (b) 400 cc (c) 2.5 cc (d) 104 cc
[ oci ﬁ:i =V, =10 x[lj:ZSCC
Vv vV, P, 4

An air bubble of volume V, is released by a fish at a depth h in a lake. The bubble rises to

the surface. Assume constant temperature and standard atmospheric pressure P above the
lake. The volume of the bubble just before touching the surface will be (density of water is

2]

(@) Vg (b) Volpgh/P) © —0 @ vo(m’_g“]
(“ pghj P
P

According to Boyle’s law multiplication of pressure and volume will remains constant at the
bottom and top.

If P is the atmospheric pressure at the top of the lake
and the volume of bubble is V then from P,V, = P,V, T ®

(P+hpglV, =PV = V = {P%WJVO

v :V{H%gh}

The adjoining figure shows graph of pressure and volume of a gas at two temperatures T,
and T,. Which of the following interferences is correct

P
(@ T >T, p
Md)YT =T,
(C) Tl < T2 IV1 IVz v

(d) No interference can be drawn
For a given pressure, volume will be more if temperature is more (Charle’s law)
From the graph it is clear that V>, > V;

LT > T,

(2) Charle's law

(i) If the pressure remains constant, the volume of the given mass of a gas increases or

decreases by

temperature.

centigrade scale. -273.15 O

of its volume at 0°C for each 1°C rise or fall in

Vi

i’0
,
.

Vi =V, 1+ 1 t|. This 1is Charle’s law for
273.15

t(°C)
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(ii) If the pressure remaining constant, the volume of the given mass of a gas is directly
proportional to its absolute temperature.

vV, V
Vo T or vV constant  or Lt -2z [If m and P are constant]
T T T,
ceen  V m m
(iii) — = — =constant [As volume V = —]
T pl P
or pT = constant or p, T, =p,T, [As m = constant]
. . . . I1mN ,
(iv) According to kinetic theory of gases P = ETV""S

Mass of gas
Cx: _—

or P T

If mass and pressure of the gas remains constant then V o« T. This is in accordance with
Charles law.

(v) Graphical representation : If m and P are constant

! 1
T— T— —_

Tor1/T7— Vor —

[All temperature T are in

Sample problems based on Charle's law

Problem 57. A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at
27°C is V then volume at 327°C is
() Vv (b) 3V (c) 2v (avy2

oV, T, 327 4213 _ 600

Solution : (¢) From Charle’slaw V o T . = = =
vi T 27 + 273 300

=2 =V, =2V.

Problem 58. Hydrogen gas is filled in a balloon at 20°C. If temperature is made 40°C, pressure
remaining same, what fraction of hydrogen will come out

(a) 0.07 (b) 0.25 (c) 0.5 @ 0.75
\ T
Solution: (a) As Vo T .. —2=-2 =V, :(313 jvl
Vi Ty 293
Vy -V @‘gzjvl iy
Fraction of gas comes out = 2 1_ _ —0.07 .

v, v, 203



Problem 59.

Solution : (c)

axis.

Problem 60.

Solution : (b)

Problem 61.

Solution : (c)
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The expansion of unit mass of a perfect gas at constant pressure is shown in the diagram.
Here

(a) a = volume, b = °C temperature

(b) a = volume, b = K temperature o

(c) a = °C temperature, b = volume

(d) a = K temperature, b = volume
In the given graph line have a positive slop with X-axis and negative intercept on Y-axis.

So we can write the equation of liney =mx-¢ ... 1)

V
According to Charle’s law V, = %t +V,, by rewriting this equation we get

t= (Ej Vo-213 (ii)
VO

By comparing (i) and (ii) we can say that time is represented on Y-axis and volume in X-

A gas is filled in the cylinder shown in the figure. The two pistons are joined by a string. If
the gas is heated, the pistons will

(a) Move towards left Gas

(b) Move towards right

(c) Remain stationary

(d) None of these

When temperature of gas increases it expands. As the cross-sectional area of right piston is
more, therefore greater force will work on it (because F = PA). So piston will move towards
right.

An ideal gas is initially at a temperature T and volume V. Its volume is increased by AV due
AV

to an increase in temperature AT, pressure remaining constant. The quantity 5:W

varies with temperature as

)
(b)
T T + AT T T + AT T T + AT T T + AT
(Temp. (Temp. (Temp. (Temp.
From ideal gas equation pv=RT ... i)
or PAV =RAT ... (ii)

Dividing equation (ii) by (i) we get % =— > ——===0 (given)
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o= % So the graph between ¢ and T will be rectangular hyperbola.

(3) Gay-Lussac’s law or pressure law

(i) The volume remaining constant, the pressure of a given mass of a gas increases or

decreases by of its pressure at 0°C for each 1°C rise or

273.15
fall in temperature. P
P, =Py|1+ ! t Po
273.15
. t(°C)
This is pressure law for centigrade scale. -273.15 O

(ii) The volume remaining constant, the pressure of a given mass of a gas is directly
proportional to its absolute temperature.

PoT or ; = constant or % = _I;—Z [If m and V are constant]
1 2
. S ImN , 5
(iii) According to kinetic theory of gases P = ETV””S [As v/ ocT]

mass of gas
Cﬁ _—
Vv

If mass and volume of gas remains constant then P o« T. This is in accordance with Gay
Lussac’s law.

or P T

(4) Graphical representation : If m and V are constants

—_—
—_—
—_
—_—
—_

P P/ P/ 1/P P

e T T —
T—> Tor1/T— Por1i/pP—> T—> 1/T—>

[All temperature T are in

Sample problems based on Gay Lussac's law

Problem 62. On 0°C pressure measured by barometer is 760 mm. What will be pressure on 100°C[AFMC 2002]

(a) 760 mm (b) 730 mm (c) 780 mm (d) None of these
P T
Solution : (d) From Gay Lussac’s law —2-_2_ (100 + 213 j = 373 P, = (ﬂj x 760 =1038 mm .
P T 0+ 273 273 273

Problem 63. If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by 1°C,
the initial temperature must be

(a) 250 K (b) 250°C (c) 2500 K (d) 25°C



0.4 P
Solution: (a) Pp=P,T:=T, P, =P+ (04% of P)=P+—P=P+— T
S ' 2 (0-4% of ) 100 250 2
T
From Gay Lussac's law —-~=-1 = P _ T
P, T, ., P T+l
+7
250

vessel]

By solving we get T = 250 K.
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=T+1

[As V = constant for closed

Problem 64. Pressure versus temperature graph of an ideal gas of equal number of moles of different

volumes are plotted as shown in figure. Choose the co1
() Vi=V,, V3=V, and V, >V,

(b)) Vi =V,, V3=V, and V, <V,

(© Vi=V,=V;=V,

(d) V, >V >V, >V,

R
Solution : (a) From ideal gas equation PV =/4RT .. P= #7
P V=
Comparing this equation with y =mx
. HR
Slope of linetand =m =— i.e. V ]
\ tan 6
T

It means line of smaller slope represent greater volum

For the given problem figure

Point 1 and 2 are on the same line so they will represent same volume i.e. V; =V,

Similarly point 3 and 4 are on the same line so they will represent same volume i.e. V; =V,

But V;, >V; (= V,)or V, >V; (= V,) as slope of line 1-2 is less than 3-4.

(5) Avogadro’s law : Equal volume of all the gases under similar conditions of temperature

and pressure contain equal number of molecules.

2
rms

According to kinetic theory of gases PV = %m Nv

. 1
For first gas, PV = gmlNl Vr2ms(l)

1
For second gas, PV = §m2 N, Vrzms(z)

2

From (i) and (ii) myN, VA =m,yN, VA,

1 1
As the two gases are at the same temperature EmlvfmSl =—m,V

2

2 2

2 3
= EkT = my Vimst = m, Vims2

rms2 —
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So from equation (iii) we can say that N, = N,. This is Avogadro’s law.

(i) Avogadro’s number (N,) : The number of molecules present in 1 gm mole of a gas is
defined as Avogadro number.

N, =6.023 x10 % per gm mole=6.023 x10* per kg mole.

(ii) At S.T.P. or N.T.P. (T = 273 K and P = 1 atm) 22.4 litre of each gas has 6.023 x10%
molecule.

(iii) One mole of any gas at S.T.P. occupy 22.4 litre of volume

Example : 32 gm oxygen, 28 gm nitrogen and 2gm hydrogen occupy the same volume at
S.T.P.

(iv) For any gas 1 mole = M gram = 22.4 litre = 6.023 x 10?3 molecule.

Sample problems based on Avogadro's Law

Problem 65. Temperature of an ideal gas is T K and average kinetic energy is E=2.07 x10 BT
Joule/molecule. Number of molecules in 1 litre gas at S.T.P. will be

(a) 2.68x10% (b) 2.68x10%° (c) 2.68x10% (d) 1.68x10%
Solution : (a) As we know that at S.T.P. 22.4 litre of gas contains 6.023 x10 2 molecules

23
1 litre of gas contain % = 2.68 x10 > molecules.

Problem 66. The average Kinetic energy per molecule of helium gas at temperature T is E and the molar
gas constant is R, then Avogadro’s number is

RT 3RT E 3RT
a) — b) — c) — d) —
()ZE ()E ()ZRT ()ZE
. R . 3 2E
Solution : (d) Average kinetic energy per unit molecule E = EkT s k= T
But Avagadro number=N, = — = _R__ o Np = SRT .
k (2E/3T) 2E

Problem 67. One mole of a gas filled in a container at N.T.P., the number of molecules in 1 cm3 of volume
will be

(a) 6.02x102% /22400  (b) 6.02x10% (c) 1/22400 (d) 6.02x10% /76
Solution : (a) Number of molecule in 22.4 litre gas at N.T.P. =6.023 x10 z
or number of molecule in 22.4 x10% cm® =6.023 x10%3 [As 22.4 litre

=22.4%x10%cm?®]

23
. Number of molecules in 1cm?® = M .
22400
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(6) Grahm’s law of diffusion : When two gases at the same pressure and temperature are
allowed to diffuse into each other, the rate of diffusion of each gas is inversely proportional to
the square root of the density of the gas.

We know v, = 3P Or V, s =
\ p N

and rate of diffusion of a gas is proportional to its rms velocity i.e., r«cv,

1 r.
roe—— or L= [P2

\/; r P1

(7) Dalton’s law of partial pressure : The total pressure exerted by a mixture of non-
reacting gases occupying a vessel is equal to the sum of the individual pressures which each
gases exert if it alone occupied the same volume at a given temperature.

Forngases P=P, +P, + P; +.....P
where P = Pressure exerted by mixture and P,,P,,P;,......P, =Partial pressure of component
gases.

Sample problems based on Dalton's law

Problem 68. The capacity of a vessel is 3 litres. It contains 6 gm oxygen, 8 gm nitrogen and 5 gm CO,

mixture at 27°C. If R = 8.31 J/mole x kelvin, then the pressure in the vessel in N /m? will be

(approx.)
(a) 5x10° (b) 5x10* (c) 10° (d) 10°
Solution : (a) Dalton’slaw P =P, +P, + P, = MRT | HoRT | psRT =ﬂ[,u1 + 1, +,u3]=ﬂ My M2 Mg
Y Y Y Vv VIM, M, M,

_831x30016 8 .5 |_ 4984103500 x10° = 5x10° N/m?.
3x107% |32 28 44
Problem 69. Two gases occupy two containers A and B the gas in A, of volume 0.10 m®, exerts a pressure

of 1.40 MPa and that in B of volume 0.15m?® exerts a pressure 0.7 MPa. The two containers

are united by a tube of negligible volume and the gases are allowed to intermingle. Then it
the temperature remains constant, the final pressure in the container will be (in MPa)

(a) o.70 (b) 0.98 (c) 1.40 (d) 2.10
Solution : (b) As the quantity of gas remains constant u, + yg =

PaVa  PeVe _POVA+Ve) [ PaVa+PsVg 14x0.1+07x0.15
RT  RT RT Vy + Vg 0.1+0.15

= P =0.98 MPa.

Problem 70. The temperature, pressure and volume of two gases X and Y are T, P and V respectively.
When the gases are mixed then the volume and temperature of mixture become V and T
respectively. The pressure and mass of the mixture will be

(a) 2P and 2M (b) Pand M (c) Pand 2M (d) 2P and M
Solution : (a) From Dalton’s law, Pressure of mixture =P, + P, =P +P =2P
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Similarly mass also will become double i.e. 2M.

Problem 71. A closed vessel contains 8g of oxygen and 7g of nitrogen. The total pressure is 10 atm at a
given temperature. If now oxygen is absorbed by introducing a suitable absorbent the
pressure of the remaining gas in atm will be

(a) 2 (b) 10 (c) 4 (d)5
Solution : (d) From Dalton’s law final pressure of the mixture of nitrogen and oxygen
RT RT m m
p=p1+p2:ﬂl +”2_:_1E _ZE:£E+lE:£ :>1ozﬂ _____ (i)
\ M, V. M,V 2V 28V 2V 2V
. . . 7 RT RT
When oxygen is absorbed then for nitrogen let pressure is P = BV = P= v

From equation (i) and (ii) we get pressure of the nitrogen P =5 atm.

(8) Ideal gas equation : From kinetic theory of gases P = %%vfms

« (mass c\)/f gas)T

If mass of gas is constant then PV« T  or PV = RT. This is ideal gas equation.

P [As V2 ocT]

11.10 Degree of Freedom

The term degree of freedom of a system refers to the possible independent motions,
systems can have. or

The total number of independent modes (ways) in which a system can possess energy is called the
degree of freedom (f).

The independent motions can be translational, rotational or vibrational or any combination
of these.

So the degree of freedom are of three types : (i) Translational degree of freedom
(ii) Rotational degree of freedom
(iii) Vibrational degree of freedom
General expression for degree of freedom
f=3A-B; where A = Number of independent particles, B = Number of
independent restriction
(1) Monoatomic gas : Molecule of monoatomic gas can move in any yp

direction in space so it can have three independent motions and hence 3 vy |
degrees of freedom (all translational)
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(2) Diatomic gas : Molecules of diatomic gas are made up of two
atoms joined rigidly to one another through a bond. This cannot only move
bodily, but also rotate about one of the three co-ordinate axes. However

its moment of inertia about the axis joining the two atoms is negligible X
compared to that about the other two axes. Hence it can have only two
rotational motion. Thus a diatomic molecule has 5 degree of freedom : 3
translational and 2 rotational.
(3) Triatomic gas (Non-linear) : A non-linear molecule can rotate y
about any of three co-ordinate axes. Hence it has 6 degrees of freedom : 3
translational and 3 rotational. .
V4
(4) Tabular display of degree of freedom of different gases
Atomicity of gas Example A B f=3A-B Figure
Monoatomic He, Ne, Ar 1 (o) f=3 A
Diatomic H2, 02 2 1 f = 5 A B A
A
Triatomic non . B B
linear Hz0 3 3 f=6 /_\
A B A
A
Triatomic linear CO., BeCl, 3 2 f=7 AO— 5 CA

rﬁoﬁ . O The above degrees of freedom are shown at room temperature. Further at high
temperature, in case of diatomic or polyatomic molecules, the atoms with in the
molecule may also vibrate with respect to each other. In such cases, the molecule will
have an additional degrees of freedom, due to vibrational motion.

U An object which vibrates in one dimension has two additional degree of freedom.
One for the potential energy and one for the kinetic energy of vibration.

1 A diatomic molecule that is free to vibrate (in addition to translation and rotation) will
have 7 (2 + 3 + 2) degrees of freedom.

U An atom in a solid though has no degree of freedom for translational and rotational
motion, due to vibration along 3 axes has 3 x 2 = 6 degrees of freedom (and not like
an ideal gas molecule). When a diatomic or polyatomic gas dissociates into atoms it
behaves as monoatomic gas whose degree of freedom are changed accordingly.

11.11 Law of Equipartition of Energy
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For any system in thermal equilibrium, the total energy is equally distributed among its
various degree of freedom. And the energy associated with each molecule of the system per

degree of freedom of the system is %kT .

where k =1.38 x10 ® J/K, T = absolute temperature of the system.

If the system possess degree of freedom f then

Problem 72.

Solution : (b)

Problem 73.

Total energy associated with each molecule —kT
Total energy associated with N molecules N —kT

. . f
Total energy associated with each mole 2 RT

f

Total energy associated with x mole A RT

. . f
Total energy associated with each gram ErT

. . f
Total energy associated with M, gram My ErT

Sample problems based on Law of equipartition of energy

Energy of all molecules of a monoatomic gas having a volume V and pressure P is %PV . The

total translational kinetic energy of all molecules of a diatomic gas as the same volume and

pressure is [UPSEAT 2002]

1 3 5
(a) EPV (b) EPV (c) EPV (d)3 PV

f

Energy of 1 mole of gas = % RT = ) PV where f = Degree of freedom

Monoatomic or diatomic both gases posses equal degree of freedom for translational

motion and that is equal to 3 i.e. f=3  E= % PV
Although total energy will be different, @ For monoatomic gas E,,, = % PV  [Asf=3]
. . 5
For diatomic gas E,y; = > PV [As f = 5]

The temperature of argon, kept in a vessel is raised by 1°C at a constant volume. The total
heat supplied to the gas is a combination of translational and rotational energies. Their
respective shares are [BHU 2000]

(a) 60% and 40% (b) 40% and 60% (c) 50% and 50% (d) 100% and 0%
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Solution : (d) As argon is a monoatomic gas therefore its molecule will possess only translatory kinetic
energy i.e. the share of translational and rotational energies will be 100% and 0%
respectively.

Problem 74. CO,(O-C-0) is a triatomic gas. Mean kinetic energy of one gram gas will be (If N-

Avogadro's number, k-Boltzmann's constant and molecular weight of CO, =44 )

(a) 3/88 NKT (b) 5/88 NkT (c) 6/88 NKT (d) 7/88 NkT

Solution : (d) Mean kinetic energy for x mole gas = ,u.% RT

7 m 7 1(7 7
“ E=pu—=RT =| — | =NkT =—| = |NKT =— NkT As f = dM = for CO
"3 (sz 44(2) 88 [Asf=7an 44 for €O ]
Problem 75. At standard temperature and pressure the density of a gas is 1.3 gm/ m3 and the speed of

the sound in gas is 330 m/sec. Then the degree of freedom of the gas will be

(a) 3 (b) 4 (©) 5 (d)6
Solution : (c) Given velocity of sound v =330 sz , Density of gas p= 1.3k—% , Atomic pressure
m
P=101x10° lz
m
. . yP
Substituting these value in v,y =.[— we get y =1.41
Yol
Now from ;/:1+E we get f _2 2 =5,
f y-1 14-1

11.12 Mean Free Path

The molecules of a gas move with high speeds at a given temperature but even then a
molecule of the gas takes a very long time to go from one point to
another point in the container of the gas. This is due to the fact
that a gas molecule suffers a number of collisions with other gas
molecules surrounding it. As a result of these collisions, the path
followed by a gas molecule in the container of the gas is zig-zag as

shown in the figure. During two successive collisions, a molecule

of a gas moves in a straight line with constant velocity and the distance travelled by a gas
molecule between two successive collisions is known as free path.

The distance travelled by a gas molecule between two successive collisions is not constant
and hence the average distance travelled by a molecule during all collisions is to be calculated.
This average distance travelled by a gas molecule is known as mean free path.
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Let 4,,4,,4;,...4, be the distance travelled by a gas molecule during n collisions respectively,

A +A + A3+ + A,
n

then the mean free path of a gas molecule is given by 1 =

! ; where d = Diameter of the molecule, n = Number of molecules per unit

A=——;
) V2nd?

volume

(2) As PV =uRT=uNKT = % = % =n =Number of molecule per unit volume

So _ 1 kT
V2 nd?P
1 m m . .
(3) From A= = = [As mn = Mass per unit volume = Density =
Jamd?  V2zmn)d?  V2md?p

Pl

(4) If average speed of molecule is v then

A =v><% =vxT [As N = Number of collision in time t, T = time interval between

two collisions]

Tmportant points
(i) AsAi= _m_ SoA 1 i.e. the mean free path is inversely proportional to the density of
V2md?p P
a gas.
(ii) As 4 =%% For constant volume and hence constant number density n of gas

molecules, ? is constant so that 4 will not depend on P and T. But if volume of given mass of a

gas is allowed to change with P or T then A « T at constant pressure and /106% at constant

temperature.

Sample Problems based on Mean free path

Problem 76. If the mean free path of atoms is doubled then the pressure of gas will become
(a) P/4 (b) P/2 (c) P/8 (ap

A kT
J2 2d?P

Solution : (b) As A= TP % i.e. by increasing A two times pressure will become half.



Kinetic Theory of Gases 37

Problem 77. The mean free path of nitrogen molecules at a pressure of 1.0 atm and temperature 0°C is
0.8x10'm. If the number of density of molecules is 2.7 x10?° perm®, then the molecular
diameter is

(a) 3.2nm (b) 3.2A (c) 3.2um (d) 2.3mm

Solution : (b) Mean free path 1= 0.8 x 107 m number of molecules per unit volume n = 2.7 x10 % per m3

we get d =v1.04x107"° =3.2x10°m =324

Substituting these value in 1 =

1
V2md?

11.13 Specific heat or Specific Heat Capacity

It characterises the nature of the substance in response to the heat supplied to the
substance. Specific heat can be defined by two following ways : Gram specific heat and Molar
specific heat.

(1) Gram specific heat : Gram specific heat of a substance may be defined as the amount of
heat required to raise the temperature of unit mass of the substance by unit degree.

AQ

Gram specific heat c=——
mAT
cal cal Joule

Units : ) —, -
gmx°C ~ gmxKkelvin ~ kgxkelvin

Dimension : [L*T 267"]

(2) Molar specific heat : Molar specific heat of a substance may be defined as the amount
of heat required to raise the temperature of one gram mole of the substance by a unit degree, it
is represented by capital (C)

_Q
HAT
. calorie calorie Joule
Units : , — Oor -
mole x°C ~ mole xkelvin mole xkelvin
Tnportant points
(1)C=MC=M£=i£ AS‘u:m
m AT  u AT M

i.e. molar specific heat of the substance is M times the gram specific heat, where M is the molecular
weight of that substance.

cal

(2) Specific heat for hydrogen is maximum ¢ = 3'5gm—°C .
X
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cal

(3) In liquids, water has maximum specific heat ¢ = 1gm—°C'
X

(4) Specific heat of a substance also depends on the state of substance i.e. solid, liquid or
gas.

cal
) Csteam = 047 grn—xoc:

cal cal

=05———, ¢ =1——
gmx°C gmx°C

Example : ¢

ice water

(5) Specific heat also depends on the conditions of the experiment i.e. the way in which
heat is supplied to the body. In general, experiments are made either at constant volume or at
constant pressure.

In case of solids and liquids, due to small thermal expansion, the difference in measured
values of specific heats is very small and is usually neglected. However, in case of gases,
specific heat at constant volume is quite different from that at constant pressure.

11.14 Specific Heat of Gases

In case of gases, heat energy supplied to a gas is spent not only in raising the temperature
of the gas but also in expansion of gas against atmospheric pressure.

Hence specific heat of a gas, which is the amount of heat energy required to raise the
temperature of one gram of gas through a unit degree shall not have a single or unique value.

(i) If the gas is compressed suddenly and no heat is supplied from outside i.e. AQ = 0, but
the temperature of the gas raises on the account of compression.

C= AQ =0 ie. C=0

© m(AT)

(ii) If the gas is heated and allowed to expand at such a rate that rise in temperature due to
heat supplied is exactly equal to fall in temperature due to expansion of the gas. i.e. AT =0

_AQ _AQ

= = = ie. C=w
m(AT) O

(iii) If rate of expansion of the gas were slow, the fall in temperature of the gas due to
expansion would be smaller than the rise in temperature of the gas due to heat supplied.
Therefore, there will be some net rise in temperature of the gas i.e. AT will be positive.

__AQ
~ m(AT)

= positive i.e. C = positive

(iv) If the gas were to expand very fast, fall of temperature of gas due to expansion would
be greater than rise in temperature due to heat supplied. Therefore, there will be some net fall
in temperature of the gas i.e. AT will be negative.

__AQ
"~ m(-AT)

=negative i.e. C = negative
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Hence the specific heat of gas can have any positive value ranging from zero to infinity.
Further it can even be negative. The exact value depends upon the mode of heating the gas. Out
of many values of specific heat of a gas, two are of special significance.

(1) Specific heat of a gas at constant volume (c¢,) : The specific heat of a gas at constant
volume is defined as the quantity of heat required to raise the temperature of unit mass of gas

_(AQ),

through 1 K when its volume is kept constant, i.e., ¢, = AT
m

If instead of unit mass, 1 mole of gas is considered, the specific heat is called molar specific
heat at constant volume and is represented by capital C,.

_M(@AQ), _1(aQ), [

C, = Mg,
MAT HAT

m
Asp=—
=

(2) Specific heat of a gas at constant pressure (cp) : The specific heat of a gas at constant
pressure is defined as the quantity of heat required to raise the temperature of unit mass of gas
(AQ),

through 1 K when its pressure is kept constant, i.e., c; AT
m

If instead of unit mass, 1 mole of gas is considered, the specific heat is called molar specific
heat at constant pressure and is represented by Cp.

M(AQ), 1 (Q), [As _m}
mAT 4 AT #=

C,=MC, =

11.15 Mayer's Formula

Out of two principle specific heats of a gas, C, is more than C, because in case of C,, volume
of gas is kept constant and heat is required only for raising the temperature of one gram mole
of the gas through 1°C or 1 K.

No heat, what so ever, is spent in expansion of the gas.

It means that heat supplied to the gas increases its internal energy only i.e.
AQ), =AU =puC AT (1)

while in case of Cp, the heat is used in two ways

(i) In increasing the temperature of the gas by AT

(ii) In doing work, due to expansion at constant pressure (AW)

So (AQ), =AU + AW =pCoAT (ii)

From equation (i) and (ii) uC AT — uC AT = AW

= uAT(C, —C,)=PAV [For constant P, AW = PAV]
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= Cc,-C, :PLA\'/I' [From PV = uRT, At constant pressure PAV =
y7i
URAT]
= C,-C, =R

This relation is called Mayer’s formula and shows that C, >C, i.e. molar specific heat at
constant pressure is greater than that at constant volume.

11.16 Sppciﬁc Heat in Terms of Degree of Freedom

We know that kinetic energy of one mole of the gas, having f degrees of freedom can be
given by

f .
E=—RT i
5 (1)

where T is the temperature of the gas but from the definition of C,, if dE is a small amount
of heat energy required to raise the temperature of 1 gm mole of the gas at constant volume,
through a temperature dT then

dE = 4C,dT =C, dT or C, :3—5 [Aspu=1] .. (ii)

Putting the value of E from equation (i) we get C, = diT[% RT] = iR

f
=—R
Y2

From the Mayer’s formula C, -C, =R = C_ =C, +R:%R+R =(%+1JR
C, :(£+1JR

i+1R
. Cp (2 ] 2
Ratio of C, and Cy : y:C_:—:1+?

Tnportant points
(i) value of yis always more than 1. So we can say that always C, > C, .

(ii) Value of yis different for monoatomic, diatomic and triatomic gases.



(i) As y=1+2 = 2-, 1 F_ 1
f f 2 y-1
¢, 1R
2 y—=1

ek -

Specific heat and kinetic energy for different gases
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Monoatomi | Diatomic | Triatomic | Triatomic
C non- linear
linear
Atomicity A 1 2 3 3
Restriction B (o) 1 3 2
Degree of f=3A-B
8 3 5 6 7
freedom
Molar specific c, :iR __R 3 5 .
heat at constant 2 y-1 =R =R 3R —R
2 2 2
volume
Molar specific f y
X _ 5 7 9
heat at constant | Cp [2+1JR_£7_1 H ER ER 4R ER
pressure
Ratio of C, and C C 9
? ' y=—t=1+2 5= 166 T=14 4o =128
C, 3 5 3 7
Kinetic energy of
8y Erole = —RT 3er Ser 3RT LRy
1 mole 2 2
Kinetic energy of f
&Y Emlecute = KT ng EkT 3kT ZkT
1 molecule 2 2 2 2
Kinetic energy of
&Y Egram =T i rT E rm 3rT 1 rT
1gm 2 2 2

Sample Problems based on Specific heat

Problem 78. Find the ratio of specific heat at constant pressure to the specific heat constant volume for
NH 4 [RPMT 2003]

(a) 1.33 (b) 1.44 (c) 1.28
Solution : (¢) For polyatomic gas ratio of specific heat y < 1.33

(d) 1.67

Because we know that as the atomicity of gas increases its value of y decreases.
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Problem 79. For a gas Ci =0.67 . This gas is made up of molecules which are[CBSE PMT 1992; JIPMER 2001, 2002]
\

(a) Diatomic (b) Mixture of diatomic and polyatomic
molecules
(c) Monoatomic (d) Polyatomic
Solution : (c) By comparing with relation C, :il we get y-1=067 or y = 1.67 i.e the gas is
7/_

monoatomic.

Problem 80. 40 calories of heat is needed to raise the temperature of 1 mole of an ideal monoatomic gas
from 20°C to 30°C at a constant pressure. The amount of heat required to raise its

temperature over the same interval at a constant volume (R = 2caloriemole *K™) is

(a) 20 calorie (b) 40 calorie (c) 60 calorie (d) 80 calorie
Solution : (a) At constant pressure (AQ), = uC,AT =1xC,x(@30-20)=40 = C, = 4&
mole kelvin
. C,=C,-R =4-2=p calone
mole x kelvin

Now (AQ), = #C,AT =1x2x(30 —20) = 20 calorie

R
Problem 81. At constant volume the specific heat of a gas is 37 then the value of y will be

(a) % (b) % (© % (d) None of the above
. . R 3R .
Solution : (c¢) Specific heat at constant volume C, = ] = - (given)
7/ —
2 5
-1=— = =—.
rTRT3 ’=3

Problem 82. For a gas the difference between the two specific heats is 4150 J/kg K. What is the specific
heats at constant volume of gas if the ratio of specific heat is 1.4

(a) 8475J/kg - K (b) 5186 J/kg - K (c) 1660 J/kg - K (d) 10375 J/kg - K

c
Solution : (d) Given ¢, —¢, =4150 ..... (1) and c—p =14 = c,=1l4c, ... (ii)
A

By substituting the value of ¢, in equation (i) we get 1.4c, —c, =4150 = 0.4c, = 4150

c, = % =10375 Jkg-K.

Problem 83. Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at
300K. The piston of A is free to move while that of B is held fixed. The same amount of heat
is given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K, then
the rise in temperature of the gas in B is [IIT-JEE 1998]

() 30K (b) 18 K (c) 50K (d)42 K

Solution : (d) In both cylinders A and B the gases are diatomic (y = 1.4). Piston A is free to move i.e. it is
isobaric process. Piston B is fixed i.e. it is isochoric process. If same amount of heat AQ is
given to both then

(AQ)isobaric = (AQ)isochoric



Problem 84.

Solution : (c)

Problem 8s5.

Solution : (a)

39.7

 6.023 x10 23

Problem 86.

Solution : (d)

Problem 87.

Solution : (c)
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C
HC,(AT)A = 4C,(AT)y = (AT)g = C—p(AT)A = y(AT), =1.4x30 = 42 K.

v

The specific heat of a gas

(a) Has only two values of Cp and C, (b) Has a unique value at a given temperature

(c) Can have any value between 0 and « (d) Depends upon the mass of the gas

Range of specific heat varies from positive to negative and from zero to infinite. It depends
upon the nature of process.

The specific heat at constant volume for the monoatomic argon is 0.075 kcal/kg-K
whereas its gram molecular specific heat C, = 2.98 cal/mole/K. The mass of the argon atom

is (Avogadro’s number =6.02x10% molecules/mole)

(a) 6.60x1072% gm (b) 3.30x107%% gm (c) 220x10 %2 gm  (d) 13.20x10% gm
Molar specific heat = Molecular weight x Gram specific heat
C, =Mxc,
. 3 .
~ 208 calorie M x0.075 kcal _ _Mx 0.075 x10 calone.
mole x kelvin kg - kelvin 108 gm x kelvin

. 2.98

.. molecular weight of argon M =——=39.7gm
0.075

i.e. mass of 6.023x10Z%atom = 39.7 gm .. mass of single atom

=6.60 x10 2 gm.

When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy
supplied which increases the internal energy of the gas is

(a) 2/5 (b) 3/5 (c) 3/7 (d)5/7

When a gas is heated at constant pressure then its one part goes to increase the internal
energy and another part for work done against external pressure i.e. (AQ), = AU + AW

= 1 CHAT = uC AT + PAV

So fraction of energy that goes to increase the internal energy AU =—=—=— [As y = 7 for
AQ), C, r» 7 5

diatomic gas]
The temperature of 5 mole of a gas which was held at constant volume was changed from

100°C to 120°C. The change in internal energy was found to be 80 J. The total heat capacity
of the gas at constant volume will be equal to

(a) 8JK™ (b) 0.8JK™ (c) 43K™ (d) 04JK™
At constant volume total energy will be utilised in increasing the temperature of gas
i.e. (AQ), = uC,AT =uC,(120 —100) =80

uC, = % =4 Joule/kelvin. This is the heat capacity of 5 mole gas.



44 Kinetic Theory of Gases

Problem 88. A gas, is heated at constant pressure. The fraction of heat supplied used for external work
is
1

(@) = (b) [1—% © 7-1 @ (1——2J
v e Ve

. . . - 3 1
Solution : (b) We know fraction of given energy that goes to increase the internal energy = —
4

So we can say the fraction of given energy that supplied for external work =1- 1 .

I

Problem 89. A monoatomic gas expands at constant pressure on heating. The percentage of heat
supplied that increases the internal energy of the gas and that is involved in the expansion
is
(a) 75%, 25% (b) 25%, 75% (c) 60%, 40% (d) 40%, 60%

Solution : (c) Fraction of energy supplied for increment in internal energy ===

ol w

[As;z = %for monoatomic gas}

.. Percentage energy = % =60%

Fraction of energy supplied for external work done =1- 1 === é
4 I >
3

.. Percentage energy = é x100% = 40%.

Problem 90. The average degrees of freedom per molecule for a gas is 6. The gas performs 25 J of work
when it expands at constant pressure. The heat absorbed by gas is

(a) 757 (b) 1007J (c) 150J (d)125]

Solution : (b) Asf=6 (given) .. 7:1+%:1+§:%

Fraction of energy given for external work AW = (1 - lj
4

_ 2B (o L) 21231 L A0 =25 x4 =100 Joule
AQ 473 44

Problem 91. Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a
constant velocity v. The molecular mass of gas is M. The rise in temperature of the gas
when the vessel is suddenly stopped is (y =Cp /Cy)

Mv 2 Mv2(y —1) My 2 Mv 2

@ 2Rrp 1) T © 2ro+1) @ 2o 1)

Solution : (b) If m is the total mass of the gas then its kinetic energy = %mv 2



Problem 92.

Solution : (b)
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When the vessel is suddenly stopped then total kinetic energy will increase the temperature

of the gas (because process will be adiabatic) i.e. %mv2 = uC AT :%CVAT [As
R
C,=——1]
y—-1
2 —
= m R vtz oAt MDD
My-1 2 2R

3

The density of a polyatomic gas is standard conditions is 0.795 kgm™ . The specific heat of

the gas at constant volume is

(a) 930 JkgtkK™ (b) 1400 J-kgtK™ (c) 1120 J-kgt K™ (d) 925 J-kgt K™
Ideal gas equation for m gram gas PV =mrT [where r = Specific gas constant]
5
or P:mrszrT = r:i:M:%Gj
\Y pT 0.795 x 273
Specific heat at constant volume c, = LI @ = 1400 ;
ryr-1 4 1 kg.kelvin
3

4 .
{y =3 for polyat omic gas}

Problem 93.

Solution : (c)

The value of C,-C, =1.00 R for a gas in state A and C, -C, =1.06R in another state. If P,

and Py denote the pressure and T, and Ty denote the temperatures in the two states, then
(a) Py =Pg, To>Tpg (b) Py >Pg, To=Tg (c) Py <Pg, Ta>Tg (d) Py >Pg, Tp<Tg

For state A, C, -C, =R i.e. the gas behaves as ideal gas.

For state B, C, —C, =1.06 R(# R) i.e. the gas does not behave like ideal gas.

and we know that at high temperature and at low pressure nature of gas may be ideal.

So we can say that P, <Pg and T, > Tg

11.17 Gaseous Mixture

If two non-reactive gases are enclosed in a vessel of volume V. In the mixture s moles of
one gas are mixed with y» moles of another gas. If N4 is Avogadro’s number then

Number of molecules of first gas N, =, N,

and number of molecules of second gas N, = u,N,

(i) Total mole fraction u = (u, + u,).

(ii) If M, is the molecular weight of first gas and M, that of second gas.

Then molecular weight of mixture will be M = MM, + 1M,y

M+
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(iii) Specific heat of the mixture at constant volume will be

R R
H + | ——
_,ulCV1+,uzCV2 B 1[71_1j 2(72 _1J _ R { Hy + M) }
Vmix - - -

M+ fy Myt 1y w+p, |y -1y, -1

c, - R m1/M1+m2/M2}
meeemp My oy -1 7o -1

M, M,

. . . . 4 Cp + 1,Cop,
(iv) Specific heat of the mixture at constant pressure willbe C, =——"-—7—7—7>
" Hy T 1y

X

ﬂl(}/yl_lJR+ﬂ2[7/yz_ljR R r
= Ce, = : : = Nl[ /1 j*ﬂuz[ 72 J
Hy Tl M+, -1 72 —1
_ R M| 7 My [_72
P m, M, | M\»y-1 M, 7, -1
1 2
(ﬂlCPl ‘*‘ﬂchz) ﬂl( V1 JRJﬁ”z( Vo JR
) y _CPmix _ Hi+ _/ulCP1 +/u2CP2 _ 71 -1 7, -1
mixture Cvmix (/ulcvl +IUZCV2) lLllcvl +IL[2CV2 R R
Y2 + Uy
My + 71 -1 72 —1
Hi)1 + Ha Vo
e _n-1 7’2_1:/1171(72_1)"'/1272(71_1)
e L+L (o =D+ p,(ry —1)
71-1 y,-1

Sample problems based on Mixture

Problem 94. If two moles of diatomic gas and one mole of monoatomic gas are mixed with then the ratio
of specific heats is

[MP PMT 2003]
7 5 19 15
a) — b) — c) — d) —
(a) 3 ( )4 (© 3 ( )19

. 7 . .
Solution : (¢) w4 =1, y; :g (for monoatomic gas) and u, =2, y, = 5 (for diatomic gas)
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1><E 2><Z

3, 5

Hiry | Hal2 5 1 7 1

-1 -1 3 5
From formula y jue = 71 4’ -3 ) _Sl2+r 18
Mo Ho 1 . 2 3/2+5 13

r1-1 y;-1 §_1 1_1

5

Problem 95. 22 gm of CO, at 27°C is mixed with 16 gm of O, at 37°C. The temperature of the mixture iS[CBSE PM
(a) 32°C (b) 27°C (c) 37°C (d) 30.5°C
Solution : (a) Let t is the temperature of mixture

Heat gained by CO, = Heat lost by O,

= H Cv1 ATy = 1y Cv2 AT,
22 16 (5

= —@BR)(t-27)=—| =R |(37 -t
2 CRX ) 32[2 )( )

- 3(t—27)=%(37 —1)

By solving we get t =32°C.

Problem 96. A gas mixture consists of 2 mole of oxygen and 4 mole of argon at temperature T.
Neglecting all vibrational modes, the total internal energy of the system is

(a) 4 RT (b) 15 RT (c) 9 RT (d) 11 RT
f f
Solution : (d) Total internal energy of system = Ugygen +Uggon = £4 ?1 RT + i, =RT
5 3
= ZERT +4§RT =5RT +6RT =11 RT [As fi = 5 (for oxygen) and f, = 3 (for

argon)]
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