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Gas
In gases the intermolecular forces are very weak 

and its molecule may fly apart in all directions. So 
the gas is characterized by the following properties.

(i) It has no shape and size and can be obtained 
in a vessel of any shape or size.

(ii) It expands indefinitely and uniformly to fill the 
available space.

(iii) It exerts pressure on its surroundings.
(iv) Intermolecular forces in a gas are minimum.
(v) They can easily compressed and expand.

Assumption of Ideal Gases (or Kinetic Theory of 
Gases)

Kinetic theory of gases relates the macroscopic 
properties of gases (such as pressure, temperature 
etc.) to the microscopic properties of the gas 
molecules (such as speed, momentum, kinetic energy 
of molecule etc.)

Actually it attempts to develop a model of the 
molecular behaviour which should result in the 
observed behaviour of an ideal gas. It is based on 
following assumptions :

(1) Every gas consists of extremely small 
particles known as molecules. The molecules of a 
given gas are all identical but are different than those 
of another gas.

(2) The molecules of a gas are identical, 
spherical, rigid and perfectly elastic point masses.

(3) Their size is negligible in comparison to 
intermolecular distance (10–9 m)

(4) The volume of molecules is negligible in 
comparison to the volume of gas. (The volume of 
molecules is only 0.014% of the volume of the gas).

(5) Molecules of a gas keep on moving randomly 
in all possible direction with all possible velocities.

(6) The speed of gas molecules lie between zero 
and infinity 

(7) The gas molecules keep on colliding among 
themselves as well as with the walls of containing 
vessel. These collisions are perfectly elastic. 

(8) The time spent in a collision between two 
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molecules is negligible in comparison to time 
between two successive collisions.

(9) The number of collisions per unit volume in a 
gas remains constant.

(10) No attractive or repulsive force acts between 
gas molecules.

(11) Gravitational attraction among the 
molecules is ineffective due to extremely small 
masses and very high speed of molecules.

(12) Molecules constantly collide with the walls 
of container due to which their momentum changes. 
The change in momentum is transferred to the walls 
of the container. Consequently pressure is exerted by 
gas molecules on the walls of container.

(13) The density of gas is constant at all points of 
the container.
Gas Laws

(1) Boyle’s law : For a given mass of an ideal 
gas at constant temperature, the volume of a gas is 
inversely proportional to its pressure.
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(iii) As number of molecules per unit volume 

V
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(iv) Graphical representation : If m and T are 
constant

(2) Charle's law : If the pressure remaining 
constant, the volume of the given mass of a gas is 
directly proportional to its absolute temperature.
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(ii) If the pressure 
remains constant, the 
volume of the given mass 
of a gas increases or 
decreases by  of its 
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1°C rise or fall in 
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This is Charle’s law for centigrade scale.
(v) Graphical representation: If m and P are 

constant

(3) Gay-Lussac’s law or pressure law : The 
volume remaining constant, the pressure of a given 
mass of a gas is directly proportional to its absolute 
temperature.

P  T   or      constant
T
P
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(i) The volume remaining constant, the pressure 
of a given mass of a gas 
increases or decreases by 

 of its pressure at 
15.273

1

0°C for each 1°C rise or 
fall in temperature.
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This is pressure law for centigrade scale.
(ii) Graphical representation : If m and V are 

constants

(4) Avogadro’s law : Equal volume of all the 
gases under similar conditions of temperature and 
pressure contain equal number of molecules i.e. 

.21 NN 

(5) Grahm’s law of diffusion : When two gases 
at the same pressure and temperature are allowed to 
diffuse into each other, the rate of diffusion of each 
gas is inversely proportional to the square root of the 

density of the gas i.e.    (M is the 

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If V is the volume of gas diffused in t sec then 
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(6) Dalton’s law of partial pressure : The total 
pressure exerted by a mixture of non-reacting gases 
occupying a vessel is equal to the sum of the 
individual pressures which each gases exert if it 
alone occupied the same volume at a given 
temperature.

For n gases nPPPPP .....321 

where P = Pressure exerted by mixture and 
Partial pressure of component gases.nPPPP ......,,, 321

Equation of State or Ideal Gas Equation
The equation which relates the pressure (P) 

volume (V) and temperature (T) of the given state of 
an ideal gas is known as ideal gas equation or 
equation of state. 

For 1 mole of gas  (constant)   PV = RTR
T

PV


 where R = universal gas constant. 
Table 13.1 : Different forms of gas equation
Quantity of gas Equation Constant

1 mole gas PV = RT R = universal gas constant

 mole gas PV = RT
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1 molecule of gas

kTT
N
RPV
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k = Boltzmann's constant 

N molecules of gas PV = NkT

1 gm of gas
rTT

M
RPV 










r = Specific gas constant

m gm of gas PV = mrT

(1) Universal gas constant (R) : Universal gas 
constant signifies the work done by (or on) a gas per 
mole per kelvin. 

re Temperatu
Volume Pressure





T

PVR
re Temperatu 

doneWork 





(i) At S.T.P. the value of universal gas constant 
is same for all gases R = 

kelvinmole
cal

kelvinmole
J





98.131.8

kelvinmol
cal


 2~

     .
kelvinmole
atmlitre




 8221.0

(ii) Dimension :  ][ 122  TML

(2) Boltzman's constant (k) : It is represented 

by per mole gas constant i.e.,  
2310023.6

31.8



N
Rk

KJ /1038.1 23

It's dimension : ][ 122  TML

(3) Specific gas constant (r) : It is represented 

by per gram gas constant i.e., . It's unit is 
M
Rr 

 and dimension 
kelvingm

Joule


][ 122  TL

Since the value of M is different for different 
gases. Hence the value of r is different for different 

gases. e.g. It is maximum for hydrogen 
22

RrH 

Real Gases

(1) The gases actually found in nature are called 
real gases.

(2) They do not obeys gas Laws. 

(3) For exactly one mole of an ideal gas  .1
RT
PV

Plotting the experimentally determined value of  
RT
PV

for exactly one mole of various real gases as a 

function of pressure P, shows a deviation from 
identity.

(4) The quantity  is called the compressibility 
RT
PV

factor and should be unit for an ideal gas. 
 

(5) Deviation from ideal behaviour as a function 
of temperature

(6) A real gas behaves as ideal gas most closely 
at low pressure and high temperature. Also can 
actual gas can be liquefied most easily which 
deviates most from ideal gas behaviour at low 
temperature and high pressure.

(7) Equation of state for real gases : It is given 
by Vander Waal's with two correction in ideal gas 
equation. The it know as Vander Waal's gas 
equation.

(i) Volume correction : Due to finite size of 
molecule, a certain portion of volume of a gas is 
covered by the molecules themselves. Therefore the 
space available for the free motion of molecules of 
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gas will be slightly less than the volume V of a gas. 
Hence the effective volume becomes (V – b).

(ii) Pressure correction : Due to intermolecular 
force in real gases, molecule do not exert that force 
on the wall which they would have exerted in the 
absence of  intermolecular force. Therefore the 
observed pressure P of the gas will be less than that 
present in the absence of intermolecular force. Hence 

the effective pressure becomes .





 

2V
aP

(iii) Vander Waal's gas equations
For 1 mole of gas RTbV

V
aP 







  )(2

For  moles of gas RTbV
V
aP 











 )(2

2

Here a and b are constant called Vander Waal’s 
constant.

Dimension : [a] =  and [b] = [L3]][ 25 TML

Units : a = N  m4   and b = m3.
(8) Andrews curves : The pressure (P) versus 

volume (V) curves for actual gases are called 
Andrews curves.

(i) At 350°C, part AB represents vapour phase of 

water, in this part Boyle’s law is obeyed . 






 
V

P 1

Part BC represents the co-existence of vapour and 
liquid phases. At point C, vapours completely 
change to liquid phase. Part CD is parallel to 
pressure axis which shows that compressibility of the 
water is negligible.

(ii) At 360°C portion representing the co-
existence of liquid vapour phase is shorter.

(iii) At 370°C this portion is further decreased.

(iv) At 374.1°C, it reduces to point (H) called 
critical point and the temperature 374.1°C is called 
critical temperature (Tc) of water.

(v) The phase of water (at 380°C) above the 
critical temperature is called gaseous phase.

(9) Critical temperature, pressure and volume 
: The point on the P-V curve at which the matter gets 
converted from gaseous state to liquid state is known 
as critical point. At this point the difference between 
the liquid and vapour vanishes i.e. the densities of 
liquid and vapour become equal.

(i) Critical temperature (Tc) : The maximum 
temperature below which a gas can be liquefied by 
pressure alone is called critical temperature and is 
characteristic of the gas. A gas cannot be liquefied if 
its temperature is more than critical temperature.

CO2 (31.1°C), O2 (–118°C), N2  (–147.1°C) and 
H2O (374.1°C)

(ii) Critical pressure (Pc) : The minimum 
pressure necessary to liquify a gas at critical 
temperature is defined as critical pressure CO2 
(73.87 bar)   and    O2  (49.7atm)

(iii) Critical volume (Vc) : The volume of 1 
mole of gas at critical pressure and critical 
temperature is defined as critical volume CO2 (95 
10–6 m3)

(iv) Relation between Vander Waal’s 
constants and Tc, Pc, Vc 
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Pressure of an Ideal Gas
Consider an ideal gas (consisting of N molecules 

each of mass m) enclosed in a cubical box of side L.
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(1) Instantaneous velocity : Any molecule of 
gas moves with velocity  in any direction v



where  . Due to kvjvivv zyx
ˆˆˆ 

 222
zyx vvvv 

random motion of molecule  zyx vvv 
2222 333 zyx vvvv 

(2) Time during collision : Time between two 
successive collision with the wall A1.
 

moleculeof  Velocity
collision successive  two betweenmolecule  by travelledDistance

t

xv
L2



(3) Collision frequency (n) : It means the 
number of collision per second. Hence 

L
v

t
n x

2
1






(4) Change in momentum : This molecule 
collides with the shaded wall  (A1) with velocity vx 
and rebounds with velocity . xv

The change in momentum of the molecule 
xxx mvmvmvp 2)()( 

As the momentum remains conserved in a 
collision, the change in momentum of the wall A1 
is xmvp 2

After rebound this molecule travel toward 
opposite wall A2 with velocity , collide to it and xv

again rebound with velocity  towards wall A1.xv

(5) Force on wall : Force exerted by a single 
molecule on shaded wall is equal to rate at which the 
momentum is transferred to the wall by this 
molecule.

i.e. 
L

mv
vL

mv
t
pF x

x

x
2

molecule Single )/2(
2







The total force on the wall  due to all the 1A

molecules =  2
xx v

L
mF 2222 ...)(

321 xxxx v
L

mNvvv
M
m



mean square of x component of the velocity. 2
xv

(6) Pressure :  Now pressure is defined as force 
per unit area, hence pressure on shaded wall 

 22
xx

x
x v

V
mNv

AL
mN

A
FP 

For any molecule, the mean square velocity 
; by symmetry  2222

zyx vvvv  222
zyx vvv 

3

2
222 vvvv zyx 

Total pressure inside the container
                  (where 22

3
1

3
1

rmsv
V
Nmv

V
mNP 

)2vvrms 

(7) Relation between pressure and kinetic 
energy : As we know   2

3
1

rmsv
V
NmP  2

3
1

rmsv
V
M



    ... (i) 2

3
1

rmsvP 

[As M = mN = Total mass of the gas and  ]
V
M



 K.E. per unit volume     22

2
1

2
1

rmsrms vv
V
ME 









...(ii)       
From (i) and (ii), we get EP

3
2



i.e. the pressure exerted by an ideal gas is 
numerically equal to the two third of the mean 
kinetic energy of translation per unit volume of the 
gas.

(8) Effect of mass, volume and temperature on 
pressure :      or       [As 2

3
1

rmsv
V
NmP 

V
TNmP )(



]Tvrms 2

(i) If volume and temperature of a gas are 
constant P  mN i.e. Pressure  (Mass of gas).

i.e. if mass of gas is increased, number of 
molecules and hence number of collision per second 
increases i.e. pressure will increase.

(ii) If mass and temperature of a gas are constant. 
P  (1/V), i.e., if volume decreases, number of 
collisions per second will increase due to lesser 
effective distance between the walls resulting in 
greater pressure.

(iii) If mass and volume of gas are constant, 
TvP rms  2)(

i.e., if temperature increases, the mean square 
speed of gas molecules will increase and as gas 
molecules are moving faster, they will collide with 
the walls more often with greater momentum 
resulting in greater pressure.
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Various Speeds of Gas Molecules

The motion of molecules in a gas is characterised 
by any of the following three speeds.

(1) Root mean square speed : It is defined as 
the square root of mean of squares of the speed of 
different molecules 

i.e. 2
2
4

2
3

2
2

2
1 .... v

N
vvvvvrms 




(i) From the expression of pressure 2

3
1

rmsvP 


m
kT

M
RTPVPvrms

33
gasof  Mass

33




, M = gas of the Density
gasof  Mass

 where 
V



(mass of gas), , R =    RTpV  ,AkN k

Boltzmann’s constant, 
m = = mass of each molecule. 

AN
M

(ii) With rise in temperature rms speed of gas 
molecules increases as .Tvrms 

(iii) With increase in molecular weight rms speed 
of gas molecule decreases as . e.g., rms 

M
vrms

1


speed of hydrogen molecules is four times that of 
oxygen molecules at the same temperature.

(iv) rms speed of gas molecules is of the order of 
km/s  e.g., at NTP for hydrogen gas

.sm
M
RTvrms /1840

102
27331.833

)( 3 





(v) rms speed of gas molecules is  times that 

3

of speed of sound in gas, as   and 
M
RTvrms

3


 
M
RTvs


 srms vv

3



(vi) rms speed of gas molecules does not depends 
on the pressure of gas (if temperature remains 
constant) because P   (Boyle’s law) if pressure is 
increased n times then density will also increases by 
n times but vrms remains constant.

(vii) Moon has no atmosphere because vrms of gas 
molecules is more than escape velocity (ve).

A planet or satellite will have atmosphere only if  
erms vv 

(viii) At T = 0; vrms = 0 i.e. the rms speed of 
molecules of a gas is zero at 0 K. This temperature is 
called absolute zero.

(2) Most probable speed : The particles of a gas 
have a range of speeds. This is defined as the speed 
which is possessed by maximum fraction of total 
number of molecules of the gas. e.g., if speeds of 10 
molecules of a gas are 1, 2, 2, 3, 3, 3, 4, 5, 6, 6 km/s, 
then the most probable speed is 3 km/s, as maximum 
fraction of total molecules possess this speed.

Most probable speed 
m
kT

M
RTPvmp

222




(3) Average speed : It is the arithmetic mean of 
the speeds of molecules in a gas at given 
temperature.

N
vvvv

vav
.....4321 



and according to kinetic theory of gases 

Average speed 
m
kT

M
RTPvav 

888


Maxwell’s Law (or the Distribution of Molecular 
Speeds

(1) The vrms gives us a general idea of molecular 
speeds in a gas at a given temperature. This doesn't 
mean that the speed of each molecule is vrms. Many 
of the molecules have speed less than vrms and many 
have speeds greater than vrms.

(2) Maxwell derived as equation given the 
distribution of molecules in different speed as follow

dvev
kT

mNdN kT
mv
22

2/3 2

2
4













where dN = Number of molecules with speeds 
between v and v + dv. 

v(m/s)
vrmsvavvmp

At a particular 
temperature

(Number of 
molecules at a 

particular speed)

dv
dN

Fig. 13.11
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(3) Graph between  (number of molecules at 
dv
dN

a particular speed) and v (speed of these molecules). 
From the graph it is seen that  is maximum at 

dv
dN

most probable speed. 
This graph also represent that  mpavrms vvv 

(Order remember trick RAM)

  
M
RT

M
RT

M
RT 283




M
RT

M
RT

M
RT

41.16.177.1 

Area bonded by this curve with speed axis 
represents the number of molecules corresponds to 
that velocity range. This curve is asymmetric curve. 

Effect of temperature on velocity distribution 
: With temperature rise the . Curve shift v

dv
dN

vs

towards right and becomes broader. 

(Because with temperature rise average 
molecular speed increases).
Mean Free Path.

(1) The distance travelled by a gas molecule 
between two successive collisions is known as free 
path.

collisionsof number Total 
collisions successive  betweenmolecule gas a  by travelleddistanceTotal 



During two successive collisions, a molecule of a 
gas moves in a straight line with constant velocity 
and

Let  be the distance travelled by a gas .....,, 321 

molecule during n collisions 
respectively, then the mean 
free path of a gas molecule 
is given by 

n
n





....321

(2) 
22

1

nd
 

where d = Diameter of the molecule, 
n = Number of molecules per unit volume 
(3) As PV =  RT =  NkT  

Number of molecule per unit volume so  n
kT
P

V
N

.
Pd

kT
22

1


 

(4) From  
22 )(22

1

dmn
m

nd 
 

 22 d
m



[As m = Mass each molecule, mn = Mass per 
unit volume = Density = ]

(5) If average speed of molecule is v then 
    

N
tv  Tv

[As N = Number of collision in time t, T = time 
interval between two collisions].

(i) As   and  i.e. the mean free path is 


 1
 m

inversely proportional to the density of a gas and 
directly proportional to the mass of each molecule. 

(ii) As . For constant volume and 
Pd

kT
22

1


 

hence constant number density n of gas molecules, 
 is constant so that  will not depend on P and T. 

T
P

But if volume of given mass of a gas is allowed to 
change with P or T then   T at constant pressure 
and  at constant temperature.

P
1



Degree of Freedom

v

T2 > T1

dv
dN

T2

T1

Fig. 13.12

Fig. 13.13

Fig. 13.14
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The term degree of freedom of a system refers to 

the possible independent motions, systems can have.      
or

The total number of independent modes (ways) 
in which a system can possess energy is called the 
degree of freedom (f).

The independent motions can be translational, 
rotational or vibrational or any combination of these.

So the degree of freedom are of three types : 
(i) Translational degree of freedom
(ii) Rotational degree of freedom
(iii) Vibrational degree of freedom
General expression for degree of freedom 
f = 3A – B ; where A = Number of 

independent particles, 
B = Number of independent restriction
(1) Monoatomic gas : 

Molecule of monoatomic gas 
can move in any direction in 
space so it can have three 
independent motions and hence 
3 degrees of freedom (all 
translational)

(2) Diatomic gas : 
Molecules of diatomic gas 
are made up of two atoms 
joined rigidly to one another 
through a bond. This cannot 
only move bodily, but also 
rotate about one of the three 
co-ordinate axes. However its moment of inertia 
about the axis joining the two atoms is negligible 
compared to that about the other two axes.

Hence it can have only two rotational motion. 
Thus a diatomic molecule has 5 degree of freedom : 
3 translational and 2 rotational.

(3) Triatomic gas (Non-
linear) : A non-linear 
molecule can rotate about any 

of three co-ordinate axes. Hence it has 6 degrees of 
freedom : 3 translational and 3 rotational.

Table 13.2 ; Degree of freedom for different 
gases

Atomicity of 
gas

Example A B f = 3
A – B

Figure

Monoatomic He, Ne, Ar 1 0 f = 3

Diatomic H2, O2, N2, 
Cl2 etc.

2 1 f = 5

Triatomic non 
linear H2O 3 3 f = 6

Triatomic 
linear CO2, BeCl2 3 2 f = 7

The above degrees of freedom are shown at room 
temperature. Further at high temperature, in case of 
diatomic or polyatomic molecules, the atoms with in 
the molecule may also vibrate with respect to each 
other. In such cases, the molecule will have an 
additional degrees of freedom, due to vibrational 
motion. 

An object which vibrates in one dimension has 
two additional degree of freedom. One for the 
potential energy and one for the kinetic energy of 
vibration. 

A diatomic molecule that is free to vibrate (in 
addition to translation and rotation) will have 

degrees of freedom. )232(7 

Kinetic Energy of Ideal Gas
In ideal gases, the molecules are considered as 

point particles. For point particles, there is no 
internal excitation, no vibration and no rotation. The 
point particles can have only translational motion 
and thus only translational energy. For an ideal gas 
the internal energy can only be tranlational kinetic 
energy.

Hence kinetic energy (or internal energy) of 1 
mole ideal gas 

RT
M
RTMMvE rms 2

33
2
1

2
1 2 

A AB

A

A AB

BB

A
A

B B A

z
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Fig. 13.16
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Table 13.3 : Various Translational kinetic 

energies

Quantity of gas Kinetic energy

1 mole gas ; R = Universal gas constantRT
2
3

 mole gas RT
2
3

1 molecule ; k = Boltzmann’s constantTk
2
3

N molecule TkN
2
3

1 gm gas ; r = Specific gas constantrT
2
3

m gm gas rTm
2
3

(1) Kinetic energy per molecule of gas does not 
depends upon the mass of the molecule but only 
depends upon the temperature of the gas. As  

  or   E  T  i.e. molecules of different gases kTE
2
3



say He, H2 and O2 etc. at same temperature will have 
same translational kinetic energy though their r.m.s. 
speed are different. 

(2) For two gases at the same temperature 
2
22

2
11 )()( rmsrms vmvm 

(3) Kinetic energy per mole of gas depends only 
upon the temperature of gas.

(4) Kinetic energy per gram of gas depend upon 
the temperature as well as molecular weight (or mass 
of one molecule) of the gas.   T

m
kEgram 2

3


m
TEgram 

(5) From the above expressions it is clear that 
higher the temperature of the gas, more will be the 
average kinetic energy possessed by the gas 
molecules at T = 0, E = 0 i.e. at absolute zero the 
molecular motion stops.
Law of Equipartition of Energy

According to this law, for any system in thermal 
equilibrium, the total energy is equally distributed 
among its various degree of freedom. And each 
degree of freedom is  associated with energy  kT

2
1

(where , T = absolute temperature KJk /1038.1 23

of the system).
(1) At a given temperature T, all ideal gas 

molecules no  matter what their mass have the same 

average translational kinetic energy; namely,  .
2
3 kT

When measure the temperature of a gas, we are also 
measuring the average translational kinetic energy of 
it' s molecules. 

(2) At same temperature gases with different 
degrees of freedom (e.g., He and H2) will have 
different average energy or internal energy namely 

 (f is different for different gases) .
2

kTf

(3) Different energies of a system of degree of 
freedom f are as follows 

(i) Total energy associated with each molecule  = 
kTf

2

(ii) Total energy associated with N molecules = 
NkTf

2

(iii) Total energy associated with  mole = RTf
2

(iv) Total energy associated with  molen = 
RTf 

2

(v) Total energy associated with each gram = 
rTf

2

(iv) Total energy associated with m gram = 
mrTf

2

Specific Heat (CP and CV) of a Gas
The specific heat of gas can have many values, 

but out of them following two values are very 
important

(1) Specific heat at constant volume (CV) : The 
specific heat of a gas at constant volume is defined 
as the quantity of heat required to raise the 
temperature of unit mass of gas through 1°C or  1 K 

when its volume is kept constant, i.e., 
Tm

Qc V
V 




)(
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If instead of unit mass, 1 mole of gas is 

considered, the specific heat is called molar specific 
heat at constant volume and is represented by capital 
Cv.

T
Q

Tm
QMMcC VV

VV 







)(1)(

 



 

M
m As

(2) Specific heat at constant from (CP) : The 
specific heat of a gas at constant pressure is defined 
as the quantity of heat required to raise the 
temperature of unit mass of gas through 1 K when its 

pressure is kept constant, i.e., 
Tm

Q
c p

P 




)(

If instead of unit mass, 1 mole of gas is 
considered, the specific heat is called molar specific 
heat at constant pressure and is represented by Cp.

T
Q

Tm
QM

MCC pp
pp 









)(1)(

 



 

M
m As

Mayer's Formula
(1) Out of two principle specific heats of a gas, 

CP is more than CV because in case of CV, volume of 
gas is kept constant and heat is required only for 
raising the temperature of one gram mole of the gas 
through 1°C or 1 K. Hence no heat, what so ever, is 
spent in expansion of the gas.

It means that heat supplied to the gas increases 
its internal energy only i.e. TCUQ VV  )(

…..(i)
(2) While in case of CP the heat is used in two 

ways
(i) In increasing the temperature of the gas by T 
(ii) In doing work, due to expansion at constant 

pressure (W)
So …..(ii)TCWUQ PP  )(

From equation (i) and (ii)    WTCTC VP  

        = RVPCCT VP  )(
T
VPCC VP 





[For constant pressure, W = PV also from PV 
= RT, 

PV = RT] 
This relation is called Mayer’s formula and 

shows that  i.e. molar specific heat at VP CC 

constant pressure is greater than that at constant 
volume.
Specific Heat in Terms of Degree of Freedom

(1) CV : For a gas at temperature T, the internal 
energy  Change in energy RTfU 

2
 TRfU  

2
... (i)

Also, as we know for any gas heat supplied at 
constant volume UTCQ VV  )(

... (ii)
From equation (i) and (ii) RfCV 2

1


(2) CP : From the Mayer’s formula  RCC vp 

  RRfRCC VP 
2

Rf







  1
2

(3) Ratio of Cp and Cv () : 

fRf

Rf

C
C

V

P 21

2

1
2 







 



(i) Value of  is different for monoatomic, 
diatomic and triatomic gases.

33.1
3
4

,4.1
5
7

,6.1
3
5

 tridimono 

(ii) Value of  is always more than 1. So we can 
say that always CP > CV .
Gaseous Mixture

If two non-reactive gases are enclosed in a vessel 
of volume V. In the mixture 1 moles of one gas are 
mixed with 2 moles of another gas. If NA is 
Avogadro’s number then 

Number of molecules of first gas  ANN 11 

and number of molecules of second gas 
ANN 22 

(1) Total mole fraction .)( 21  

(2) If  is the molecular weight of first gas and 1M

 that of second gas. 2M

Then molecular weight of mixture  

21

2211








MMM

(3) Specific heat of the mixture at constant 
volume will be   

21

21 21







 VV

V
CC

C
mix

2

2

1

1

2

2

1

1
21

M
m

M
m

C
M
mC

M
m

VV





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(4) Specific heat of the mixture at constant 

pressure will be

  
21

21 21







 PP

P
CC

C
mix

21

2

2
2

1

1
1 11
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



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
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(5) 
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 The cooking gas cylinder contains L.P.G. 
(Liquid Petroleum gas) which is saturated. And as 
pressure
 of saturated vapours is independent of volume
(at constant temperature). the pressure of gas 
coming out of the cylinder remains constant
till the cylinder becomes empty.

 If the number of molecules in a gas increases, 
then the temperature, kinetic energy and pressure 
of the gas increases because P  n, T  n and 
kinetic energy  T  n.

 At constant volume if T increases then , vrms, v

P and collision frequency increases.

 If two gases are filled in vessel then nothing 
can be predicted about the pressure of gases. 

However their mean molecular energies will be 
same but their rms velocities will be different. 

 The average distance between two gas 
molecules at NTP is 10–9 m.
 The space available for a single gas molecule 
at NTP is 37.2  10–2 m2. 
 The molecules of gases will escape out from a 

planet if the temperature of planet ; where 
R

MvT e

3

2



ve = escape velocity from the planet, R = universal, 
gas constant and M = Molecular mass of the gas. 

 As f (degree of freedom) increases then CP, 
CV and  .

 The number of molecules present in 1 gm mole 
of a gas is defined as Avogadro number (NA).
       per gm mole per kg 2310023.6 AN 2610023.6 

mole.
At S.T.P. or N.T.P. (T = 273 K and P = 1 atm) 
22.4 litre of each gas has  molecule2310023.6 

 One mole of any gas at S.T.P. occupy 22.4 
litre of volume
e.g. 32 gm oxygen,  28 gm nitrogen and  2gm 
hydrogen occupy the same volume at S.T.P.

 For any gas 1 mole = M gram = 22.4 litre = 
6.023  1023 molecule. 

 vrms : vav : vmp = 2:5.2:32:
8

:3 


 For oxygen gas molecules vrms = 461 m/s,  vav 
= 424.7 m/s  and  vrms = 376.4 m/s

 An atom in a solid though has no degree of 
freedom for translational and rotational motion, 
due to vibration along 3 axes has 3  2 = 6 degrees 
of freedom (and not like an ideal gas molecule). 
When a diatomic or polyatomic gas dissociates 
into atoms it behaves as monoatomic gas whose 
degree of freedom are changed accordingly

 In General a polyatmic molecule has 3 
translational, 3 rotational degree of freedom and a 
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certain number of vibration mode . Hence vibf

. 
vib

vib
poly f

f




3
4

 Only average translational kinetic energy of a 
gas contributes to its temperature. Two gases with 
the same average translational kinetic energy have 
the same temperature even if one has grater 
rotational energy and thus greater internal energy.    

 Unsaturated vapours obey gas laws while 
saturated vapours don’t. 

 For real gases effective volume is considered 

as (V – b) where ; r = radius of 






 3

3
4

4 rNb A 

each molecule and NA = avogrado number.
 Variation of degree of freedom of a diatomic 
gas (H2) with temperature. At very low 
temperature only translation is possible. as the 
temperature increases rotational motion can begin. 
At still higher temperatures vibratory motion can 
begin.

Gas Laws 

1. The temperature of a gas at pressure P and 
volume V is 27°C. Keeping its volume constant 
if its temperature is raised to 927°C, then its 
pressure will be [MP PMT 1985]

(a) 2 P (b) 3 P
(c) 4 P (d) 6 P 

2. 4 moles of an ideal gas is at 0°C. At constant 
pressure it is heated to double its volume, then 

its final temperature will be 
[MP PET 1990]

(a) 0°C (b) 273°C
(c) 546°C (d) 136.5°C 

3. Every gas (real gas) behaves as an ideal gas
[CPMT 1997; RPMT 2000; MP PET 2001]

(a) At high temperature and low pressure
(b) At low temperature and high pressure
(c) At normal temperature and pressure
(d) None of the above

4. Boyle's law holds for an ideal gas during 
[AFMC 1994; KCET 1999]

(a) Isobaric changes (b) Isothermal changes
(c) Isochoric changes (d) Isotonic changes

5. S.I. unit of universal gas constant is
[MNR 1988; MP PMT 1994; UPSEAT 1999]

(a) cal/°C (b) J/mol
(c) (d) J/kg11  KmolJ

6. Molecules of a gas behave like 
[J & K CET 2000]

(a) Inelastic rigid sphere
(b) Perfectly elastic non-rigid sphere
(c) Perfectly elastic rigid sphere 
(d) Inelastic non-rigid sphere
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