Gas

In gases the intermolecular forces are very weak
and its molecule may fly apart in all directions. So
the gas is characterized by the following properties.

(1) It has no shape and size and can be obtained
in a vessel of any shape or size.

(i1) It expands indefinitely and uniformly to fill the
available space.

(111) It exerts pressure on its surroundings.
(iv) Intermolecular forces in a gas are minimum.
(v) They can easily compressed and expand.

Assumption of Ideal Gases (or Kinetic Theory of
Gases)
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Kinetic theory of gases relates the macroscopic
properties of gases (such as pressure, temperature
etc.) to the microscopic properties of the gas
molecules (such as speed, momentum, kinetic energy
of molecule etc.)

Chapier‘ |
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Kinetic Theory of Gases

Actually it attempts to develop a model of the
molecular behaviour which should result in the
observed behaviour of an ideal gas. It is based on
following assumptions :

(1) Every gas consists of extremely small
particles known as molecules. The molecules of a
given gas are all identical but are different than those
of another gas.

(2) The molecules of a gas are identical,
spherical, rigid and perfectly elastic point masses.

(3) Their size is negligible in comparison to
intermolecular distance (10~ m)

(4) The volume of molecules is negligible in
comparison to the volume of gas. (The volume of
molecules is only 0.014% of the volume of the gas).

(5) Molecules of a gas keep on moving randomly
in all possible direction with all possible velocities.

(6) The speed of gas molecules lie between zero
and infinity

(7) The gas molecules keep on colliding among
themselves as well as with the walls of containing
vessel. These collisions are perfectly elastic.

(8) The time spent in a collision between two



molecules is negligible in comparison to time
between two successive collisions.

(9) The number of collisions per unit volume in a
gas remains constant.

(10) No attractive or repulsive force acts between
gas molecules.

(1)

molecules is ineffective due to extremely small

Gravitational  attraction among the

masses and very high speed of molecules.

(12) Molecules constantly collide with the walls
of container due to which their momentum changes.
The change in momentum is transferred to the walls
of the container. Consequently pressure is exerted by
gas molecules on the walls of container.

(13) The density of gas is constant at all points of
the container.
Gas Laws

(1) Boyle’s law : For a given mass of an ideal
gas at constant temperature, the volume of a gas is
inversely proportional to its pressure. P,

Increase
pressure

< T >

B
Decrease @
14 pressure 123
= =
(GV) (B)
Fig. 13.1
ie. Vel or PV=constant = RV =RV

f =constant Or

P
(1) PV= P[EJ: constant =
P

P
A_A
P P2

(As volume = 7 and m = constant)

p(Densityof the gas)
(i) PV = P(/—V) _constant = = —constant or
n n

A_A
noom
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= V= /—/\7/ also N = constant

(iv) Graphical representation : If m and T are
constant

P PV PV

v P 14
A) B) ©
|L\ % 1/P
(D) E)
Fig. 13.2

(2) Charle's law : If the pressure remaining
constant, the volume of the given mass of a gas is
directly propog}tional to its absolute temperatyre.

Increase
volume

——

_—
Decrease v,
Ty 41 volume i
B .
(A) (B)
Fig. 13.3

. |2 4
ie, Voo T> Y _constant = L-%
T Lo

(1) Y_ M _ constant (As volume v="7)
T pT P
or pT7=constant = p, 7, =p, 7,
(i1)) If the pressure
remains constant, the Vi
volume of the given mass
of a gas increases or 0

of its ,
273.15 Z #(°C)

27315 O
volume at 0°C for each

) . Fig. 13.4
1°C rise or fall in
temperature.

V= l/0[1+

decreases by

LI
27315 j



This is Charle’s law for centigrade scale.

(v) Graphical representation: If m and P are

constant
V v v
T T ur
A) (B) ©)
V/T v/T
Tor 1/T VorllV
(D) (E)
Fig. 13.5

(3) Gay-Lussac’s law or pressure law : The
volume remaining constant, the pressure of a given
mass of a gas is directly proportional to its absolute
temperature.

Poc T or !

£:constant = —=—=
T non

(1) The volume remaining constant, the pressure
of a given mass of a gas P,
increases or decreases by

1 . Py
of its pressure at ,
273.15 . 0
(o] (e} . /
0 C. for each 1°C rise or ——75—%
fall in temperature. Fig. 13.5
P=R1+ t
273.15

This is pressure law for centigrade scale.

(i1) Graphical representation : If m and J are

constants
P P/T P/T
e
T Tor1/T Porl/P
(A) B) ©)
/P P
T /T

(D) (E)
Fig. 13.6

( )

Kinetic Theory of Gases 595

)

(4) Avogadro’s law : Equal volume of all the
gases under similar conditions of temperature and
pressure contain equal number of molecules i.e.
Ny = N,.

(5) Grahm’s law of diffusion : When two gases
at the same pressure and temperature are allowed to
diffuse into each other, the rate of diffusion of each
gas is inversely proportional to the square root of the

density of the gas i.e. Foe—— oo 1 (M is the

T

molecular weight of the gas) = - \/7 /

If V is the volume of gas diffused in ¢ sec then

Vs a_YU b
T v

(6) Dalton’s law of partial pressure : The total
pressure exerted by a mixture of non-reacting gases
occupying a vessel is equal to the sum of the
individual pressures which each gases exert if it
alone occupied the same volume at a given
temperature.

Forn gases P=R+AB +A +...P

n

where P = Pressure exerted by mixture and
R,R, A,,.....~P, =Partial pressure of component gases.

Equation of State or Ideal Gas Equation

The equation which relates the pressure (P)
volume (V) and temperature (7) of the given state of
an ideal gas is known as ideal gas equation or
equation of state.

For 1 mole of gas iTV = R (constant) = PV =RT

where R = universal gas constant.

Table 13.1 : Different forms of gas equation

Quantity of gas Equation Constant
1 mole gas PV =RT R = universal gas constant
pmole gas PV = uRT




1 molecule of gas R k = Boltzmann's constant
PV=|—|T=kT
N,
N molecules of gas | PV =NkT
1 gm of gas r = Specific gas constant
gmene PV= [ﬁ) T=rT peetfic 8
M
m gm of gas PV=mrT

(1) Universal gas constant (R) : Universal gas
constant signifies the work done by (or on) a gas per
mole per kelvin.

_ PV _PressurexVolume  Workdone

R=—= =
uT  puxTemperatue  ux Temperatue

(1) At S.T.P. the value of universal gas constant

is same for all gases R =
J B cal =5 cal
molex kelvin ~~— molex kelvin molx kelvin
—~0.8221 litrex atm. '
molex kelvin

(i) Dimension : [M2T267]
(2) Boltzman's constant (k) : It is represented

R 8.31

by per mole gas constant ie., k=—=—"""—
Y P 8 N  6.023x10%

=1.38x10% U/ K
It's dimension : [ML2T 267"
(3) Specific gas constant (r) : It is represented

by per gram gas constant ie., r=-—. It's unit is

B

Joule

——"  and dimension [£27267"]
gmx kelvin

Since the value of M is different for different

gases. Hence the value of r is different for different

gases. e.g. It is maximum for hydrogen 7, :ER

Real Gases

(1) The gases actually found in nature are called
real gases.

(2) They do not obeys gas Laws.

(3) For exactly one mole of an ideal gas % =1.

Plotting the experimentally determined value of %

for exactly one mole of various real gases as a
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[S—
function of pressure P, shows a deviation from
identity.

(4) The quantity %7/_ is called the compressibility

factor and should be unit for an ideal gas.

CH,
H,
1.5
Ly
RT o Ideal gas
0.5
0 200 400 600 800 1000

P (atm)
Fig. 13.7

(5) Deviation from ideal behaviour as a function

of temperat,
2 200K ,500 K
15 1000 K
rr
RT |1 Ideal gas
0.5
0 300 600 900 1200 P(atm)

Fig. 13.8

(6) A real gas behaves as ideal gas most closely
at low pressure and high temperature. Also can
actual gas can be liquefied most easily which
deviates most from ideal gas behaviour at low
temperature and high pressure.

(7) Equation of state for real gases : It is given
by Vander Waal's with two correction in ideal gas
equation. The it know as Vander Waal's gas
equation.

(i) Volume correction : Due to finite size of
molecule, a certain portion of volume of a gas is
covered by the molecules themselves. Therefore the
space available for the free motion of molecules of



gas will be slightly less than the volume V' of a gas.
Hence the effective volume becomes (V' — b).

(i1) Pressure correction : Due to intermolecular
force in real gases, molecule do not exert that force
on the wall which they would have exerted in the
absence of intermolecular force. Therefore the
observed pressure P of the gas will be less than that
present in the absence of intermolecular force. Hence

the effective pressure becomes [P+ %) .

(ii1)) Vander Waal's gas equations

For 1 mole of gas [P+%)(V— B=RT

For pmoles of gas [P+ai|/:J(l/— ub)=u RT

Here a and b are constant called Vander Waal’s
constant.

Dimension : [a] = [mML°T2] and [b] = [L?]

Units : a=Nxm* and b =m’.

(8) Andrews curves : The pressure (P) versus
volume (V) curves for actual gases are called
Andrews curves.

P Gas

Liquid vapour region

Liquid
2V
C 350°C apour
M4
Vv
Andrews curve for water
Fig. 13.9

(1) At 350°C, part AB represents vapour phase of
water, in this part Boyle’s law is obeyed (Poc%/].

Part BC represents the co-existence of vapour and
liquid phases. At point C, vapours completely
change to liquid phase. Part CD is parallel to
pressure axis which shows that compressibility of the
water is negligible.

(1i1)) At 360°C portion representing the co-
existence of liquid vapour phase is shorter.

(ii1) At 370°C this portion is further decreased.

—
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(iv) At 374.1°C, it reduces to point () called

critical point and the temperature 374.1°C is called
critical temperature (7,) of water.

(v) The phase of water (at 380°C) above the
critical temperature is called gaseous phase.

(9) Critical temperature, pressure and volume
: The point on the P-J curve at which the matter gets
converted from gaseous state to liquid state is known
as critical point. At this point the difference between
the liquid and vapour vanishes i.e. the densities of
liquid and vapour become equal.

(1) Critical temperature (7, : The maximum
temperature below which a gas can be liquefied by
pressure alone is called critical temperature and is
characteristic of the gas. A gas cannot be liquefied if
its temperature is more than critical temperature.

CO, (31.1°C), O, (-118°C), N, (—147.1°C) and
H,0 (374.1°C)

(i) Critical pressure (P) : The minimum
pressure necessary to liquify a gas at critical

temperature is defined as critical pressure CO,
(73.87 bar) and O, (49.7atm)

(i11) Critical volume (V. : The volume of 1
mole of gas at critical pressure and critical
temperature is defined as critical volume CO, (95

x1076 m?)

(iv) Relation between Vander Waal’s
constants and 7., P, V.
8a a
TL=—", P=—"0, V,=3b,
T 27IRp’ ¢ 271877 €
_ RV _3p

2
a_ﬁi,ﬁfi and
64 P, 8

Pressure of an Ideal Gas

Consider an ideal gas (consisting of N molecules
each of mass m) enclosed in a cubical box of side L.

Fig. 13.10



(1) Instantaneous velocity : Any molecule of
gas moves with velocity v in any direction

where =y, i+v,j+ vhk=>v= \/m . Due to
random  motion  of
V¥ =3/%=3/=31

(2) Time during collision : Time between two
successive collision with the wall 4;.

Distancetravelled by moleculebetweentwo successiveollision
Velocity of molecule

molecule Ve=V,=V,=>

At=

It means the
number of collision per second. Hence n= Al[ = %

(4) Change in momentum : This molecule
collides with the shaded wall (4,) with velocity v,
and rebounds with velocity -v,.

(3) Collision frequency (n)

The change in momentum of the molecule
Ap=(-mv,)—(mv,)=-2mv,
As the momentum remains conserved in a
collision, the change in momentum of the wall 4,
1S Ap=2mv,

After rebound this molecule travel toward
opposite wall 4, with velocity -v,, collide to it and

again rebound with velocity v, towards wall 4.

(5) Force on wall : Force exerted by a single
molecule on shaded wall is equal to rate at which the
momentum is transferred to the wall by this
molecule.

A Ap

2mv, mv/
Singlemolecule — At = =

@LIv) LX
The total force on the wall A4, due to all the
mN —
molecules F, ——ZVZ |/2 2+ +...):Tv§

V2 =mean square of x Component of the velocity.

ie.

(6) Pressure : Now pressure is defined as force
per unit area, hence pressure on shaded wall
> i mNz mN — 1/2

A AL v

[ D)
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For any molecule, the mean square VeIO(:1ty

V= 1/2+v2+v2 by symmetry = v2 2=
5 = 5 7
Total pressure inside the container
1 mN— mN 5 _ 1mN mN (where
"3V 3V

:J?)

(7) Relation between pressure and kinetic
1mN 2

As we know P=— 3y Vme = gvr

energy :

7P Vs - (1)

[As M = mN = Total mass of the gas and p=— |

M
4
. K.E. per unit volume £= l[ﬂj Vs = lp V2
2\ Vv 2
..(11)
From (i) and (i1), we get P= % E

i.e. the pressure exerted by an ideal gas is
numerically equal to the two third of the mean
kinetic energy of translation per unit volume of the
gas.

(8) Effect of mass, volume and temperature on

pressure : P- ;mlﬁv 2 or Pl C/) T [As

Vims < T ]

(1) If volume and temperature of a gas are
constant P oc mN i.e. Pressure oc (Mass of gas).

i.e. if mass of gas is increased, number of
molecules and hence number of collision per second
increases i.e. pressure will increase.

(11) If mass and temperature of a gas are constant.
P o< (1/V), ie
collisions per second will increase due to lesser

, 1f volume decreases, number of

effective distance between the walls resulting in
greater pressure.

(ii1) If mass and volume of gas are constant,
P (V) o< T

i.e., if temperature increases, the mean square
speed of gas molecules will increase and as gas
molecules are moving faster, they will collide with
the walls more often with greater momentum
resulting in greater pressure.



Various Speeds of Gas Molecules

The motion of molecules in a gas is characterised
by any of the following three speeds.

(1) Root mean square speed : It is defined as
the square root of mean of squares of the speed of
different molecules

‘e Vrms:\/vf+|/§+|f/+v§+....

7

(1) From the expression of pressure P= % P Vs

., _ [3P_ 3PV _\/3/?7'_\/3/(7’
mey p Massof gas M m

Massof gas
4

ux(mass of gas), pV=uRT, R =
Boltzmann’s constant,

where p = = Densityof the gas, M =

KN, k=

M
m = — = mass of each molecule.
A

(i1)) With rise in temperature rms speed of gas
molecules increases as v, « 7.

(111) With increase in molecular weight rms speed
1
T
speed of hydrogen molecules is four times that of

oxygen molecules at the same temperature.
(iv) rms speed of gas molecules is of the order of
km/s e.g., at NTP for hydrogen gas

w )_\/SRT_\/SXS.31><273
me % 2x10°

(v) rms speed of gas molecules is \/E times that
y

of gas molecule decreases as v, « e.g., rms

=1840m/ s.

of speed of sound in gas, as 1/,,,,5:1/3%T and

yRT 3
Vs = 7:} l/rms:\/;vs

(vi) rms speed of gas molecules does not depends
on the pressure of gas (if temperature remains
constant) because P o« p (Boyle’s law) if pressure is
increased »n times then density will also increases by
n times but v,,,; remains constant.

(vii) Moon has no atmosphere because v,,,; of gas
molecules is more than escape velocity (v,).

———
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A planet or satellite will have atmosphere only if

Vims < Ve

(viii) At T = 0; v,y = 0 i.e. the rms speed of
molecules of a gas is zero at 0 K. This temperature is
called absolute zero.

(2) Most probable speed : The particles of a gas
have a range of speeds. This is defined as the speed
which is possessed by maximum fraction of total
number of molecules of the gas. e.g., if speeds of 10
molecules of a gas are 1, 2,2, 3,3, 3,4,5,6, 6 km/s,
then the most probable speed is 3 km/s, as maximum
fraction of total molecules possess this speed.

Most probable speed v, = \/E = /%7 = /%T
P

(3) Average speed : It is the arithmetic mean of
the speeds of molecules in a gas at given
temperature.

Nttt
av N
and according to kinetic theory of gases

Average speed v,,— |22 - |8 RT _ |8 kT
o Tz M T m

Maxwell’s Law (or the Distribution of Molecular
Speeds

(1) The v, gives us a general idea of molecular

speeds in a gas at a given temperature. This doesn't
mean that the speed of each molecule is v,,,. Many
of the molecules have speed less than v,,,; and many
have speeds greater than v,,,.

(2) Maxwell derived as equation given the
distribution of molecules in different speed as follow

m 32 _mA
dN = 4zN Ve 2T gy
27kT

7T

where dN = Number of molecules with speeds

between v and vaw dv.
av

(Number of
molecules at a
particular speed)

At a particular
temperature

v(m/s)

Vip Vav Vems

Fig. 13.11



(3) Graph between ‘;—/: (number of molecules at

a particular speed) and v (speed of these molecules).

From the graph it is seen that % is maximum at
4

most probable speed.
This graph also represent that v, > v,, > v,

mp
(Order remember trick RAM)

N \/3RT>\/8RT>‘/2RT:
M P M
177/ R 16/ FT o141 FT
M M M

Area bonded by this curve with speed axis

represents the number of molecules corresponds to
that velocity range. This curve is asymmetric curve.

Effect of temperature on velocity distribution
: With temperature rise the c;—/l\//vsv. Curve shift

towards right and becomes broader.

an T,
av 7
T,>T,
v
Fig. 13.12
(Because with temperature rise average

molecular speed increases).
Mean Free Path

(1) The distance travelled by a gas molecule
between two successive collisions is known as free
path.

_ Total distancetravelled by a gasmoleculebetweensuccessiveollisions
Total number of collisions

A

During two successive collisions, a molecule of a
gas moves in a straight line with constant velocity
and

Let 4,4, 4..... be the distance travelled by a gas

molecule during n collisions [ o 5
respectively, then the mean @ 9 o
“ _ i
free path of a gas molecule |% 70,99
. . \ j‘/ _ 7/,4’ y
is given by o N SO
P SRS D
Gt Ayt A, \J:__J;A’_\\L’_;__
D Y 9 - *] -
n > Ko~
> N )
s ) ~ Q9
J A o
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where d = Diameter of the molecule,

n = Number of molecules per unit volume

3 As PV = u RT = pu NkT =
AI// = k—’:_ = n=Number of molecule per unit volume so
_ 1 AT
2 2P '
1 m m
4) From 4= = =
“) V2ind®  2n(mnd®  2xd?p

[As m = Mass each molecule, mn = Mass per
unit volume = Density = p]

(5) If average speed of molecule is v then
A= |/><—t =vxT
N

[As N = Number of collision in time ¢, 7 = time
interval between two collisions].

(1) As 2« 1 and 4xm i.e. the mean free path is
Yol

inversely proportional to the density of a gas and
directly proportional to the mass of each molecule.

Y A

P m
A) (B)
Fig. 13.14

(i) As 2=—L_*%T_ For constant volume and

J2 7d? P

hence constant number density n of gas molecules,

—'; is constant so that 4 will not depend on P and 7.

But if volume of given mass of a gas is allowed to
change with P or T then A oc T at constant pressure

and 2 o« % at constant temperature.

¥ A

p T
A) (B)
Fig. 13.15

Degree of Freedom



The term degree of freedom of a system refers to
the possible independent motions, systems can have.
or

The total number of independent modes (ways)

in which a system can possess energy is called the
degree of freedom (f).

The independent motions can be translational,
rotational or vibrational or any combination of these.

So the degree of freedom are of three types :

(1) Translational degree of freedom

(i1) Rotational degree of freedom

(ii1) Vibrational degree of freedom

General expression for degree of freedom

f=34-B; A =
independent particles,

where Number of

B = Number of independent restriction
(1) Monoatomic gas

Molecule of monoatomic gas "t
can move in any direction in N \v\l )
space so it can have three < J:/—>x
independent motions and hence N sk
3 degrees of freedom (all Fig. 13.16
translational)

(2) Diatomic gas
Molecules of diatomic gas d
are made up of two atoms
joined rigidly to one another —— —>x
through a bond. This cannot
only move bodily, but also ~ Fig. 13.17

rotate about one of the three

co-ordinate axes. However its moment of inertia
about the axis joining the two atoms is negligible
compared to that about the other two axes.

Hence it can have only two rotational motion.
Thus a diatomic molecule has 5 degree of freedom :
3 translational and 2 rotational.

(3) Triatomic gas (Non-

linear) : A non-linear

s

molecule can rotate about any ‘
_ %,x

z Fig. 13.18

)
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of three co-ordinate axes. Hence it has 6 degrees of
freedom : 3 translational and 3 rotational.

Table 13.2 ; Degree of freedom for different
gases

Atomicity of Example A | B f=3 Figure
gas A-B 4
Monoatomic He, Ne, Ar 1 0 f=3
Diatomic
HZ: 02, NZ) 2 1 f=5 Jo- L _ 4
Cl, etc.
Triatomic non A
linear H,O 3| 3 f=6 B/} X \B
O--0
e
Triatomic
linear CO,LBeCL | 3 | 2| f=17 e - 4
B B A4

The above degrees of freedom are shown at room
temperature. Further at high temperature, in case of
diatomic or polyatomic molecules, the atoms with in
the molecule may also vibrate with respect to each
other. In such cases, the molecule will have an
additional degrees of freedom, due to vibrational
motion.

An object which vibrates in one dimension has
two additional degree of freedom. One for the
potential energy and one for the kinetic energy of
vibration.

A diatomic molecule that is free to vibrate (in
addition to translation and rotation) will have

7(2+3+2)degrees of freedom.

Kinetic Energy of Ideal Gas

In ideal gases, the molecules are considered as
point particles. For point particles, there is no
internal excitation, no vibration and no rotation. The
point particles can have only translational motion
and thus only translational energy. For an ideal gas
the internal energy can only be tranlational kinetic
energy.

Hence kinetic energy (or internal energy) of 1
mole ideal gas

1 ><3RT:%R7'




Table 13.3 : Various Translational Kkinetic
energies

Quantity of gas Kinetic energy

3 .

1 mole gas 2 RT; R = Universal gas constant
3

pmole gas 2 uRT
3

1 molecule Ek T ; k= Boltzmann’s constant
3

N molecule 2 NkT
3 .

1 gm gas ErT; r = Specific gas constant
3

m gm gas EmrT

(1) Kinetic energy per molecule of gas does not
depends upon the mass of the molecule but only

depends upon the temperature of the gas. As

E- %kr or E o T ie molecules of different gases

say He, H, and O, etc. at same temperature will have
same translational kinetic energy though their r.m.s.
speed are different.

(2) For two gases at the same temperature
M)t = MoV

(3) Kinetic energy per mole of gas depends only
upon the temperature of gas.

(4) Kinetic energy per gram of gas depend upon

the temperature as well as molecular weight (or mass

of one molecule) of the gas. Eg,angir =

E ocI
m

gram

(5) From the above expressions it is clear that
higher the temperature of the gas, more will be the
average Kkinetic energy possessed by the gas
molecules at 7= 0, E = 0 i.e. at absolute zero the
molecular motion stops.

Law of Equipartition of Energy
According to this law, for any system in thermal

equilibrium, the total energy is equally distributed
among its various degree of freedom. And each

degree of freedom is associated with energy %kr

)
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(where £=1.38x102° y/ k, T = absolute temperature
of the system).
(1) At a given temperature 7, all ideal gas
molecules no matter what their mass have the same

average translational kinetic energy; namely, %kﬁ

When measure the temperature of a gas, we are also
measuring the average translational kinetic energy of
it' s molecules.

(2) At same temperature gases with different
degrees of freedom (e.g., He and H,) will have
different average energy or internal energy namely

Efkr (f1s different for different gases)

(3) Different energies of a system of degree of
freedom fare as follows

(1) Total energy associated with each molecule =
! kT
2

(i1) Total energy associated with N molecules =

! NkT
2

(ii1) Total energy associated with  mole = EfRT

(iv) Total energy associated with x# molen =

f
— uRT
2/1

(v) Total energy associated with each gram =
—frT
2

(iv) Total energy associated with m gram =
f

EmrT
Specific Heat (Cr and C,) of a Gas

The specific heat of gas can have many values,
but out of them following two values are very
important

(1) Specific heat at constant volume (C)y) : The
specific heat of a gas at constant volume is defined
as the quantity of heat required to raise the
temperature of unit mass of gas through 1°C or 1 K

when its volume is kept constant, i.e., ¢, = —(A?TV
m



If instead of unit mass, 1 mole of gas is
considered, the specific heat is called molar specific
heat at constant volume and is represented by capital
C,.

e 1o - MAQy, 100y psu-T"
v YU mAT 4 AT M

(2) Specific heat at constant from (Cp) : The
specific heat of a gas at constant pressure is defined
as the quantity of heat required to raise the
temperature of unit mass of gas through 1 K when its

AQ,

ressure is kept constant, i.e., ¢, =
p p 9 5 P mAT

If instead of unit mass, 1 mole of gas is
considered, the specific heat is called molar specific
heat at constant pressure and is represented by C,.

M9, 109, { Asﬂ:ﬂ}
M

c,=MC =
u AT
(1) Out of two principle specific heats of a gas,

» p mAT

Mayer's Formula

Cp is more than Cy because in case of Cy, volume of
gas is kept constant and heat is required only for
raising the temperature of one gram mole of the gas
through 1°C or 1 K. Hence no heat, what so ever, is
spent in expansion of the gas.

It means that heat supplied to the gas increases
its internal energy only i.e. (AQ, =AU=uCAT

(1)
(2) While in case of Cp the heat is used in two
ways
(1) In increasing the temperature of the gas by AT

(i1) In doing work, due to expansion at constant
pressure (AW)

S0 (AQp=AU+AW=uCAT .....(11)
From equation (i) and (1) u CAT-uCAT=AW
=  UATICo-C)=PV= Co-C,- 2V =R

HAT
[For constant pressure, AW = PAV also from PV
= URT,
PAV = uRAT]
This relation is called Mayer’s formula and
shows that C,>cC, ie. molar specific heat at

([
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constant pressure is greater than that at constant
volume.
Specific Heat in Terms of Degree of Freedom
(1) Cy : For a gas at temperature 7, the internal
energy Uzér uRT=> Change in energy AU:E’r uRAT
. (1)

Also, as we know for any gas heat supplied at
constant volume (AQ, = uC,AT=AU

.. (i1)
From equation (i) and (ii) ¢, =% R
(2) Cp : From the Mayer’s formula ¢,-C,=R
= Cp=Cy+ R:—fR+ R:[—f+1JR
2 2
(3) Ratio of C,
c (54— 1]/? 2
- 2P _ =1+=
e, T, f
2

(1) Value of y is different for monoatomic,

diatomic and triatomic gases.
5 7 4
ymono:§:1'677d/‘:g:1'417[r/':§:1'33
(i1) Value of yis always more than 1. So we can
say that always Cp> Cy .

Gaseous Mixture

and C,

If two non-reactive gases are enclosed in a vessel
of volume V. In the mixture 1, moles of one gas are
mixed with z» moles of another gas. If N, is
Avogadro’s number then

Number of molecules of first gas W, = .4 N,

and number of molecules

Ny =13 Ny
(1) Total mole fraction = (u; + u,) .

of second gas

(2) If m, is the molecular weight of first gas and
M, that of second gas.

Then molecular weight of mixture
m=ta My + uyM,
o+
(3) Specific heat of the mixture at constant
volume will be

moa m
c _HCutmC, M N My, "
T m_, m

My M,



(4) Specific heat of the mixture at constant
pressure will be

71 V2
y7. R+ p R
:,U1C/% + 1,Cp _ 1(71—1] 2(72—1J

Myt o Myt o

R
_ 111[ 71 ]‘*ﬂz( V2 J
Myt 7y =1 72— 1

__" ﬁ( 2 ]+ﬁ[L]
ﬂ+ﬁ M\ y1=1) My\y,—1

Frnix

M,
(11 Cg + 112Cp)
(5) P =0 = e
Cy, . (1 Cy + 1C)
ot H

/u1( 7 jR+lu2[ 72 ]R
_,u1CF1 + 1, Cp, B 71—1 72-1

_/1101/1“‘/1201/2 - ( R j [ R ]
H T U
7 -1 721

aald " HaV 2
. =1 =1 (e =)+ pya(y = 1)
© Vmixture = -
oo M wy(r2 =)+ po(y1 = 1)
=1 -1

T Tips & Tricks

& The cooking gas cylinder contains L.P.G.

(Liquid Petroleum gas) which is saturatec 1S

pressure
of saturated vapours is independent of vo
(at constant temperature). the pressure of ;
coming out of the cylinder remains constant

till the cylinder becomes empty.

& If the number of molecules in a gas increases,
then the temperature, kinetic energy and pressure
of the gas increases because P o n, T o n and

kinetic energy oc T o< n.
& At constant volume if 7 increases then v, v,
P and collision frequency increases.

& If two gases are filled in vessel then nothing
can be predicted about the pressure of gases.
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However their mean molecular energies will be

same but their rms velocities will be different.

& The average distance between two gas
molecules at NTP is 10~ m.

& The space available for a single gas molecule
at NTP is 37.2 x 1072 m?.

& The molecules of gases will escape out from a

planet if the temperature of planet 7< Ag/f ; where

v, = escape velocity from the planet, R = universal,
gas constant and M = Molecular mass of the gas.
& As f (degree of freedom) increases then CpT,
C,T and yT.

&5 The number of molecules present in 1 gm mole
of a gas is defined as Avogadro number (V).

N, =6.023x10% per gm mole =6.023x10* per kg
mole.

At S.T.P. or NT.P. (T =273 K and P = 1 atm)
22.4 litre of each gas has 6.023x10* molecule

& One mole of any gas at S.T.P. occupy 22.4
litre of volume

e.g. 32 gm oxygen, 28 gm nitrogen and 2gm
hydrogen occupy the same volume at S.T.P.

& For any gas 1 mole = M gram = 22.4 litre =
6.023 x 10 molecule.

8
£ Vi S Vay $ Vip = x/giJ;Zx/EZ\/EZ\/ZSZ\/E

& For oxygen gas molecules v,,,; = 461 m/s, v,,
=424.7 m/s and v,,,=376.4 m/s

& An atom in a solid though has no degree of
freedom for translational and rotational motion,
due to vibration along 3 axes has 3 x 2 = 6 degrees
of freedom (and not like an ideal gas molecule).
When a diatomic or polyatomic gas dissociates
into atoms it behaves as monoatomic gas whose
degree of freedom are changed accordingly

& In General a polyatmic molecule has 3
translational, 3 rotational degree of freedom and a



certain number of vibration mode £,. Hence

— 4+ fl/lb
ST

& Only average translational kinetic energy of a
gas contributes to its temperature. Two gases with
the same average translational kinetic energy have
the same temperature even if one has grater
rotational energy and thus greater internal energy.

& Unsaturated vapours obey gas laws while
saturated vapours don’t.
& For real gases effective volume is considered

as (V' — ub) where b=4NA[%m3J; r = radius of

each molecule and N4 = avogrado number.

& Variation of degree of freedom of a diatomic
gas (H,;) with temperature. At very low
temperature only translation is possible. as the
temperatur€dncreases rotational motion can begin.

At still hig{ﬁzef temperatures’ vibrajory motion can
begin. Vibration
SR/2
| Rotation
3R/2 | :
: : Translation
1 !
100 1000 10000  Temperature(K)

T Ordinary Thinking
Objective Questions

Gas Laws

The temperature of a gas at pressure P and
volume V' is 27°C. Keeping its volume constant
if its temperature is raised to 927°C, then its

pressure will be [MP PMT 1985]
(a)2P b)3P
(c)4P (doPr

4 moles of an ideal gas is at 0°C. At constant
pressure it is heated to double its volume, then
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[—)

its final temperature will be

[MP PET 1990]
(a) 0°C (b) 273°C
(c) 546°C (d) 136.5°C

Every gas (real gas) behaves as an ideal gas
[CPMT 1997; RPMT 2000; MP PET 2001]

(a) At high temperature and low pressure
(b) At low temperature and high pressure
(c) At normal temperature and pressure
(d) None of the above

Boyle's law holds for an ideal gas during
[AFMC 1994; KCET 1999]

(a) Isobaric changes  (b) Isothermal changes
(c) Isochoric changes (d) Isotonic changes

S.I. unit of universal gas constant is
[MNR 1988; MP PMT 1994; UPSEAT 1999]

(a) cal/°C (b) J/mol
(c) Jmor' Kk (d) Jkg
Molecules of a gas behave like

[J & K CET 2000]
(a) Inelastic rigid sphere
(b) Perfectly elastic non-rigid sphere
(c) Perfectly elastic rigid sphere
(d) Inelastic non-rigid sphere



