

RK VISION ACADEMY

PHYSICS

XII – NUCLEI

SECTION A

- 1. Which of the following particles are constituents of the nucleus
 - (1) Protons and electrons
 - (2) Protons and neutrons
 - 3) Neutrons and electrons
 - (4) Neutrons and positrons
- 2. The particles which can be added to the nucleus of an atom without changing its chemical properties are called
 - (1) Electrons
 - (2) Protons
 - (3) Neutrons
 - (4) None of the above

3. The neutron was discovered by

- (1) Marie Curie
- (2) Pierre Curie
- (3) James Chadwick
- (4) Rutherford

4. The mass number of a nucleus is

- (1) Always less than its atomic number
- (2) Always more than its atomic number
- (3) Always equal to its atomic number
- (4) Sometimes more than and sometimes equal to its atomic number
- 5. The energy equivalent of 1 *kilogram* of matter is about
 - (1) $10^{-15}J$
 - (2) 1 J
 - (3) $10^{-12}J$
 - (4) P_0J

6. Nuclear binding energy is equivalent to

- (1) Mass of proton
- (2) Mass of neutron

- (3) Mass of nucleus
- (4) Mass defect of nucleus

7. If the binding energy of the deutrium is 2.23 *MeV*. The mass defect given in *a.m.u.* is

- (1) 0.0024
- (2) 0.0012
- (3) 0.0012
- (4) 0.0024
- 8. Which of the following has the mass closest in value to that of the positron
 - (1) Proton
 - (2) Electron
 - (3) Photon
 - (4) Neutrino

9. Size of nucleus is of the order of

- (1) $10^{-10}m$
- (2) $10^{-15}m$
- (3) $10^{-12}m$
- (4) $10^{-19}m$

10. For effective nuclear forces, the distance should be

- (1) $10^{-10}m$
- (2) $10^{-13}m$
- (3) $10^{-15}m$
- (4) $10^{-20}m$
- 11. The masses of neutron and proton are 1.0087 *a.m.u.* and 1.0073 *a.m.u.* respectively. If the neutrons and protons combine to form a helium nucleus (alpha particles) of mass 4.0015 *a.m.u.* The binding energy of the helium nucleus will be (1 *a.m.u.* = 931 MeV)
 - (1) 28.4 *MeV*
 - (2) 20.8 MeV
 - (3) 27.3 *MeV*
 - (4) 14.2 *MeV*

- 12. The mass defect for the nucleus of helium is 0.0303 *a.m.u.* What is the binding energy per nucleon for helium in *MeV*
 - (1) 28
 - (2) 7
 - (3) 4
 - (4) 1
- 13. Atomic power station at Tarapore has a generating capacity of 200 *MW*. The energy generated in a day by this station is
 - (1) 200 MW
 - (2) 200 J
 - (3) $4800 \times 10^6 J$
 - (4) $1728 \times 10^{10} J$
- 14. One microgram of matter converted into energy will give
 - (1) 90 J
 - (2) $9 \times 10^3 J$
 - (3) $9 \times 10^{10} J$
 - (4) $9 \times 10^5 J$
- 15. The average binding energy per nucleon in the nucleus of an atom is approximately
 - (1) 8 eV
 - (2) 8 *KeV*
 - (3) 8 *MeV*
 - (4) 8*J*
- 16. The binding energy of deuteron ${}_{1}\text{H}^{2}$ is 1.112 *MeV* per nucleon and an α -particle ${}_{2}\text{He}^{4}$ has a binding energy of 7.047 *MeV* per nucleon. Then in the fusion reaction

 $_{1}\text{H}^{2} + _{1}\text{H}^{2} \rightarrow _{2}^{4} He + Q$, the energy Q released is

- (1) 1 MeV
- (2) 11.9 *MeV*
- (3) 23.8 *MeV*
- (4) 931 *MeV*

- 17. Binding energy of a nucleus is
 - (1) Energy given to its nucleus during its v formation
 - (2) Total mass of nucleus converted to energy units
 - (3) Loss of energy from the nucleus during its formation
 - (4) Total K.E. and P.E. of the nucleons in the nucleus
- 18. One requires energy E_n to remove a nucleon from a nucleus and an energy $'E_e'$ to remove an electron from the orbit of an atom. Then
 - (1) $E_n = E_e$
 - (2) $E_n < E_e$
 - (3) $E_n > E_e$
 - (4) $E_n \ge E_e$
- 19. Which of the following pairs is an isobar
 - (1) $1H^1$ and $1H^2$
 - (2) $1H^2$ and $1H^3$
 - (3) $6C^{12}$ and $6C^{13}$
 - (4) $15P^{30}$ and $14Si^{30}$
- 20. Equivalent energy of mass equal to 1 *a.m.u.* is
 - (1) 931 KeV
 - (2) 931 *eV*
 - (3) 931 *MeV*
 - (4) 9.31 *MeV*
- 21. The binding energies per nucleon for a deuteron and an α -particle are x_1 and x_2 respectively. What will be the energy Q released in the reaction $1H^2+_1H^2 \rightarrow_2 He^4 + Q$
 - (1) $4(x_1 + x_2)$
 - (2) $4(x_2 x_1)$
 - (3) $2(x_1 + x_2)$
 - (4) $2(x_2 x_1)$

22. The mass number of a nucleus is equal to the number of

- (1) Electrons it contains
- (2) Protons it contains
- (3) Neutrons it contains
- (4) Nucleons it contains

23. The rest energy of an electron is

- (1) 510 KeV
- (2) 931 KeV
- (3) 510 *MeV*
- (4) 931 *MeV*

24. In 88 Ra^{226} nucleus, there are

- (1) 138 protons and 88 neutrons
- (2) 138 neutrons and 88 protons
- (3) 226 protons and 88 electrons
- (4) 226 neutrons and 138 electrons

25. Outside a nucleus

- (1) Neutron is stable
- (2) Proton and neutron both are stable
- (3) Neutron is unstable
- (4) Neither neutron nor proton is stable
- 26. Order of magnitude of density of uranium nucleus is $(m_p = 1.67 \times 10^{-27} kg)$
 - (1) $10^{20} kg/m^3$
 - (2) $10^{17} kg/m^3$
 - (3) $10^{14} kg/m^3$
 - (4) $10^{11} kg/m^3$
- 27. Radius of $_{2}\text{He}^{4}$ nucleus is 3 *Fermi*. The radius of $3 \rightarrow 2$ nucleus will be
 - (1) 5 Fermi
 - (2) 6 *Fermi*
 - (3) 11.16 Fermi
 - (4) 8 Fermi

- 28. Nucleus of an atom whose atomic mass is 24 consists of
 - (1) 11 electrons, 11 protons and 13 neutrons
 - (2) 11 electrons, 13 protons and 11 neutrons
 - (3) 11 protons and 13 neutrons
 - (4) 11 protons and 13 electrons
- 29. Atomic weight of boron is 10.81 and it has two isotopes $5B^{10}$ and $5B^{11}$. Then ratio of $5B^{10}$:₅ B^{11} in nature would be
 - (1) 19:81
 - (2) 10:11
 - (3) 15:16
 - (4) 81:19

30. The mass of a neutron is the same as that of

- (1) A proton
- (2) A meson
- (3) An epsilon
- (4) An electron

31. The mass defect per nucleon is called

- (1) Binding energy
- (2) Packing fraction
- (3) Ionisation energy
- (4) Excitation energy

32. Nuclear forces are

- (1) Short ranged attractive and charge independent
- (2) Short ranged attractive and charge dependent
- (3) Long ranged repulsive and charge independent
- (4) Long ranged repulsive and charge dependent

33. In helium nucleus, there are

- (1) 2 protons and 2 electrons
- (2) 2 neutrons, 2 protons and 2 electrons
- (3) 2 protons and 2 neutrons
- (4) 2 positrons and 2 protons

34. Antiparticle of electron is

- (1) $_0n^1$
- (2) $1 \rightleftharpoons H^1$
- (3) Positron
- (4) Neutrino

35. The binding energy per nucleon is maximum in the case of

- (1) **2He⁴**
- (2) 26Fe⁵⁶
- (3) 56Ba¹⁴¹
- (4) $92U^{235}$

SECTION B

36. Isotopes are atoms having

- Same number of protons but different number of neutrons
- (2) Same number of neutrons but different number of protons
- (3) Same number of protons and neutrons
- (4) None of the above

37. The mass of an α -particle is

- Less than the sum of masses of two protons and two neutrons
- (2) Equal to mass of four protons
- (3) Equal to mass of four neutrons
- (4) Equal to sum of masses of two protons and two neutrons
- 38. If the binding energy per nucleon in Li^7 and He^4 nuclei are respectively 5.60

MeV and 7.06 *MeV*, then energy of reaction $Li^7 + p \rightarrow 2_2He^4$ is

- (1) 19.6 MeV
- (2) 2.4 MeV
- (3) 8.4 *MeV*
- (4) 17.3 *MeV*
- **39.** The mass number of *He* is 4 and that for sulphur is 32. The radius of sulphur nucleus is larger than that of helium, by times
 - (1) $\sqrt{8}$
 - (2) 4
 - (3) 2
 - (4) 8

40. A nucleus ruptures into two nuclear parts which have their velocity ratio equal to 2 : 1. What will be the ratio of their nuclear size (nuclear radius)

- (1) $2^{1/3}$: 1
- (2) $1:2^{1/3}$
- (3) $3^{1/2}$: 1
- (4) $1:3^{1/2}$

41. Energy of 1g uranium is equal to

- (1) $9.0 \times 10^{13} J$
- (2) $9.0 \times 10^{19} J$
- (3) $3.0 \times 10^{16} J$
- (4) $3.0 \times 10^{17} J$
- 42. In a fission reaction ${}_{92}U^{236}$ $\rightarrow^{117}X+{}^{117}Y+n+n$, the binding energy per nucleon of X and Y is 8.5 MeV whereas of 236U is 7.6 MeV. The total energy liberated will be about
 - (1) 200 KeV
 - $(2) \quad 2 MeV$
 - (3) 200 *MeV*
 - (4) 2000 *MeV*

- 43. Atomic number of a nucleus is Z and atomic mass is M. The number of neutron is
 - (1) M Z
 - (2) *M*
 - (3) Z
 - $(4) \quad M+Z$
- 44. The α -particle is the nucleus of an atom of
 - (1) Neon
 - (2) Hydrogen
 - (3) Helium
 - (4) Deuterium
- 45. The force acting between proton and proton inside the nucleus is
 - (1) Coulombic
 - (2) Nuclear
 - (3) Both
 - (4) None of these
- 46. For a nucleus to be stable, the correct relation between neutron number N and Proton number Z is
 - (1) N > Z
 - (2) N = Z
 - $(3) \quad N < Z$
 - (4) $N \ge Z$
- 47. Two nucleons are at a separation of $1 \times 10^{-15}m$. The net force between them is F_1 , if both are neutrons, F_2 if both are protons and F_3 if one is a proton and other is a neutron. In such a case
 - (1) $F_2 > F_1 > F_3$
 - (2) $F_1 = F_2 = F_3$
 - (3) $F_1 = F_2 > F_3$

(4)
$$F_1 = F_3 > F_2$$

- 48. M_n and M_p represent mass of neutron and proton respectively. If an element having atomic mass M has N-neutron and Z-proton, then the correct relation will be
 - $(1) \quad M < [NM_n + ZM_P]$
 - (2) $M > [NM_n + ZM_P]$
 - $(3) \quad M = [NM_n + ZM_P]$
 - $(4) \quad M = N[M_n + M_P]$
- 49. If a H_2 nucleus is completely converted into energy, the energy produced will be around
 - (1) 1 MeV
 - (2) 938 *MeV*
 - (3) 9.38 *MeV*
 - (4) 238 *MeV*
 - 50. The radius of a nucleus of a mass number *A* is directly proportional to
 - (1) A^3
 - (2) *A*
 - (3) $A^{2/3}$
 - (4) $A^{1/3}$

RK VISION ACADEMY

PHYSICS

XII – NUCLEI

SECTION A

1.	2
2.	3
3.	3
4.	4
5.	4
6.	4
7.	4
8.	2
9.	2
10.	3
11.	1
12.	2
13.	4
14.	3
15.	3
16.	3
17.	3
18.	3
19.	4
20.	3
21.	2
22.	4
23.	
24.	2
25.	3
26.	2
27.	3
28.	3
29.	
30.	
31.	2
32.	1
33.	3
34.	3
35.	
26	SECTION B
36.	1
37.	1
38.	4

39.	3
40.	2
41.	1
42.	3
43.	1
44.	3
45.	3
46.	4
47.	2
48.	1
49.	2
50.	4