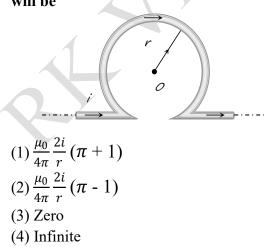
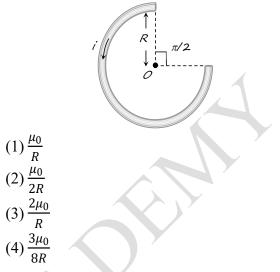


RK VISION ACADEMY

PHYSICS


XII – MAGNETIC EFFECT OF CURRENT

SECTION A


- 1. If a long hollow copper pipe carries a direct current, the magnetic field associated with the current will be
 - (1) Only inside the pipe
 - (2) Only outside the pipe
 - (3) Neither inside nor outside the pipe
 - (4) Both inside and outside the pipe
- 2. A charge q coulomb moves in a circle at n revolutions per second and the radius of the circle is r metre. Then magnetic field at the centre of the circle is (NA⁻¹m⁻¹)

(1)
$$\frac{2\pi q}{nr} \ge 10^{-7}$$

(2) $\frac{2\pi q}{r} \ge 10^{-7}$
(3) $\frac{2\pi n q}{nr} \ge 10^{-7}$
(4) $\frac{2\pi q}{r} \ge 10^{-7}$

3. An infinitely long straight conductor is bent into the shape as shown in the figure. It carries a current of i ampere and the radius of the circular loop is r metre. Then the magnetic induction at its centre will be

4. A current i ampere flows in a circular arc of wire whose radius is R, which subtend an angle $3\pi/2$ radian at its centre. The magnetic induction B at the centre is

- 5. A current i ampere flows along the inner conductor of a coaxial cable and returns along the outer conductor of the cable, then the magnetic induction at any point outside the conductor at a distance r metre from the axis is
 - (1) Infinite(2) Zero
 - $(3)\frac{\mu_0}{4\pi}\frac{2i}{r}$
 - $(4) \frac{\mu_0}{4\pi} \frac{2\pi i}{r}$
- 6. A helium nucleus makes a full rotation in a circle of radius 0.8 metre in two seconds. The value of the magnetic field B at the centre of the circle will be

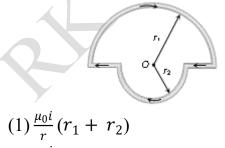
(1)
$$\frac{10^{-19}}{\mu_0}$$

(2) $10^{-19} \mu_0$
(3) $2 \ge 10^{-10} \mu_0$
(4) $\frac{2 \ge 10^{-10}}{\mu_0}$

7. A solenoid of 1.5 metre length and 4.0 cm diameter has 10 turns per cm. A current of 5 ampere is flowing through it. The magnetic induction at axis inside the solenoid is

- (1) $2\pi x 10^{-3}$ Tesla
- (2) $2\pi x 10^{-5}$ Tesla
- (3) $4\pi \ x \ 10^{-2}$ Gauss
- (4) $2\pi \times 10^{-5}$ Gauss
- 8. The magnetic induction at a point P which is distant 4 cm from a long current carrying wire is 10⁻⁸ Tesla. The field of induction at a distance 12 cm from the same current would be

(1) 3.33 x 10⁻⁹ Tesla

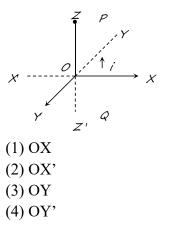

- (2) 1.11 x 10⁻⁴ Tesla
- (3) 3 x 10^{-3} Gauss
- (4) 9 x 10^{-2} Gauss
- 9. Field at the centre of a circular coil of radius r, through which a current I flows is
 - (1) Directly proportional to r
 - (2) Inversely proportional to I
 - (3) Directly proportional to I
 - (4) Directly proportional to I^2

10. Field inside a solenoid is

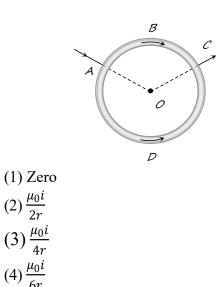
- (1) Directly proportional to its length
- (2) Directly proportional to current
- (3) Inversely proportional to total number of turns

(4) Inversely proportional to current

11. In the figure shown there are two semicircles of radii r_1 and r_2 in which a current i is flowing. The magnetic induction at the centre O will be



$$(2)\frac{\mu_0 \iota}{4}(r_1 - r_2)$$


- $(3) \frac{\mu_0 i}{4} \frac{(r_1 + r_2)}{(r_1 + r_2)}$
- $4 (r_1 r_2)$

$$(4)\frac{\mu_0 r}{4}\frac{(r_1 r_2)}{(r_1 r_2)}$$

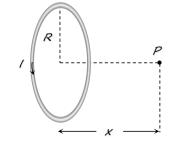
- 12. Magnetic effect of current was discovered by
 - (1) Faraday
 - (2) Oersted
 - (3) Ampere
 - (4) Bohr
- 13. If the strength of the magnetic field produced 10cm away from a infinitely long straight conductor is 10⁻⁵ weber/m², the value of the current flowing in the conductor will be
 - (1) 5 ampere
 - (2) 10 ampere
 - (3) 500 ampere
 - (4) 1000 ampere
- 14. A vertical wire kept in Z-X plane carries a current from Q to P (see figure). The magnetic field due to current will have the direction at the origin O along

15. A uniform wire is bent in the form of a circle of radius R. A current I enters at A and leaves at C as shown in the figure: If the length ABC is half of the length ADC, the magnetic field at the centre O will be

 $(4)\frac{\mu_0 i}{6r}$

 $(2)\frac{\mu_0 i}{2r}$

- 16. A circular coil 'A' has a radius R and the current flowing through it is I. Another circular coil 'B' has a radius 2R and if 2I is the current flowing through it, then the magnetic fields at the centre of the circular coil are in the ratio of
 - (1) 4 : 1
 - (2) 2 : 1
 - (3) 3 : 1
 - (4) 1 : 1
- 17. A straight wire of diameter 0.5 mm carrying a current of 1 A is replaced by another wire of 1 mm diameter carrying the same current. The strength of magnetic field far away is
 - (1) Twice the earlier value
 - (2) Half of the earlier value
 - (3) Quarter of its earlier value
 - (4) Unchanged
- 18. One Tesla is equal to
 - (1) 10^7 Gauss
 - (2) 10⁻⁴ Gauss
 - (3) 10⁴ Gauss
 - (4) 10⁻⁸ Gauss
- 19. Magnetic fields at two points on the axis of a circular coil at a distance of 0.05m and 0.2m from the centre are in the ratio 8:1. The radius of the coil is (1) 1.0 m


- (2) 0.1 m (3) 0.15 m
- (4) 0.2 m
- 20. The dimension of the magnetic field intensity B is (1) $MLT^{-2}A^{-1}$
 - (2) $MT^{-2}A^{-1}$
 - $(3) ML^{2}TA^{-2}$
 - (4) $M^2LT^{-2}A^{-1}$
- 21. PQRS is a square loop made of uniform conducting wire the current enters the loop at P and leaves at S. Then the magnetic field will be

Q

- (1) Maximum at the centre of the loop
- (2) Zero at the centre of loop
- (3) Zero at all points inside the loop
- (4) Zero at all points outside of the loop

22. A magnetic field can be produced by

- (1) A moving charge
- (2) A changing electric field
- (3) None of these
- (4) Both of these
- 23. A coil having N turns carry a current I as shown in the figure. The magnetic field intensity at point P is

(1) $\frac{\mu_0 NI R^2}{2(R^2 + X^2)}$

(2)
$$\frac{\mu_0 NI}{2R}$$

(3) $\frac{\mu_0 NI R^2}{(R^1 + X^1)^{\frac{2}{1}}}$
(4) Zero

- 24. The current in the windings on a toroid is 2.0A. There are 400 turns and the mean circumferential length is 40cm. If the inside magnetic field is 1.0T, the relative permeability is near to
 - (1) 100
 - (2) 200
 - (3) 300
 - (4) 400
- 25. The current is flowing in south direction along a power line. The direction of magnetic field above the power line (neglecting earth's field) is
 - (1) South
 - (2) East
 - (3) North
 - (4) West
- 26. A proton moving with a constant velocity passes through a region of space without any change in its velocity. If E and B represent the electric and magnetic fields respectively, then this region of space may not have

(1) E = 0; B = 0(2) $E = 0; B \neq 0$ (3) $E \neq 0; B = 0$

- (4) $E \neq 0$; $B \neq 0$
- 27. A beam of ions with velocity $2 \ge 10^5$ m/s enters normally into a uniform magnetic field of $4 \ge 10^{-2}$ Tesla. If the specific charge of the ion is $5 \ge 10^7$ C/kg, then the radius of the circular path described will be
 - (1) 0.10 m
 - (2) 0.16 m
 - (3) 0.20 m
 - (4) 0.25 m

- 28. The path executed by a charged particle whose motion is perpendicular to magnetic field is
 - (1) A straight line
 - (2) An ellipse
 - (3) A circle
 - (4) A helix
- 29. Particles having positive charges occasionally come with high velocity from the sky towards the earth. On account of the magnetic field of earth, they would be deflected towards the
 - (1) North
 - (2) South
 - (3) East
 - (4) West
- 30. An electron is moving with a speed of 10⁸ m/s perpendicular to a uniform magnetic field of intensity B. Suddenly intensity of the magnetic field is reduced to B/2. The radius of the path becomes from the original value of r
 - (1) No change
 - (2) Reduces to r / 2
 - (3) Increases to 2r
 - (4) Stops moving
- 31. If a proton, deutron and α-particle on being accelerated by the same potential difference enters perpendicular to the magnetic field, then the ratio of their kinetic energies is
 - (1) 1:2:2
 (2) 2:2:1
 - $(2) 2 \cdot 2 \cdot 1$ $(2) 1 \cdot 2 \cdot 1$
 - (3) 1 : 2 : 1
 - (4) 1 : 1 : 2
- 32. An electron and a proton enter region of uniform magnetic field in a direction at right angles to the field with the same kinetic energy. They describe circular paths of radius r_e and r_p respectively. Then

- (1) $r_e = r_p$
- (2) $r_e < r_p$
- (3) $r_e > r_p$

(4) re may be less than or greater than rp depending on the direction of the magnetic field

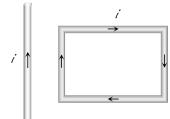
- 33. A proton (or charged particle) moving with velocity v is acted upon by electric field E and magnetic field B. The proton will move undeflected if
 - (1) E is perpendicular to B
 - (2) E is parallel to v and perpendicular to B
 - (3) E, B and v are mutually perpendicular and v = E/B
 - (4) E and B both are parallel to v
- 34. A proton and an electron both moving with the same velocity v enter into a region of magnetic field directed perpendicular to the velocity of the particles. They will now move in circular orbits such that
 - (1) Their time periods will be same(2) The time period for proton will be higher(3) The time period for electron will be

higher

- (4) Their orbital radii will be same
- 35. A charge + Q is moving upwards vertically. It enters a magnetic field directed to the north. The force on the charge will be towards
 - (1) North
 - (2) South
 - (3) East
 - (4) West

SECTION B

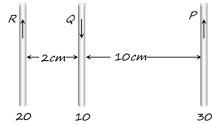
- **36.** A moving charge will gain energy due to the application of
 - (1) Electric field
 - (2) Magnetic field
 - (3) Both of these
 - (4) None of these


37. An electron and a proton with equal momentum enter perpendicularly into a uniform magnetic field, then

(1) The path of proton shall be more curved than that of electron

(2) The path of proton shall be less curved than that of electron

- (3) Both are equally curved
- (4) Path of both will be straight line
- **38.** In a cyclotron, the angular frequency of a charged particle is independent of
 - (1) Mass
 - (2) Speed
 - (3) Charge
 - (4) Magnetic field
- 39. A charged particle is moving in a uniform magnetic field in a circular path. Radius of circular path is R. When energy of particle is doubled, then new radius will be
 - $(1)\sqrt{2}R$
 - $(2)\sqrt{3}R$
 - (3) 2R
 - (4) 3R
- 40. A charge q is moving in a magnetic field then the magnetic force does not depend upon
 - (1) Charge
 - (2) Mass
 - (3) Velocity
 - (4) Magnetic field
- 41. An electron (mass = 9 x 10^{-31} kg. Charge = 1.6 x 10^{-19} C) whose kinetic energy is 7.2 x 10^{-18} joule is moving in a circular orbit in a magnetic field of 9 x 10^{-5} weber/m². The radius of the orbit is
 - (1) 1.25 cm
 - (2) 2.5 cm
 - (3) 12.5 cm
 - (4) 25.0 cm


- 42. Two ions having masses in the ratio 1 : 1 and charges 1 : 2 are projected into uniform magnetic field perpendicular to the field with speeds in the ratio 2 : 3. The ratio of the radii of circular paths along which the two particles move is
 - (1) 4:3
 - (2) 2 : 3
 - (3) 3 : 1
 - (4) 1 : 4
- 43. A rectangular loop carrying a current i is situated near a long straight wire such that the wire is parallel to the one of the sides of the loop and is in the plane of the loop. If a steady current I is established in wire as shown in figure, the loop will

(1) Rotate about an axis parallel to the wire(2) Move away from the wire or towards right

- (3) Move towards the wire
- (4) Remain stationary
- 44. If two streams of protons move parallel to each other in the same direction, then they
 - (1) Do not exert any force on each other
 - (2) Repel each other
 - (3) Attract each other
 - (4) Get rotated to be perpendicular to each other
- 45. A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon
 - (1) Shape of the loop
 - (2) Area of the loop
 - (3) Value of the current
 - (4) Magnetic field

- 46. Two long and parallel wires are at a distance of 0.1 m and a current of 5 A is flowing in each of these wires. The force per unit length due to these wires will be $(1) 5 \ge 10^{-5}$ N/m
 - (2) 5 x 10⁻³ N/m
 (3) 2.5 x 10⁻⁵ N/m
 (4) 2.5 x 10⁻⁴ N/m
- 47. A current of 10 ampere is flowing in a wire of length 1.5 m. A force of 15 N acts on it when it is placed in a uniform magnetic field of 2 tesla. The angle between the magnetic field and the direction of the current is
 - $(1) 30^{\circ}$
 - (2) 45°
 - $(3) 60^{\circ}$ $(4) 90^{\circ}$
- 48. Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force experienced by 10 cm length of wire Q is

- (1) 1.4×10^{-4} N towards right
- (2) 1.4 x 10^{-4} N towards left
- (3) 2.6×10^{-4} N towards right
- (4) 2.6 x 10^{-4} N towards left

49. If a current is passed in a spring, it

- (1) Gets compressed
- (2) Gets expanded
- (3) Oscillates
- (4) Remains unchanged
- 50. A conductor in the form of a right angle ABC with AB = 3 cm and BC = 4 cm carries a current of 10 A. There is a uniform magnetic field of 5 T

perpendicular to the plane of the conductor. The force on the conductor will be

(1) 1.5 N

(2) 2.0 N

(3) 2.5 N

(4) 3.5 N

RK VISION ACADEMY

PHYSICS XII – MAGNETIC EFFECT OF CURRENT SECTION A

SECTION A		
1.	2	
2.	3	
3.	2	
4.	4	
5.	2	
6.	2	
7.	1	
8.	1	
9.	3	
10.	2	
11.	3	
12.	2	
13.	1	
14.	4	
15.	1	
16.	4	
17.	4	
18.	3	
19.		
20.		
21.	2	
22.	4	
23.		
24.	4	
25.	4	
26.	3	
27.		
28.	3	
29.		
30.	3	
31.	4	
32. 33.	2 3	
33. 34.	2	
34.	4	
SS. 4 SECTION B		
36.	1	
37.	3	
57.		

38. 2	
39. 1	
40. 2	
41. 4	
42. 1	
43. 3	
44. 2	
45. 1	4
46. 1	
47. 1	
48. 1	
49. 1	
50. 3	