RK VISION ACADEMY

PHYSICS

XII – DUAL NATURE OF RADIATION AND

MATTER

SECTION A

- 1. The idea of matter waves was given by
 - (1) Davisson and Germer
 - (2) de-Broglie
 - (3) Einstein
 - (4) Planck

2. Wave is associated with matter

- (1) When it is stationary
- (2) When it is in motion with the velocity of light only
- (3) When it is in motion with any velocity
- (4) None of the above
- 3. The de-Broglie wavelength associated with the particle of mass *m* moving with velocity *v* is
 - (1) h/mv
 - (2) mv/h
 - (3) mh/v
 - (4) 4×10^4
- 4. A photon, an electron and a uranium nucleus all have the same wavelength. The one with the most energy
 - (1) Is the photon
 - (2) Is the electron
 - (3) Is the uranium nucleus
 - (4) Depends upon the wavelength and the properties of the particle.
- 5. A particle which has zero rest mass and non-zero energy and momentum must travel with a speed
 - (1) Equal to *c*, the speed of light in vacuum
 - (2) Greater than c
 - (3) Less than c
 - (4) Tending to infinity

- 6. When the kinetic energy of an electron is increased, the wavelength of the associated wave will
 - (1) Increase
 - (2) Decrease
 - (3) Wavelength does not depend on the kinetic energy
 - (4) None of the above
- 7. If the de-Broglie wavelengths for a proton and for a α -particle are equal, then the ratio of their velocities will be
 - (1) 4:1
 - (2) 2:1
 - (3) 1:2
 - (4) 1:4
- 8. The de-Broglie wavelength λ associated with an electron having kinetic energy *E* is given by the expression
 - (1) $\frac{h}{\sqrt{2mE}}$
 - (2) $\frac{2h}{mE}$
 - (3) 2mhE
 - (4) $\frac{2\sqrt{2mE}}{h}$

9. Dual nature of radiation is shown by

- (1) Diffraction and reflection
- (2) Refraction and diffraction
- (3) Photoelectric effect alone
- (4) Photoelectric effect and diffraction
- 10. For the Bohr's first orbit of circumference $2\pi r$, the de-Broglie wavelength of revolving electron will be
 - (1) $2\pi r$
 - (2) πr
 - (3) $\frac{1}{2\pi r}$
 - 2nr
 - (4) $\frac{1}{4\pi r}$
- 11. An electron of mass *m* when accelerated through a potential difference *V* has de-

Broglie wavelength λ . The de-Broglie wavelength associated with a proton of mass M accelerated through the same potential difference will be

(1)
$$\lambda \frac{m}{M}$$

(2) $\lambda \sqrt{\frac{m}{M}}$
(3) $\lambda \frac{M}{m}$

- (4) $\lambda \sqrt{\frac{M}{m}}$
- 12. What will be the ratio of de-Broglie wavelengths of proton and α -particle of same energy
 - (1) 2:1
 - (2) 1:2
 - (3) 4:1
 - (4) 1:4

13. What is the de-Broglie wavelength of the α -particle accelerated through a potential difference V

- (1) $\frac{0.287}{\sqrt{V}}$ Å
- (2) $\frac{12.27}{\sqrt{V}}$ Å

(3)
$$\frac{0.101}{\sqrt{3}}$$
Å

- (4) $\frac{0.202}{\sqrt{V}}$ Å
- 14. De-Broglie hypothesis treated electrons as
 - (1) Particles
 - (2) Waves
 - (3) Both 'a' and 'b'
 - (4) None of these
- 15. The energy that should be added to an electron, to reduce its de-Broglie wavelengths from $10^{-10}m$ to $0.5 \times 10^{-10}m$, will be
 - (1) Four times the initial energy
 - (2) Thrice the initial energy

- (3) Equal to the initial energy
- (4) Twice the initial energy
- 16. The de-Broglie wavelength of an electron having 80*eV* of energy is nearly

 $(1eV = 1.6 \times 10^{-19} J$, Mass of electron = 9 × $10^{-31}kg$ Plank's constant = $6.6 \times 10^{-34} J$ sec)

- (1) 140 Å
- (2) 0.14 Å
- (3) 14 Å
- (4) 1.4 Å
- 17. If particles are moving with same velocity, then maximum de-Broglie wavelength will be for
 - (1) Neutron
 - (2) Proton
 - (3) β -particle
 - (4) α -particle
- 18. If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same
 - (1) Energy
 - (2) Momentum
 - (3) Velocity
 - (4) Angular momentum

19. The de-Broglie wavelength is proportional to

- (1) $\lambda \propto \frac{1}{\nu}$
- (2) $\lambda \propto \frac{1}{m}$
- (3) $\lambda \propto \frac{1}{n}$
- (4) $\lambda \propto p$
- 20. Particle nature and wave nature of electromagnetic waves and electrons can be shown by

- Electron has small mass, deflected by the metal sheet
- (2) X-ray is diffracted, reflected by thick metal sheet
- (3) Light is refracted and defracted
- (4) Photoelectricity and electron microscopy
- 21. The de-Broglie wavelength of a particle moving with a velocity 2.25×10^8 m/s is equal to the wavelength of photon. The ratio of kinetic energy of the particle to the energy of the photon is (velocity of light is 3×10^8 m/s)
 - (1) 1/8
 - (2) 3/8
 - (3) 5/8
 - (4) 7/8

22. According to de-Broglie, the de-Broglie wavelength for electron in an orbit of hydrogen atom is 10^{-9} m. The principle quantum number for this electron is

- (1) 1
- (2) 2
- (3) 3
- (4) 4

23. The speed of an electron having a wavelength of $10^{-10}m$ is

- (1) $7.25 \times 10^6 m/s$
- (2) $6.26 \times 10^6 m/s$
- (3) $5.25 \times 10^6 m/s$
- (4) $4.24 \times 10^6 m/s$
- 24. The kinetic energy of electron and proton is $10^{-32}J$. Then the relation between their de-Broglie wavelengths is
 - (1) $\lambda_p < \lambda_e$
 - (2) $\lambda_p > \lambda_e$
 - (3) $\lambda_p = \lambda_e$
 - (4) $\lambda_p = 2\lambda_e$
- 25. The de-Broglie wavelength of a particle accelerated with 150 *volt* potential is

 $10^{-10}m$. If it is accelerated by 600 volts p.d., its wavelength will be

- (1) 0.25 Å
- (2) 0.5 Å
- (3) 1.5 Å
- (4) $2 \mathring{A}$
- 26. The de-Broglie wavelength associated with a hydrogen molecule moving with a thermal velocity of 3 km/s will be
 - (1) 1 Å
 - (2) 0.66 Å
 - (3) 6.6 Å
 - (4) 66 Å
- 27. When the momentum of a proton is changed by an amount P_0 , the corresponding change in the de-Broglie wavelength is found to be 0.25%. Then, the original momentum of the proton was
 - (1) p_0
 - (2) $100 p_0$
 - (3) $400 p_0$
 - (4) $4 p_0$
- 28. The de-Broglie wavelength of a neutron at $27^{\circ}C$ is λ . What will be its wavelength at $927^{\circ}C$
 - (1) $\lambda/2$
 - (2) $\lambda/3$
 - (3) $\lambda/4$
 - (4) $\lambda/9$
- 29. An electron and proton have the same de-Broglie wavelength. Then the kinetic energy of the electron is
 - (1) Zero
 - (2) Infinity
 - (3) Equal to the kinetic energy of the proton
 - (4) Greater than the kinetic energy of the proton
- **30.** For moving ball of cricket, the correct statement about de-Broglie wavelength is

(1) It is not applicable for such big particle

(2)
$$\frac{h}{\sqrt{2mE}}$$

(3) $\sqrt{\frac{h}{2mE}}$

- (4) $\frac{\pi}{2mE}$
- 31. Photon and electron are given same energy $(10^{-20}J)$. Wavelength associated with photon and electron are λ_{Ph} and λ_{el} then correct statement will be
 - (1) $\lambda_{Ph} > \lambda_{el}$
 - (2) $\lambda_{Ph} < \lambda_{el}$
 - (3) $\lambda_{Ph} = \lambda_{el}$
 - (4) $\frac{\lambda_{el}}{\lambda_{ph}} = C$
- **32.** The kinetic energy of an electron with de-Broglie wavelength of 0.3 nanometer is
 - (1) $0.168 \ eV$
 - (2) 16.8 eV
 - (3) 1.68 *eV*
 - (4) 2.5 *eV*
- 33. A proton and an α-particle are accelerated through a potential difference of 100 V. The ratio of the wavelength associated with the proton to that associated with an α-particle is
 - (1) $\sqrt{2}:1$
 - (2) 2:1
 - 3) $2\sqrt{2}:1$
 - (4) $\frac{1}{2\sqrt{2}}:1$
- 34. The wavelength of de-Broglie wave is $2\mu m$, then its momentum is $(h = 6.63 \times 10^{-34} J-s)$
 - (1) $3.315 \times 10^{-28} \text{ kg-m/s}$
 - (2) $1.66 \times 10^{-28} \text{ kg-m/s}$
 - (3) $4.97 \times 10^{-28} \text{ kg-m/s}$
 - (4) $9.9 \times 10^{-28} \text{ kg-m/s}$
- 35. De-Broglie wavelength of a body of mass 1 kg moving with velocity of 2000 m/s is (1) 3.32×10^{-27} Å

- (2) $1.5 \times 10^7 \text{ Å}$
- (3) $0.55 \times 10^{-22} \text{ Å}$
- (4) None of these

SECTION B

- 36. The kinetic energy of an electron is 5 *eV*. Calculate the de-Broglie wavelength associated with it ($h = 6.6 \times 10^{-34} Js$, $m_e = 9.1 \times 10^{-31} kg$)
 - (1) 5.47 Å
 - (2) 10.9 Å
 - (3) 2.7 Å
 - (4) None of these
- 37. The wavelength associated with an electron accelerated through a potential difference of 100 V is nearly
 - (1) 100 Å
 - (2) 123 Å
 - (3) 1.23 Å
 - (4) 0.123 Å

38. The de-Broglie wavelength λ

- (1) is proportional to mass
- (2) is proportional to impulse
- (3) Inversely proportional to impulse
- (4) does not depend on impulse
- **39.** Davission and Germer experiment proved
 - (1) Wave nature of light
 - (2) Particle nature of light
 - (3) Both (1) and (2)
 - (4) Neither (1) nor (2)
- 40. If the kinetic energy of a free electron doubles, its de-Broglie wavelength changes by the factor
 - (1) $\frac{1}{\sqrt{2}}$
 - (2) $\sqrt{2}$
 - $(3) \frac{1}{2}$
 - $(4) \frac{2}{2}$
- 41. The energy that should be added to an electron to reduce its de Broglie wavelength from one *nm* to 0.5 *nm* is

- (1) Four times the initial energy
- (2) Equal to the initial energy
- (3) Twice the initial energy
- (4) Thrice the initial energy
- 42. The work function of a metal is 4.2 *eV*, its threshold wavelength will be
 - (1) 4000 Å
 - (2) 3500 Å
 - (3) 2955 Å
 - (4) 2500 Å
- 43. The number of photo-electrons emitted per second from a metal surface increases when
 - (1) The energy of incident photons increases
 - (2) The frequency of incident light increases
 - (3) The wavelength of the incident light increases
 - (4) The intensity of the incident light increases
- 44. The work function of metal is 1 eV. Light of wavelength 3000 Å is incident on this metal surface. The velocity of emitted photoelectrons will be
 - (1) 10 m/sec
 - (2) 1×10^3 m/sec
 - (3) $1 \times 10^4 \text{ m/secm/sec}$
 - (4) $1 \times 10^{6} m/secm/sec$
- 45. The retarding potential for having zero photo-electron current
 - (1) Is proportional to the wavelength of incident light
 - (2) Increases uniformly with the increase in the wavelength of incident light
 - (3) Is proportional to the frequency of incident light

- (4) Increases uniformly with the increase in the frequency of incident light wave
- 46. In a dark room of photography, generally red light is used. The reason is
 - (1) Most of the photographic films are not sensitive to red light
 - (2) The frequency for red light is low and hence the energy hv of photons is less
 - $(3) \quad (1) \text{ and } (2) \text{ both }$
 - (4) None of the above
- 47. The work function of a metal is $1.6 \times 10^{-19} J$. When the metal surface is illuminated by the light of wavelength 6400 Å, then the maximum kinetic energy of emitted photo-electrons will be (Planck's constant $h = 6.4 \times 10^{-34} Js$)
 - (1) 14×10^{-19} /
 - (2) 2.8×10^{-19} J
 - (3) 1.4×10^{-19}
 - (4) $1.4 \times 10^{-19} eV$
- **48.** Ultraviolet radiations of 6.2*eV* falls on an aluminium surface (work function 4.2 *eV*). The kinetic energy in joules of the fastest electron emitted is approximately
 - (1) 3.2×10^{-21}
 - (2) 3.2×10^{-19}
 - (3) 3.2×10^{-17}
 - (4) 3.2×10^{-15}
- 49. The work function for tungsten and sodium are 4.5 eV and 2.3 eV respectively. If the threshold wavelength λ for sodium is 5460Å, the value of λ for tungsten is
 - (1) 5893 Å
 - (2) 10683 Å
 - (3) 2791 Å
 - (4) 528 \mathring{A}
- 50. A photon of energy 3.4 *eV* is incident on a metal having work function 2 *eV*. The

maximum K.E. of photo-electrons is equal to

- (1) 1.4 *eV*
- (2) 1.7 *eV*
- (3) 5.4 *eV*
- (4) $6.8 \ eV$

RK VISION ACADEMY

PHYSICS

XII – DUAL NATURE OF RADIATION

AND MATTER

SECTION A

SECTIONA		
1.	2	
2.	3	
3.	1	
4.	1	
5.	1	
6.	2	
7.	1	
8.	1	
9.	4	
10.	1	
11.	2	
12.	1	
13.	3	
14.	2	
15.	2	
16.	4	
17.	3	
18.	2	
19.	3	
20.	4	
21.	2	
22.	3	
23.	1	
24.	1	
25.	2	
26.	2	
27.	3	
28.	1	
29.	4	
30.	2	
31.	1	
32.	2	
33.	3	
34.	1	
35.	1	
SECTION B		
36.	1	

37.	3
38.	3
39.	4
40.	1
41.	4
42.	3
43.	4
44.	4
45.	4
46.	3
47.	3
48.	2
49.	3
50.	1