

RK VISION ACADEMY

PHYSICS

XII – ATOMS SECTION A

- When an α particle of mass m moving with velocity v bombards on a heavy nucleus of charge 'Ze', its distance of closest approach from the nucleus depends on mass:
 - (1) 1/m
 - (2) $1/\sqrt{m}$
 - $(3) 1/m^2$
 - (4) m
- Let T₁ and T₂ be the energy of an electron in the first and second excited states of hydrogen atom, respectively. According to the Bohr's model of an atom, the ratio T₁:
 - T₂ is
 - (1) 9 : 4
 - (2) 1 : 4
 - (3) 4 : 1
 - (4) 4 : 9
- 3. For which one of the following, Bohr's model is not valid?
 - (1) Singly ionised helium atom (He^+)
 - (2) Deuteron atom
 - (3) Singly ionised neon atom (Ne⁺)
 - (4) Hydrogen atom
- 4. The total energy of an electron in the nth stationary orbit of the hydrogen atom can be obtained by (eV)

- (1) $E_n = -13.6/n^2$ (2) $E_n = -1.36/n^2$ (3) $E_n = -13.6 \ge n^2$ (4) $E_n = 13.6/n^2$
- The total energy of an electron in n atom in an orbit is -3.4 eV. Its kinetic and potential energies are, respectively

(1) -3.4 eV, -3.4 eV
(2) -3.4 eV, -6.8 eV
(3) 3.4 eV, -6.8 eV
(4) 3.4 eV, 3.4 eV

- 6. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 2 : -1
 - (2) 1 : -1
 - (3) 1 : 1
 - (4) 1 : -2
- 7. The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is
 - (1) 1(2) 4
 - (3) 0.5
 - (-) ----
 - (4) 2
- 8. If an electron in a hydrogen atom jumps from the 3rd orbit to the 2nd orbit, it emits a photon of wavelength λ. When it jumps from the 4th orbit to the 3rd orbit, the corresponding wavelength of the photon will be

(1) 20 λ/7
 (2) 20 λ/13
 (3) 16 λ/25
 (4) 9 λ/16

- Given the value of Rydberg constant is 10⁷ m⁻¹, the wave number of the last line of the Balmer series in hydrogen spectrum will be
 - (1) $0.025 \times 10^4 \text{ m}^{-1}$ (2) $0.5 \times 10^7 \text{ m}^{-1}$ (3) $0.25 \times 10^7 \text{ m}^{-1}$ (4) $2.5 \times 10^7 \text{ m}^{-1}$
- 10. Consider 3rd orbit of He+ (Helium) using non relativistic approach the speed of electron in this orbit will be (given K = 9 × 10⁹ constant Z = 2 and h (Planck's constant) = 6.6 × 10⁻³⁴ Js)

 (1) 1.46 × 10⁶ m/s
 - (2) $0.73 \times 10^{6} \text{ m/s}$
 - (3) $3.0 \times 10^8 \text{ m/s}$
 - (4) 2.92×10^6 m/s
- 11. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is
 - (1) 5/27
 - (2) 4/9
 - (3) 9/4
 - (4) 27/5
- 12. Hydrogen atom in ground state is excited by a monochromatic radiation of $\lambda = 975$

Å. Number of spectral lines in the resulting spectrum emitted will be

- (1) 3
- (2) 2
- (3) 6
- (4) 10
- 13. Ratio of longest wavelengths corresponding to Lyman and Balmer series in hydrogen spectrum is
 - (1) 9/31
 - (2) 5/27
 - (3) 3/23(4) 7/29
- 14. In the following atoms and molecules for the transition from n=2 to n = 1, the spectral line of minimum wavelength will
 - (1) Hydrogen atom

be produced by

- (2) Deuterium atom
- (3) Uni-ionized helium
- (4) di-ionized lithium

15. The Lyman series of hydrogen spectrum lies in the region

- (1) Infrared
- (2) Visible
- (3) Ultraviolet
- (4) X rays

16. The size of an atom is of the order of

- $(1) 10^{-8} m$
- (2) 10^{-10} m

- $(3) 10^{-12} \text{m}$
- (4) 10^{-14} m
- 17. Which one of the series of hydrogen spectrum is in the visible region
 - (1) Lyman series
 - (2) Balmer series
 - (3) Paschen series
 - (4) Bracket series
- 18. The Rutherford α-particle experiment shows that most of the α-particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom
 - (1) Atom is hollow

(2) The whole mass of the atom is concentrated in a small centre called nucleus

- (3) Nucleus is positively charged
- (4) All the above
- 19. An electron has a mass of 9.1×10⁻³¹kg. It revolves round the nucleus in a circular orbit of radius 0.529×10⁻¹⁰metreat a speed of 2.2×10⁶m/s. The magnitude of its linear momentum in this motion is
 - (1) 1.1×10^{-34} kg-m/s
 - (2) 2.0×10^{-24} kg-m/s
 - (3) 4.0×10^{-24} kg-m/s
 - (4) 4.0×10^{-31} kg-m/s

- 20. The ionization potential for second He electron is
 (1) 13.6 eV
 (2) 27.2 eV
 (3) 54.4 eV
 - (4) 100 eV
- 21. Energy levels A, B, C of a certain atom corresponding to increasing values of energy i.e. $E_A < E_B < E_C$. If λ_1 , λ_2 , λ_3 are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct

- (1) $\lambda_3 = \lambda_1 + \lambda_2$ (2) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ (3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ (4) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
- 22. The angular momentum of electron in nth orbit is given by
 - (1) nh (2) $\frac{h}{2\pi n}$ (3) $n\frac{h}{2\pi}$ (4) $n^2 \frac{h}{2\pi}$

23. A beam of fast moving alpha particles were directed towards a thin film of gold. The parts A', B'and C'of the transmitted and reflected beams corresponding to the incident parts A, B and C of the beam, are shown in the adjoining diagram. The number of alpha particles in

- (1) B'will be minimum and in C'maximum
- (2) A'will be maximum and in B'minimum
- (3) A'will be minimum and in B'maximum
- (4) C'will be minimum and in B'maximum
- 24. In any Bohr orbit of the hydrogen atom, the ratio of kinetic energy to potential energy of the electron is
 - (1) 1/2
 - (2) 2
 - (3) 1/2
 - (4) 2
- 25. The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the
 - (1) Balmer series
 - (2) Pfund series
 - (3) Paschen series
 - (4) Lyman series

- 26. Hydrogen atoms are excited from ground state of the principal quantum number 4. Then the number of spectral lines observed will be
 - (1) 3
 - (2) 6
 - (3) 5
 - (4) 2
- 27. In Bohr's model, the atomic radius of the first orbit is r_0 , then the radius of the third orbit is
 - (1) $\frac{r_0}{9}$
 - (2) r_0
 - (3) $9r_0$
 - (4) $3r_0$

28. Minimum excitation potential of Bohr's first orbit in hydrogen atom is

- (1) 13.6 V
- (2) 3.4 V
- (3) 10.2 V
- (4) 3.6 V

29. If scattering particles are 56 for 90° angle then this will be at 60° angle

- (1) 224
- (2) 256
- (3) 98
- (4) 108
- 30. If λ_{max} is 6563 Å, then wavelength of second line for Balmer series will be

$$(1) \lambda = \frac{16}{3R}$$

(2)
$$\lambda = \frac{36}{5R}$$

(3)
$$\lambda = \frac{4}{3R}$$

- (4) None of the above
- 31. The energy of electron in first excited state of H-atom is 3.4 eV its kinetic energy is
 - (1) -3.4 eV
 - (2) + 3.4 eV
 - (3) 6.8 eV
 - (4) 6.8 eV
- 32. If R is the Rydberg's constant for hydrogen the wave number of the first line in the Lyman series will be
 - (1) $\frac{R}{4}$
 - (2) $\frac{3R}{4}$
 - (3) $\frac{R}{2}$
 - (4) 2R

33. The ratio of minimum to maximum wavelength in Balmer series is

(1) 5 : 9

- (2) 5 : 36
- (3) 1 : 4
- (4) 3 : 4
- 34. The ratio of the largest to shortest wavelengths in Lyman series of hydrogen spectra is
 - $(1)\frac{25}{9}$

- (2) $\frac{17}{6}$ (c) $\frac{9}{5}$
- $(4) \frac{4}{3}$
- 35. The diagram shows the path of four αparticles of the same energy being scattered by the nucleus of an atom simultaneously. Which of these are/is not physically possible

(1) 3 and 4

- (2) 2 and 3
- (3) 1 and 4
- (4) 4 only

SECTION B

- **36.** Energy of electron in a orbit of H-atom is
 - (1) Positive
 - (2) Negative
 - (3) Zero
 - (4) Nothing can be said
- 37. The ratio of the longest to shortest wavelengths in Brackett series of hydrogen spectra is

 $(1)\frac{25}{9} \\ (2)\frac{17}{6} \\ (3)\frac{9}{5}$

$$(4)\frac{4}{3}$$

- **38.** According to the Rutherford's atomic model, the electrons inside the atom are
 - (1) Stationary
 - (2) Not stationary
 - (3) Centralized
 - (4) None of these
- **39.** With the increase in principle quantum number, the energy difference between the two successive energy levels
 - (1) Increases
 - (2) Decreases
 - (3) Remains constant
 - (4)Sometimes increases and sometimes decreases
- 40. The frequency of 1^{st} line of Balmer series in H₂ atom is v₀. The frequency of line emitted by singly ionised He atom is
 - (1) $2\nu_0$
 - (2) $4v_0$
 - (3) $v_0/2$
 - (4) $v_0/4$
- 41. An electron changes its position from orbit n=4 to the orbit n=2 of an atom. The wavelength of the emitted radiation's is (R = Rydberg's constant)
 - $(1)\frac{16}{R}$ (2) $\frac{16}{3R}$

- $(3)\frac{16}{5R}$
- $(4)\frac{16}{7R}$
- 42. The diagram shows-the energy levels for an electron in a certain atom. Which transition shown represents the emission of a photon with the most energy

- 43. The magnetic moment (μ) of a revolving electron around the nucleus varies with principal quantum number n as
 - (1) $\mu \propto n$
 - (2) $\mu \propto 1/n$
 - (3) $\mu \propto n^2$
 - (4) $\mu \propto 1/n^2$
- 44. Radius of first Bohr orbit is r. What is the radius of 2nd Bohr orbit?
 - (1) 8r (2) 2r (3) 4r
 - (4) $2\sqrt{2r}$

45. Four lowest energy levels of H-atom are shown in the figure. The number of possible emission lines would be

> n = 4 n = 3

n = 2

n=1

- (1) 3
- (2) 4
- (3) 5
- (4) 6
- 46. In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change
 - (1) From n = 2 to n = 1
 - (2) From n = 3 to n = 1
 - (3) From n = 4 to n = 2
 - (4) From n = 3 to n = 2

47. In hydrogen atom which quantity is integral multiple of $\frac{h}{2\pi}$

- (1) Angular momentum
- (2) Angular velocity
- (3) Angular acceleration
- (4) Momentum
- 48. When a hydrogen atom is raised from the ground state to an excited state:
 - (1) P.E. increases and K.E. decreases
 - (2) P.E. decreases and K.E. increases

- (3) Both kinetic energy and potential energy increase
- (4) Both K.E. and P.E. decrease
- 49. An α-particle moving with a constant energy is scattered by the nucleus. The scattering angle will be maximum when the α-particle :
 - (1) approaches the nucleus head on
 - (2) just passes the nucleus
 - (3) passes at large distance from the nucleus
 - (4) is attracted by the nucleus
- 50. Assertion : Bohr had to postulate that the electrons in stationary orbits around the nucleus do not radiate.

Reason: According to classical physics all moving electrons radiate.

- Both Assertion and Reason are the true and Reason is a correct explanation of Assertion
- (2) Both Assertion and Reason are the

true but Reason is not a correct

explanation of Assertion

- (3) Assertion is true and Reason is false.
- (4) Assertion is false and Reason is true

	BK VISION ACADEMV	31.	2
RK AC	XISION ACADENII	32.	2
	PHYSICS	33.	1
	XII – ATOMS	34.	4
	SECTION A	35.	4
1.	1	•	_
2.	1	36.	2
3.	3	37.	1
4.	1	38.	2
5.	3	39.	2
6.	2	40.	2
7.	2	41.	2
8.	1	42.	3
9.	3	43.	1
10.	1	44.	с л
11.	1	45.	4 2
12.	3	40.	1
13.	2	48	1
14.	4	49	1
15.	3	50.	2
16.	2		-
17.	2		
18.	4		
19.	2		
20.	3		
21.	2		
22.	3		
23.	2		
24.	3		
25.	4		
26.	2		
27.	3		
28.	3		
29.	1		
30.	1		