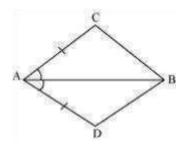
<u>Class IX Chapter 7 – Triangles</u> <u>Maths</u>

Exercise 7.1 Question

1:

In quadrilateral ACBD, AC = AD and AB bisects ∠A (See the given figure). Show that

 \cong



Answer:

 $\Delta ABC~\Delta ABD.$ What can you say about BC and BD?

In \triangle ABC and \triangle ABD,

AC = AD (Given)

 $\angle CAB = \angle DAB (AB bisects \angle A)$

AB = AB (Common)

 $^{∴}$ ∆ABC \cong ∆ABD (By SAS congruence rule)

BC = BD (By CPCT)

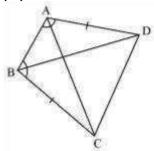
Therefore, BC and BD are of equal lengths.

Question 2:

ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (See the given figure). Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC

(iii) ABD = BAC.



Answer:

In $\triangle ABD$ and $\triangle BAC$,

AD = BC (Given)

L L

DAB = CBA (Given)

AB = BA (Common)

 $^{\perp}$ \triangle ABD \cong \triangle BAC (By SAS congruence rule)

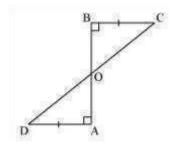
 $\dot{}$ BD = AC (By CPCT) And, \angle ABD

= BAC (By CPCT)

Question 3:

AD and BC are equal perpendiculars to a line segment AB (See the given figure).

Show that CD bisects AB.



In \triangle BOC and \triangle AOD,

∠ BOC = AOD (Vertically opposite angles)

 \angle CBO = DAO (Each 90°)

BC = AD (Given)

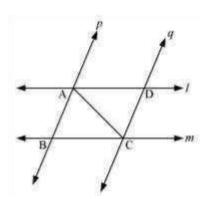
 $^{\circ}$ Δ BOC \cong Δ AOD (AAS congruence rule)

∴ BO = AO (By CPCT)

CD bisects AB.

Question 4: I and m are two parallel lines intersected by another pair of parallel lines p and q (see

the given figure). Show that $\triangle ABC \stackrel{\cong}{\triangle} CDA$.



Answer:

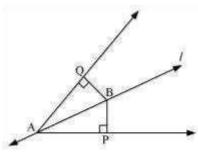
In $\triangle ABC$ and $\triangle CDA$,

 $\angle BAC = \angle DCA$ (Alternate interior angles, as p || q) AC = CA (Common)

ΔABC ΔCDA (By ASA congruence rule)

Question 5:

Line I ${}_{.}$ A is the bisector of an angle and B is any point on I. BP and BQ are perpendiculars from B to the arms of ${}_{.}$ A (see the given figure). Show that: i) Δ APB ${}_{.}$ Δ AQB (ii) BP = BQ or B is equidistant from the arms of ${}_{.}$ (A.



Answer:

In $\triangle APB$ and $\triangle AQB$,

$$\therefore$$
 APB = AQB (Each 90°)

$$\therefore$$
 PAB = QAB (I is the angle bisector of \therefore A)

AB = AB (Common)

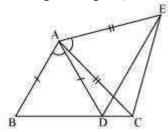
$$\triangle$$
 ΔAPB \triangle ΔAQB (By AAS congruence rule) \triangle BP = BQ (By CPCT)

rms of ∴A. Or,

it can be said that B is equidistant from the a

Question 6:

In the given figure, AC = AE, AB = AD and ABAD = ABAC. Show that BC = DE.



Answer:

It is given that ∴BAD = ∴EAC

$$\therefore$$
BAD + \therefore DAC = \therefore EAC + \therefore DAC

∴BAC = ∴DAE

In $\triangle BAC$ and $\triangle DAE$, AB = AD

(Given) ∴BAC =

::DAE (Proved above)

AC = AE (Given)

∴ ΔBAC ∴ ΔDAE (By SAS congruence rule)

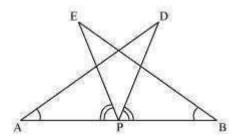
BC = DE (By CPCT)

Question 7:

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\cancel{B}AD = ..ABE$ and ..EPA = ..DPB (See the given figure). Show that i)

.. ΔDAP ΔEBP (

(ii) AD = BE



It is given that EPA = DPB

AP = BP (P is mid-point of AB)

ΔDAP ΔEBP (ASA congruence rule)

 $^{\perp}$ AD = BE (By CPCT)

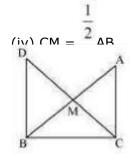
Question 8:

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point

B (see the given figure). Show that: i)

ii) DBC is a right angle. (iii)

ΔDBC - ΔACB (



Answer:

(i) In \triangle AMC and \triangle BMD, AM = BM (M is the mid-point of AB)

∴AMC = ∴BMD (Vertically opposite angles)

CM = DM (Given)

∴ ΔAMC ∴ ΔBMD (By SAS congruence rule)

 * AC = BD (By CPCT) And,

ACM = BDM (By CPCT) ii)

ACM = BDM (

However, ACM and BDM are alternate interior angles.

Since alternate angles are equal,

It can be said that DB || AC

 \therefore DBC + \therefore ACB = 180° (Co-interior angles)

 $^{\circ}$ DBC + 90° = 180°

DBC = 90°

```
(iii) In ΔDBC and ΔACB,
DB = AC (Already proved)

∴DBC = ∴ACB (Each 90°)

BC = CB (Common)

∴ ΔDBC ΔACB (SAS congruence rule) iv)

ΔDBC ΔACB (

∴ AB = DC (By CPCT)

∴ AB = 2 CM

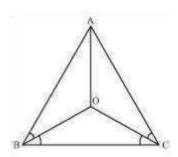
∴ CM = 2 AB
```

Exercise 7.2 Question

1:

In an isosceles triangle ABC, with AB = AC, the bisectors of $\triangle B$ and $\triangle C$ intersect each other at O. Join A to O. Show that:

i) OB = OC (ii) AO bisects -A (Answer:



(i) It is given that in triangle ABC, AB = AC

 \therefore \therefore ACB = ABC (Angles opposite to equal sides of a triangle are equal)

$$\therefore \frac{1}{2} \therefore ACB = \frac{1}{2} \therefore ABC$$

Λ.

OB = OC (Sides opposite to equal angles of a triangle are also equal)

(ii) In \triangle OAB and \triangle OAC, AO =AO (Common)

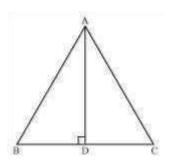
$$AB = AC (Given)$$

Therefore, ∆OAB ^{*}∆OAC (By SSS congruence rule)

" AO bisects A.

Question 2:

In \triangle ABC, AD is the perpendicular bisector of BC (see the given figure). Show that \triangle ABC is an isosceles triangle in which AB = AC.



Answer:

In \triangle ADC and \triangle ADB,

$$AD = AD (Common)$$

$$ADC = ADB (Each 90^{\circ})$$

CD = BD (AD is the perpendicular bisector of BC)

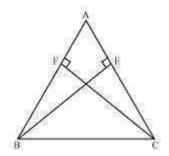
∴ ΔADC ∴ ΔADB (By SAS congruence rule)

AB = AC (By CPCT)

Therefore, ABC is an isosceles triangle in which AB = AC.

Question 3:

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given figure). Show that these altitudes are equal.



Answer:

In $\triangle AEB$ and $\triangle AFC$,

 $^{\circ}$ AEB and AFC (Each 90°) A =

"A (Common angle)

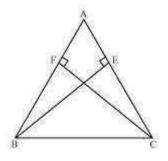
$$AB = AC (Given)$$

∴
$$\triangle$$
AEB ∴ \triangle AFC (By AAS congruence rule) ∴ BE = CF (By CPCT)

Question 4:

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the

given figure). Show that
 (i)
$$^{\Delta}\!\mathsf{ABE} : ^{\Delta}\!\mathsf{ACF}$$



Answer:

(ii) AB = AC, i.e., ABC is an isosceles triangle.

```
(i) In \triangleABE and \triangleACF,
```

ABE and ACF (Each 90°)

 $^{-1}A = A^{-1}(Common angle)$

BE = CF (Given)

- .. ΔABE .. ΔACF (By AAS congruence rule)
- (ii) It has already been proved that

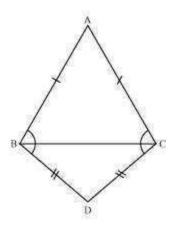
ΔABE ΔACF

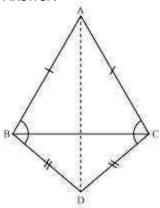
∴ AB = AC (By CPCT)

Question 5:

ABC and DBC are two isosceles triangles on the same base BC (see the given figure).

Show that .ABD = .ACD.





Let us join AD.

In \triangle ABD and \triangle ACD,

AB = AC (Given)

BD = CD (Given)

AD = AD (Common side)

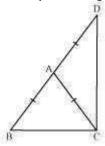
∴ ΔABD ΔACD (By SSS congruence rule)

∴ ∴ ABD = ÆCD (By CPCT)

Question 6:

 ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD

= AB (see the given figure). Show that ∴BCD is a right angle.



Answer:

In ΔABC,

$$AB = AC (Given)$$

∴ ∴ ACB = ∴ABC (Angles opposite to equal sides of a triangle are also equal)

In ΔACD,

AC = AD

∴ ∴ ADC = ∴ACD (Angles opposite to equal sides of a triangle are also equal)

In ΔBCD,

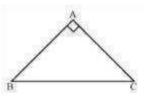
 $^{\circ}ABC + BCD + ADC = 180^{\circ}$ (Angle sum property of a triangle)

$$^{\circ}$$
 ACB + ACB + ACD + $^{\circ}$ ACD = 180°

Question 7:

ABC is a right angled triangle in which $\triangle A = 90^{\circ}$ and AB = AC. Find $\triangle B$ and $\triangle C$.

Answer:



is given that

$$AB = AC$$

 \dot{C} = B (Angles opposite to equal sides are also equal)

 $^{\circ}A + B + C = 180^{\circ}$ (Angle sum property of a triangle)

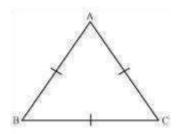
$$^{\circ}$$
 90° + B + C = 180°

$$B = C = 45^{\circ}$$

Question 8:

Show that the angles of an equilateral triangle are 60° each.

Answer:



Let us consider that ABC is an equilateral triangle.

Therefore, AB = BC = AC

$$AB = AC$$

-: C:= B (Angles opposite to equal sides of a triangle are equal)

Also,

AC = BC

 $\dot{B} = A$ (Angles opposite to equal sides of a triangle are equal)

Therefore, we obtain ∴A

= $B = C \cdot \Delta$ In ΔABC ,

 $\dot{A} + B + C = 180^{\circ}$

· A + A + A = 180°

. 3 Å = 180°

... Å = 60°

 $\overset{\cdot \cdot}{A} = \overset{\cdot \cdot}{B} = \overset{\cdot \cdot}{C} = 60^{\circ}$ Hence, in an equilateral triangle, all interior angles are of measure 60°.

Exercise 7.3

Question 1:

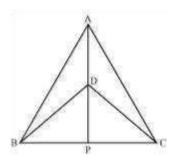
 Δ ABC and Δ DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect

BC at P, show that

i) ΔABD ... ΔACD (ii) ΔABP ΔACP

(iii) AP bisects ∴A as well as D. (

(iv) AP is the perpendicular bisector of BC.



Answer:

(i) In \triangle ABD and \triangle ACD,

AB = AC (Given)

BD = CD (Given)

AD = AD (Common)

∴ ΔABD ΔACD (By SSS congruence rule)

" BAD = CAD (By CPCT)

... ... BAP = CAP (1)

(ii) In \triangle ABP and \triangle ACP,

AB = AC (Given)

BAP = CAP [From equation (1)]

AP = AP (Common)

∴ ΔABP ∴ ΔACP (By SAS congruence rule)

BP = CP (By CPCT) ... (2)

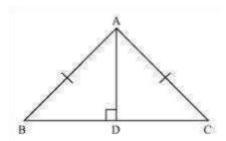
(iii) From equation (1),

∴BAP = ∴CAP

Hence, AP bisects A.

In $\triangle BDP$ and $\triangle CDP$,

```
BD = CD (Given)
DP = DP (Common)
BP = CP [From equation (2)]
∴ ΔBDP ΔCDP (By S.S.S. Congruence rule)
" BDP = CDP (By CPCT) ... (3) Hence,
AP bisects D. iv) ΔBDP ...
ΔCDP (
∴ BPD = CPĐ (By CPCT) .... (4)
\therefore BPD + \therefore CPD = 180 (Linear pair angles)
  BPD +
           BPD = 180
         = 180 [From equation (4)]
 BPD 2
 BPD = 90 ... (5)
From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.
Question 2:
AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that
i) AD bisects BC (ii) AD bisects .A. (
```



(i) In $\triangle BAD$ and $\triangle CAD$,

ADB = ADC (Each 90° as AD is an altitude)

AB = AC (Given)

AD = AD (Common)

[∴] ΔBAD ∴ ΔCAD (By RHS Congruence rule)

.. BD = CD (By CPCT)

Hence, AD bisects BC.

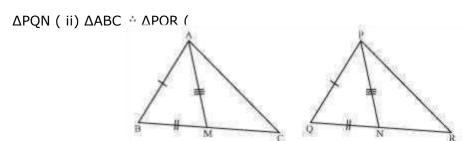
(ii) Also, by CPCT,

BAD = CAD Hence, AD

bisects A. ...

Question 3:

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see the given figure). Show that: i) Δ ABM



۸

(i) In \triangle ABC, AM is the median to BC.

$$\therefore BM = \frac{1}{2}_{BC}$$

$$\therefore QN = \frac{1}{2}QR$$

However, BC = QR

$$\frac{1}{2}_{BC} = \frac{1}{2}_{QR}$$

In ΔABM and $\Delta PQN_{\mbox{\scriptsize ,}} In$ $\Delta PQR_{\mbox{\scriptsize ,}}$ PN is the median to QR.

AB = PQ (Given)

BM = QN [From equation (1)]

AM = PN (Given)

∴ ΔABM ΔPQN (SSS congruence rule)

(ii) In \triangle ABC and \triangle PQR,

$$AB = PQ (Given)$$

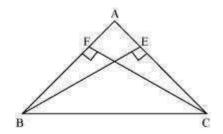
$$BC = QR (Given)$$

∴ ΔABC ∴ ΔPQR (By SAS congruence rule)

Question 4:

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Answer:



In \triangle BEC and \triangle CFB,

∴BEC = ∴CFB (Each 90°)

BC = CB (Common) BE = CF (Given)

- ΔBEC ΔCFB (By RHS congruency)

BCE = CBF (By CPCT)

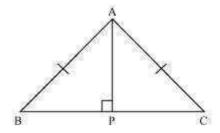
 $^{\circ}$ AB = AC (Sides opposite to equal angles of a triangle are equal)

Hence, $\triangle ABC$ is isosceles.

Question 5:

A A

ABC is an isosceles triangle with AB = AC. Drawn AP \div BC to show that B = C.



In $\triangle APB$ and $\triangle APC$,

 $\therefore APB = \therefore APC (Each 90^{\circ})$

AB = AC (Given)

AP = AP (Common)

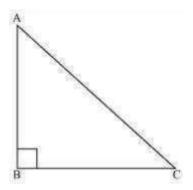
∴ ΔAPB ΔAPC (Using RHS congruence rule)

 $\ddot{B} = C$ (By using CPCT)

Exercise 7.4 Question 1:

Show that in a right angled triangle, the hypotenuse is the longest side.

Answer:



Let us consider a right-angled triangle ABC, right-angled at B.

In ΔABC,

 $\dot{A} + B + C = 180^{\circ}$ (Angle sum property of a triangle)

$$^{..}A + 90^{\circ} + C^{.} = 180^{\circ}$$

Hence, the other two angles have to be acute (i.e., less than 90°).

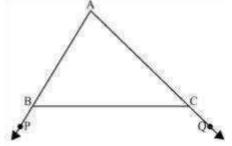
 $\dot{}$ $\dot{}$ B is the largest angle in ΔABC .

[In any triangle, the side opposite to the larger (greater) angle is longer.] Therefore, AC is the largest side in \triangle ABC.

However, AC is the hypotenuse of Δ ABC. Therefore, hypotenuse is the longest side in a right-angled triangle.

Question 2:

In the given figure sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, \triangle PBC < \triangle OCB. Show that AC > AB.



Answer:

In the given figure,

$$\dot{ABC} + PBC = 180^{\circ}$$
 (Linear pair)

$$^{\circ}$$
 ABC = 180° - ...PBC ... (1)

Also,

$$^{\circ}$$
ACB + $^{\circ}$ QCB = 180°

٨

۸.

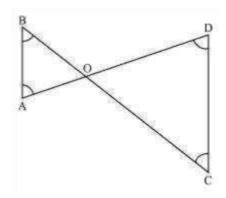
$$ACB = 180^{\circ} - QCB ... (2)$$

As PBC < QCB,

... ABC > ACB [From equations (1) and (2)] .. AC >

AB (Side opposite to the larger angle is larger.) Question 3:

In the given figure, $\dot{B} < \dot{A}$ and $\dot{C} < \dot{D}$. Show that AD < BC.



Answer:

In ΔAOB,

 $\dot{\cdot}$ B $\dot{\cdot}$ AO < BO (Side opposite to smaller angle is smaller) ... (1)

In ΔCOD,

∴ C ∹< D

 $^{\circ}$ OD < OC (Side opposite to smaller angle is smaller) ... (2)

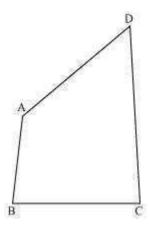
On adding equations (1) and (2), we obtain

AO + OD < BO + OC

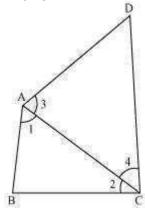
AD < BC

Question 4:

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD see the given figure). Show that A > C and B > C.



Answer:



Let us join AC. In \triangle ABC,

AB < BC (AB is the smallest side of quadrilateral ABCD)

 \div \div 2.4< 1 (Angle opposite to the smaller side is smaller) ... (1)

In ΔADC,

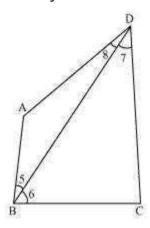
AD < CD (CD is the largest side of quadrilateral ABCD)

 \div 4 < 3 (Angle opposite to the smaller side is smaller) ... (2)

On adding equations (1) and (2), we obtain

$$\cdot \cdot C < \cdot \cdot A$$

∴ ∴A > ∴C Let us join BD.



In ΔABD,

AB < AD (AB is the smallest side of quadrilateral ABCD)

 $\dot{}$ 8 < 5 (Angle opposite to the smaller side is smaller) ... (3)

In ΔBDC,

BC < CD (CD is the largest side of quadrilateral ABCD)

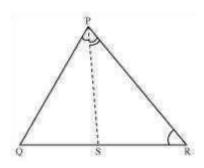
...7. < 6 (Angle opposite to the smaller side is smaller) ... (4)

On adding equations (3) and (4), we obtain

 $\ddot{B} > D \dot{Q}$ uestion

5.

In the given figure, PR > PQ and PS bisects ::QPR. Prove that ::PSR > ::PSQ.



As PR > PQ,

 \therefore PQR > PRQ (Angle opposite to larger side is larger) ... (1) PS is the bisector of QPR.

 $^{\circ}$ PSR is the exterior angle of Δ PQS.

٠.

 $_{..}$... PSQ is the exterior angle of $\Delta PRS.$

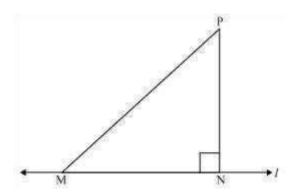
Adding equations (1) and (2), we obtain

$$\dot{P}$$
PQR + \dot{Q} PS > PR \dot{Q} + \dot{R} PS

PSR > PSQ [Using the values of equations (3) and (4)]

Question 6:

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.



Let us take a line I and from point P (i.e., not on line I), draw two line segments PN and PM. Let PN be perpendicular to line I and PM is drawn at some other angle.

In ΔPNM,

∴N = 90°

 $^{.}$ P + N + M $\stackrel{.}{=}$ 180° (Angle sum property of a triangle)

 $\dot{P} + \dot{M} = 90^{\circ}$

Clearly, \dot{M} is an acute angle.

 $\overset{\cdot \cdot }{\stackrel{\cdot \cdot }{M}}< N \overset{\cdot \cdot }{\stackrel{\cdot \cdot }{}}$

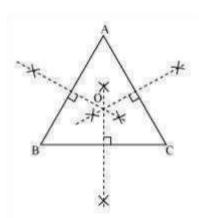
PN < PM (Side opposite to the smaller angle is smaller)

Similarly, by drawing different line segments from P to I, it can be proved that PN is smaller in comparison to them.

Therefore, it can be observed that of all line segments drawn from a given point not
on it, the perpendicular line segment is the shortest.
Exercise 7.5 Question
1:
ADC is a twistered. I seeks a maint in the interior of AADC which is acreditatent from all
ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all
the vertices of $\triangle ABC$.
Answer:
Circumcentre of a triangle is always equidistant from all the vertices of that triangle.

Circumcentre is the point where perpendicular bisectors of all the sides of the triangle

meet together.



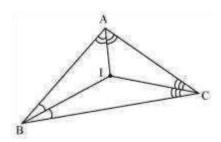
In \triangle ABC, we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA of this triangle. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of \triangle ABC.

Question 2:

In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Answer:

The point which is equidistant from all the sides of a triangle is called the incentre of the triangle. Incentre of a triangle is the intersection point of the angle bisectors of the interior angles of that triangle.



Here, in \triangle ABC, we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of \triangle ABC.

Question 3:

In a huge park people are concentrated at three points (see the given figure)

₽• •€

A: where there are different slides and swings for children,

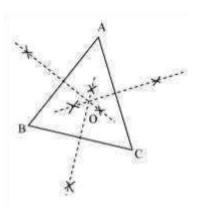
B: near which a man-made lake is situated,

C: which is near to a large parking and exit.

Where should an ice-cream parlour be set up so that maximum number of persons can approach it?

(Hint: The parlor should be equidistant from A, B and C) Answer:

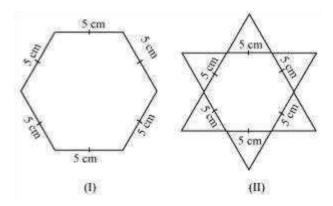
Maximum number of persons can approach the ice-cream parlour if it is equidistant from A, B and C. Now, A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set up at the circumcentre O of ΔABC .



In this situation, maximum number of persons can approach it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.

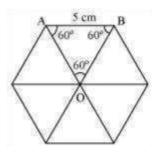
Question 4:

Complete the hexagonal and star shaped rangolies (see the given figures) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?



Answer:

It can be observed that hexagonal-shaped rangoli has 6 equilateral triangles in it.



Area of
$$\triangle OAB$$

$$= \frac{\sqrt{3}}{4} (side)^2 = \frac{\sqrt{3}}{4} (5)^2$$

$$= \frac{\sqrt{3}}{4} (25) = \frac{25\sqrt{3}}{4} \text{ cm}^2$$

$$=6 \times \frac{25\sqrt{3}}{4} = \frac{75\sqrt{3}}{2} \text{ cm}^2$$

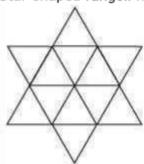
Area of hexagonal-shaped rangoli

Area of equilateral triangle having its side as 1 cm = $\frac{\sqrt{3}}{4}(1)^2 = \frac{\sqrt{3}}{4}$ cm²

Number of equilateral triangles of 1 cm side that can be filled

in this hexagonal-shaped
$$rangoli = \frac{\frac{75\sqrt{3}}{2}}{\frac{\sqrt{3}}{4}} = 150$$

Star-shaped rangoli has 12 equilateral triangles of side 5 cm in it.



Area of star-shaped rangoli =
$$12 \times \frac{\sqrt{3}}{4} \times (5)^2 = 75\sqrt{3}$$

Number of equilateral triangles of 1 cm side that can be filled

in this star-shaped rangoli
$$=\frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}} = 300$$

Therefore, star-shaped rangoli has more equilateral triangles in it.