

Assertion & Reason

For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion: Two persons on the surface of moon cannot talk to each other.
 - Reason: There is no atmosphere on moon.
- 2. Assertion: Transverse waves are not produced in liquids and gases.
 - Reason: Light waves are transverse waves.
- 3. Assertion : Sound waves cannot propagate through vacuum but light waves can.
 - Reason: Sound waves cannot be polarised but light waves can be polarised. [AIIMS 1998]
- 4. Assertion: The velocity of sound increases with increase in humidity.
 - Reason: Velocity of sound does not depend upon the medium.
- 5. Assertion: Ocean waves hitting a beach are always found to be nearly normal to the shore.
 - Reason : Ocean waves are longitudinal waves.
- 6. Assertion : Compression and rarefaction involve changes in density and pressure.
 - Reason: When particles are compressed, density of medium increases and when they are rarefied, density of medium decreases.
- 7. Assertion: Transverse waves travel through air in an organ pipe.

- Reason : Air possesses only volume elasticity.
- 8. Assertion: Sound would travel faster on a hot summer day than on a cold winter day.
 - Reason: Velocity of sound is directly proportional to the square of its absolute temperature.
- 9. Assertion: The basic of Laplace correction was that, exchange of heat between the region of compression and rarefaction in air is not possible.
 - Reason: Air is a bad conductor of heat and velocity of sound in air is large.
- 10. Assertion: Particle velocity and wave velocity both are independent of time.
 - Reason: For the propagation of wave motion, the medium must have the properties of elasticity and inertia.
- 11. Assertion: When we start filling an empty bucket with water, the pitch of sound produced goes on decreasing.
 - Reason: The frequency of man voice is usually higher than that of woman.
- 12. Assertion: A tuning fork is made of an alloy of steel, nickel and chromium.
 - Reason: The alloy of steel, nickel and chromium is called elinvar.
- 13. Assertion: The change in air pressure effect the speed of sound.
 - Reason: The speed of sound in a gas is proportional to square root of pressure.
- 14. Assertion : Solids can support both longitudinal and transverse waves but only longitudinal waves can propagate in gases.
 - Reason : For the propagation of transverse waves, medium must also neccessarly have the property of rigidity.
- 15. Assertion : Under given conditions of pressure and temperature, sound

travels faster in a monoatomic gas than in diatomic gas.

Reason : Opposition for wave to travel is more in diatomic gas than monoatomic gas.

16. Assertion: The speed of sound in solids is maximum though their density is large.

Reason: The coefficient of elasticity of solid is large.

17. Assertion : On a rainy day sound travel slower than on a dry day.

Reason: When moisture is present in air the density of air increases.

18. Assertion: To hear distinct beats, difference in frequencies of two sources should be less than 10.

Reason: More the number of beats per sec more difficult to hear them.

19. Assertion: Sound produced by an open organ pipe is richer than the sound produced by a closed organ pipe.

Reason: Outside air can enter the pipe from both ends, in case of open organ pipe.

20. Assertion: It is not possible to have interference between the waves produced by two violins.

Reason: For interference of two waves the phase difference between the waves must remain constant.

21. Assertion: Beats can also be observed by two light sources as in sound.

Reason: Light sources have constant phase deference.

22. Assertion: In the case of a stationary wave, a person hear a loud sound at the nodes as compared to the antinodes.

Reason: In a stationary wave all the particles of the medium vibrate in phase.

23. Assertion : Velocity of particles, while crossing mean position (in stationary waves) varies from

maximum at antinodes to zero at nodes.

Reason: Amplitude of vibration at antinodes is maximum and at nodes, the amplitude is zero, And all particles between two successive nodes cross the mean position together.

24. Assertion: Where two vibrating tuning forks having frequencies 256 Hz and 512 Hz are held near each other, beats cannot be heard.

Reason: The principle of superposition is valid only if the frequencies of the oscillators are nearly equal.

25. Assertion: The fundamental frequency of an open organ pipe increases as the temperature is increased.

Reason: As the temperature increases, the velocity of sound increases more rapidly than length of the pipe.

26. Assertion: Sound travel faster in solids than gases.

Reason: Solid possess greater density than gases.

[AIIMS 2000]

27. Assertion: Like sound, light can not propagate in va
Reason: Sound is a square wave. It
propagates in a medium by a virtue
of damping oscillation.

[AIIMS 2000]

28. Assertion : Speed of wave = $\frac{\text{Wave length}}{\text{Time period}}$

Reason: Wavelength is the distance between two nearest particles in phase. [AIIMS 2002]

29. Assertion: The flash of lightening is seen before the sound of thunder is heard.

Reason : Speed of sound is greater than speed of light

[AIIMS 2002]

30. Assertion: When a beetle moves along the sand with in a few tens of centimeters of a sand scorpion the scorpion immediately turn towards the beetle and dashes to it

Reason: When a beetle disturbs the sand, it sends pulses along the sands surface

UNIVERSAL SELF SCORER

one set of pulses is longitudinal while other set is transverse. [AIIMS 2003]

31. Assertion: The reverberation time dependent

on the the shape of enclosure, position of source and observer.

Reason: The unit of absorption coefficient in

mks system is metric sabine. [EAMCET 20

	41	d	42	С	43	b	44	С	45	а
3]	46	а	47	d	48	a	49	b	50	d
	51	d	52	abc	53	a	54	a	55	b
	56	d	57	b	58	d	59	С	60	а
	61	b	62	а	63	d	64	а	65	b
	66	b	67	b	68	b	69	d	70	b
20	71	а	72	b	73	d	74	ac	75	С
	76	b	77	b	78	С	79	b	80	а

Answers

Basics of Mechanical Waves

1	d	2	С	3	а	4	а	5	d
6	d	7	а	8	С	9	С	10	а
11	а	12	а	13	d	14	С	15	а
16	b	17	С	18	b	19	d	20	а
21	b	22	b	23	b	24	d	25	b
26	а	27	d	28	С	29	b	30	d
31	С	32	а	33	b	34	d	35	b
36	b	37	b	38	а	39	С	40	d
41	d	42	d	43	С	44	а	45	d
46	С	47	b	48	d	49	b	50	а
51	d	52	С	53	С	54	С	55	b
56	а	57	а	58	а	59	а	60	а
61	d	62	С	63	а	64	С	65	d
66	С	67	С	68	а	69	d	70	а
71	b	72	b	73	b	74	d	75	С
76	b	77	d	78	b	79	b	80	b
81	d	82	b	83	b	84	b	85	d
86	d	87	а	88	С	89	а	90	а
91	а	92	d	93	d	94	d		

Progressive Waves

1	d	2	С	3	b	4	С	5	d
6	d	7	С	8	d	9	С	10	С
11	С	12	С	13	С	14	b	15	b
16	abcd	17	b	18	b	19	d	20	bc
21	а	22	b	23	а	24	а	25	а
26	а	27	acd	28	d	29	а	30	а
31	b	32	d	33	b	34	d	35	d
36	d	37	а	38	а	39	b	40	b

Interference and Superposition of Waves

1	b	2	d	3	а	4	d	5	b
6	d	7	d	8	bc	9	С	10	С
11	а	12	b	13	С	14	d	15	b
16	С	17	а	18	а	19	b	20	С
21	а	22	b	23	а	24	С	25	d
26	b								

Beats

1	С	2	d	3	С	4	а	5	d
6	b	7	С	8	а	9	d	10	b
11	С	12	b	13	а	14	С	15	С
16	С	17	С	18	b	19	С	20	а
21	d	22	С	23	d	24	С	25	С
26	d	27	а	28	С	29	b	30	а
31	С	32	а	33	а	34	а	35	d
36	b	37	а	38	а	39	а	40	b
41	а	42	С	43	d	44	b	45	а
46	С	47	a	48	b	49	b	50	b
51	b								

Stationary Waves

1	С	2	С	3	С	4	С	5	b
6	a	7	b	8	d	9	а	10	а
11	b	12	d	13	b	14	d	15	d
16	abc	17	а	18	d	19	а	20	а
21	a	22	b	23	С	24	b	25	а
26	С	27	d	28	С	29	b	30	d
31	b	32	а	33	b	34	а	35	а
36	а	37	а	38	d	39	d		

Vibration of String

1	С	2	d	3	С	4	С	5	С
6	b	7	b	8	d	9	а	10	С
11	d	12	С	13	С	14	а	15	а

16	d	17	а	18	а	19	С	20	b
21	d	22	С	23	а	24	b	25	а
26	b	27	b	28	b	29	С	30	С
31	b	32	а	33	d	34	b	35	d
36	С	37	d	38	а	39	d	40	b
41	а	42	а	43	d	44	d	45	d
46	С	47	а	48	b	49	d	50	С
51	d	52	b						

Organ Pipe (Vibration of Air Column)

1	С	2	а	3	С	4	d	5	С
6	acd	7	d	8	а	9	b	10	С
11	b	12	С	13	b	14	b	15	b
16	а	17	b	18	а	19	С	20	а
21	b	22	а	23	а	24	b	25	С
26	а	27	a	28	b	29	а	30	d
31	С	32	а	33	b	34	b	35	b
36	b	37	b	38	С	39	b	40	b
41	b	42	b	43	а	44	С	45	а
46	С	47	а	48	d	49	b	50	С
51	а	52	а	53	b				

Doppler's Effect

1	d	2	b	3	а	4	b	5	С
6	b	7	С	8	b	9	а	10	а
11	b	12	а	13	d	14	С	15	b
16	а	17	а	18	С	19	d	20	а
21	d	22	а	23	а	24	b	25	С
26	b	27	С	28	d	29	b	30	d
31	а	32	С	33	d	34	d	35	а
36	b	37	С	38	d	39	а	40	С
41	а	42	С	43	а	44	d	45	d
46	b	47	b	48	b	49	b	50	а
51	а	52	С	53	d	54	b	55	а
56	С	57	С	58	d	59	С	60	а
61	С	62	b	63	а	64	а	65	b

Musical Sound

1	d	2	а	3	а	4	С	5	b
6	С	7	а	8	d	9	d	10	d
11	d	12	С	13	d	14	С	15	b
16	С	17	b	18	а	19	d	20	b
21	С	22	d	23	b	24	а	25	b
26	d	27	d	28	b	29	b	30	а
31	d	32	а						

Critical Thinking Questions

1	abcd	2	bc	3	С	4	а	5	С
6	b	7	b	8	С	9	b	10	d
11	b	12	abc	13	b	14	b	15	а
16	b	17	а	18	d	19	а	20	С
21	а	22	abcd	23	b	24	d	25	а
26	а	27	С	28	а	29	b	30	а
31	b	32	b	33	a	34	С	35	b
36	а	37	d	38	b	39	а	40	С
41	b	42	b	43	С	44	ac	45	С
46	b	47	d	48	С	49	С	50	С
51	С								

Graphical Questions

1	С	2	b	3	а	4	b	5	d
6	С	7	d	8	d	9	С	10	С
11	С	12	С	13	С	14	b	15	bd
16	d	17	b	18	d				

Assertion and Reason

1	а	2	b	3	b	4	С	5	С
6	а	7	е	8	С	9	С	10	е
11	d	12	b	13	е	14	а	15	С
16	а	17	d	18	b	19	b	20	а
21	d	22	С	23	а	24	С	25	а
26	b	27	d	28	b	29	С	30	а
31	е								

Answers and Solutions

Basics of Mechanical Waves

- (d) Air is more rarer for sound to travel as compared to vacuum.
- 2. (c)
- 3. (a)
- 4. (a) $v = n\lambda = 2 \times 5 = 10 \ cm/sec$
- 5. (d) $v = n\lambda \implies \lambda = \frac{v}{n} = \frac{330}{256} = 1.29m$
- 6. (d) Time lost in covering the distance of 2 km by the sound waves $t = \frac{d}{v} = \frac{2000}{330} = 6.06 \, sec \approx 6.86c$
- 7. (a) $v_{\text{max}} = a\omega = a \times 2\pi n = 0.1 \times 2\pi \times 300 = 60\pi \text{ cm/sec}$

- 8. (c) Audiable range of frequency is 20Hz to 20kHz
- 9. (c) Phase difference $=\frac{2\pi}{\lambda} \times$ path difference $\Rightarrow 1.6\pi = \frac{2\pi}{\lambda} \times 40 \Rightarrow \lambda = 50 \text{ cm} = 0.5m$ $\Rightarrow v = n\lambda \Rightarrow 330 = 0.5 \times n \Rightarrow n = 660 \text{ Hz}$
- 10. (a) $\lambda = \frac{v}{n}$; $n \approx 50,000 \ Hz$, $v = 330 \ m/sec$ \Rightarrow $\lambda = \frac{330}{50000} m$ $= 6.6 \times 10^{-5} \ cm \approx 5 \times 10^{-5} \ cm$
- 11. (a)
- 12. (a) $\lambda = \frac{v}{n} = \frac{1.7 \times 1000}{4.2 \times 10^6} = 4 \times 10^{-4} \ m$
- 13. (d) Since maximum audible frequency is 20,000 Hz, hence $\lambda_{min} = \frac{v}{n_{max}} = \frac{340}{20,000} \approx 20 \text{ mm}$
- 14. (c) Velocity of sound in gas $v = \sqrt{\frac{\gamma RT}{M}}$ \Rightarrow $v \propto \sqrt{\frac{\gamma T}{M}}$

$$\Rightarrow \frac{v_{N_2}}{v_{He}} = \sqrt{\frac{\gamma_{N_2}}{\gamma_{He}} \times \frac{M_{He}}{M_{H_2}}} = \sqrt{\frac{\frac{7}{5}R \times 4}{\frac{5}{3}R \times 28}} = \frac{\sqrt{3}}{5}$$

15. (a) Time required for a point to move from maximum displacement to zero displacement is $t = \frac{T}{4} = \frac{1}{4n}$

$$\Rightarrow n = \frac{1}{4t} = \frac{1}{4 \times 0.170} = 1.47 \text{ Hz}$$

- 16. (b) Wave number is the reciprocal of wavelength and is written as $\overline{n} = \frac{1}{\lambda}$.
- 17. (c) $\lambda = \frac{v}{n} = \frac{340}{200} = 1.7 \text{ m}$
- 18. (b)
- 19. (d) $v \propto \lambda \implies \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{2/3}{3/10} = \frac{20}{9}$
- 20. (a) The time taken by the stone to reach the lake

$$t_1 = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 500}{10}} = 10 \text{ sec}$$
 (Using

$$h = ut + \frac{1}{2}gt^2$$

Now time taken by sound from lake to the man

$$t_2 = \frac{h}{v} = \frac{500}{340} \approx 1.5 \sec t$$

- \Rightarrow Total time = $t_1 + t_2 = 10 + 1.5 = 11.5 \text{ sec.}$
- 21. (b) When medium changes, velocity and wavelength changes but frequency remains constant.

22. (b)
$$t = \sqrt{\frac{2h}{g}} + \frac{h}{v} = \sqrt{\frac{2 \times 19.6}{9.8}} + \frac{19.6}{v} = 2.06$$

$$\Rightarrow v = 326.7 \ m/s$$

23. (b)
$$v \propto \sqrt{T} \Rightarrow \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow 2 = \sqrt{\frac{T_2}{(273+0)}}$$

$$\Rightarrow T_2 = 273 \times 4 = 1092 K = 819^{\circ} C$$

24. (d) Velocity of sound in steel is maximum out of the given materials water and air. In vacuum sound cannot travel, it's speed is zero.