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Electric Charge 

(1) Charge is the property associated with matter 
due to which it produces and experiences electrical 
and magnetic effects.

(2) It is known that every atom is electrically 
neutral, containing as many electrons as the number 
of protons in the nucleus. 

(3) Charged particles can be created by 
disturbing neutrality of an atom. Loss of electrons 
gives positive charge (as then np > ne) and gain of 
electrons gives negative charge (as then ne > np) to a 
particle. In charging mass of the body  changes as 
shown below

(4) Charges with the same electrical sign repel 
each other, and charges with opposite electrical sign 
attract each other.

(5) Unit and dimensional formula 

S.I. unit of charge is Ampere  sec = coulomb 
(C), smaller S.I. units are mC, C. 

C.G.S. unit of charge is Stat coulomb or e.s.u. 
Electromagnetic unit of charge is ab coulomb 

 .coulombabcoulombstatC
10
1

1031 9 

Dimensional formula  ATQ ][

(6) Charge is 
Transferable : It can be transferred from one body to another .
Associated with mass : Charge cannot exist without mass but 
reverse is not true.
Conserved : It can neither be created nor be destroyed.
Invariant : Independent of velocity of charged particle. 

 (7) Electric charge produces electric field , )(E
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(8) Point charge : A finite size body may behave 
like a point charge if it produces an inverse square 
electric field. For example an isolated charged 
sphere behave like a point charge at very large 
distance as well as very small distance close to it’s 
surface.

(9) Charge on a conductor : Charge given to a 
conductor always resides on it's outer surface. This is 
why a solid and hollow conducting sphere of same 
outer radius will hold maximum equal charge. If 
surface is uniform the charge distributes uniformly 
on the surface and for irregular surface the 
distribution of charge, i.e., charge density is not 
uniform. It is maximum where the radius of 
curvature is minimum and vice versa. i.e.,  . σ  /R1

This is why charge leaks from sharp points.

(10) Charge distribution : It may be of two 
types 

(i) Discrete distribution of charge : A system 
consisting of ultimate individual charges. 

(ii) Continuous distribution of charge : An 
amount of charge distribute uniformly or non-
uniformly on a body. It is of following three types

(a) Line charge distribution : Charge on a line 
e.g. charged straight wire, circular charged ring etc. 

Linear charge density
Length
Charge

                S.I. unit is 
m
C

                Dimension is [L–1TA]

(b) Surface charge distribution : Charge 
distributed on a surface e.g. plane sheet of charge, 
conducting sphere, conducting cylinder of 

Surface charge density
Area

Charge

                S.I. unit is 2m
C

               Dimension is [L–2TA]

(c) Volume charge density : Charge distributes 
through out the volume of the body e.g. charge on a 
dielectric sphere etc. 

Volume charge density
Volume
Charge

                S.I. unit is 3m
C

                 Dimension is [L–3TA]
(11) Quantization of charge : If the charge of an 

electron ( ) is taken as elementary unit C19106.1 

i.e. quanta of charge, the charge on any body will be 
some integral multiple of e i.e., 

 with neQ  ....3,2,1n

Charge on a body can never be , 17.2e or e
3
2



10–5e etc.
(12) Comparison of charge and mass : We are 

familiar with role of mass in gravitation, and we have 
just studied some features of electric charge. We can 
compare the two as shown below

Table 18.1 : Charge v/s mass

Charge Mass

(1) Electric charge can be 
positive, negative or zero.

(1) Mass of a body is a positive 
quantity.

(2) Charge carried by a body does 
not depend upon velocity of the 
body.

(2) Mass of a body increases with its 

velocity as  
22

0

/1 cv

m
m




where c is velocity of light in 
vacuum, m is the mass of the body 
moving with velocity v and  is 0m
rest mass of the body.

(3) Charge is quantized. (3) The quantization of mass is yet to 
be established.
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(4) Electric charge is always 
conserved.

(4) Mass is not conserved as it can 
be changed into energy and vice-
versa.

(5) Force between charges can be 
attractive or repulsive, 
accordingly as charges are unlike 
or like charges.

(5) The gravitational force between 
two masses is always attractive.

Methods of Charging
A body can be charged by following methods.
(1) By friction : By rubbing two bodies together, 

both positive and negative charges in equal amounts 
appear simultaneously due to transfer of electrons 
from one body to the other. 

(i) When a glass rod is rubbed with silk, the rod 
becomes positively charged while the silk becomes 
negatively charged. The decrease in the mass of 
glass rod is equal to the total mass of electrons lost 
by it. 

(ii) Ebonite on rubbing with wool becomes 
negatively charged making the wool positively 
charged.

(iii) Clouds also get charged by friction.
(iv) A comb moving through dry hair gets 

electrically charged. It starts attracting small bits of 
paper. 

(v) During landing or take-off, the tyres of an 
aircraft get electrified therefore special material is 
used to manufacture them. 

(2) By electrostatic induction : If a charged 
body is brought near an uncharged body, one side of 
neutral body (closer to charged body) becomes 
oppositely charged while the other side becomes 
similarly charged. 

Induced charge can be lesser or equal to inducing 
charge (but never greater) and its maximum value is 
given by  where Q is the inducing 



 

K
QQ' 1

1

charge and K is the dielectric constant of the material 
of the uncharged body. It is also known as specific 
inductive capacity (SIC) of the medium, or relative 
permittivity r of the medium (relative means with 
respect to free space)

Table 18.2 : Different dielectric constants

Medium K Medium K

Vacuum 1 Mica 6

air 1.0003 Silicon 12

Paraffin vax 2.1 Germanium 16

Rubber 3 Glycerin 50

Transformer oil 4.5 Water 80

Glass 5–10 Metal 

(3) Charging by conduction : Take two 
conductors, one charged and other uncharged. Bring 
the conductors in contact with each other. The 
charge  (whether or ) under its own repulsion ve ve

will spread over both the conductors. Thus the 
conductors will be charged with the same sign. This 
is called as charging by conduction (through 
contact).
Electroscope

It is a simple apparatus with which the presence of 
electric charge on a body is 
detected (see figure). When 
metal knob is touched with a 
charged body, some charge is 
transferred to the gold leaves, 
which then diverges due to 
repulsion. The separation gives 
a rough idea of the amount of 
charge on the body. When a 
charged body brought near a 
charged electroscope, the 
leaves will further diverge, if the charge on body is 
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similar to that on electroscope and will usually 
converge if opposite. If the induction effect is strong 
enough leaves after converging may again diverge. 
Coulomb’s Law

If two stationary and point charges  and  1Q 2Q

are kept at a distance r, then it is found that force of 
attraction or repulsion between them is

  i.e., (k = Proportionality 2
21

r

QQ
F  2

21

r
QkQF 

constant)
In C.G.S. (for air )   Dyne ,1k

2
21

r
QQ

F 

In S.I. (for air)  2

2
9

0

-
109

4
1

C
mNk 



  Newton (1 Newton = 105 
2

21

0
.

4
1

r
QQ

F




Dyne)
Absolute permittivity of air or free space 0

     = . It’s 
2

2
121085.8

mN
C


  







m
Farad

Dimensional formula is ][ 2431 ATLM 

(1) Vector form of coulomb’s law : Vector 
form of Coulomb’s law is 

 where  is the unit ,ˆ.. 122
21

123
21

12 r
r
QQ

Kr
r
QQ

KF  12r̂

vector from first charge to second charge along the 
line joining the two charges.

(2) Effect of medium : When a dielectric medium 
is completely filled 
in between charges 
rearrangement of 
the charges inside 
the dielectric 
medium takes place 
and the force between the same two charges decreases 
by a factor of K (dielectric constant) 

i.e.    
K

FF air
medium 

2
21

0

.
4

1

r

QQ
K



(Here  = permittivity of medium)  rK 00

If a dielectric medium (dielectric constant K, 
thickness t) is 
partially filled 
between the 
charges then 
effective air 
separation between the charges becomes )( Kttr 

Hence force 
2

21

0 )(4
1

Kttr
QQ

F





(3) Principle of superposition : According to 
the principle of super position, total force acting on a 
given charge due to 
number of charges is the 
vector sum of the 
individual forces acting on 
that charge due to all the 
charges.

Consider number of charge , , …are 1Q 2Q 3Q

applying force on a charge Q
Net force on Q will be 

nnnet FFFFF  121 ....

The magnitude of the resultant of two electric 
forces is given by 

 cos2 21
2

2
2

1 FFFFFnet 

and 



cos

sin
tan

21

2

FF
F




For problem solving remember following 
standard results.
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Table 18.3 : Fundamental forces of nature
Force Nature and 

formula
Range Relative 

strength

Force of 
gravitation 
between two 
masses

Attractive F = 
Gm1m2/r2,  obey’s 
Newton’s third 
law of motion, it’s 
a conservative 
force

Long range 
(between planets 
and between 
electron and 
proton)

1

Electromagnet
ic force (for 
stationary and 
moving 
charges)

Attractive as well 
as repulsive, 
obey’s Newton’s 
third law of 
motion, it’s a 
conservative force

Long (upto few 
kelometers)

3710

Nuclear force 
(between  
nucleons)

Exact expression is 
not known till date.

Short (of the 
order of nuclear 
size 10–15 m)

1039

(strongest)

Weak force 
(for processes 
like  decay)

Formula not 
known

Short 
(upto 10–15m)

1024

Electrical Field
A positive charge or a negative charge is said to 

create its field around itself. Thus space around a 
charge in which another charged particle experiences 
a force is said to have electrical field in it.

(1) Electric field intensity : The electric field )(E


intensity at any point is defined as the force 
experienced by a unit positive charge placed at that 
point. 

0q
F  E





Where   so that presence of this charge 00 q

may not affect the source charge Q and its electric 
field is not changed, therefore expression for electric 

field intensity can be better written as 
0q

FE
0q




0
Lim




(2) Unit and Dimensional formula 
It’s S.I. unit –  

metercoulomb
Joule

meter
volt

coulomb
Newton




and C.G.S. unit – Dyne/stat coulomb. 
Dimension : [ ] =[ ]E 13  AMLT

(3) Direction of electric field : Electric field 
(intensity)  is a vector quantity. Electric field due E



to a positive charge is always away from the charge 
and that due to a negative charge is always towards 
the charge.

(4) Relation between electric force and electric 
field : In an electric field  a charge (Q) experiences E



a force . If charge is positive then force is EQF 

directed in the direction of field while if charge is 
negative force acts on it in the opposite direction of 
field 

(5) Super position of electric field (electric field 
at a point due to various charges) : The resultant 
electric field at any point is equal to the vector sum 
of electric fields at that point due to various charges 
i.e. ...321  EEEE



(6) Electric field due to continuous 
distribution of charge : A system of closely spaced 
electric charges forms a continuous charge 
distribution. To find the field of a continuous charge 
distribution, we divide the charge into infinitesimal 
charge elements. Each infinitesimal charge element 
is then considered, as a point charge and electric 
field  is determined due to this charge at given dE
point. The Net field at the given point is the 
summation of fields of all the elements. i.e.,  

. dEE

Electric Potential
(1) Definition : Potential at a point in a field is 

defined as the amount of work done in bringing a 
unit positive test charge, from infinity to that point 
along any arbitrary path (infinity is point of zero 
potential). Electric potential is a scalar quantity, it is 
denoted by V;      

0q
WV 

(2) Unit and dimensional formula 

S. I. unit :  volt
Coulomb

Joule


q0

E
q0

E
+
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C.G.S. unit : Stat volt (e.s.u.); 1 volt  Stat 
300

1


volt 
Dimension : ][][ 132  ATMLV

(3) Types of electric potential : According to 
the nature of charge potential is of two types

(i) Positive potential : Due to positive charge.    
(ii) Negative potential : Due to negative charge.
(4) Potential of a system of point charges : 

Consider P is a point at which net electric potential 
is to be determined due to several charges. So net 
potential at P 

 
...

4

4

3

3

2

2

1

1 



r
Qk

r
Qk

r
Qk

r
QkV

In general 



X

i i

i

r
kQV

1

(5) Electric potential due to a continuous 
charge distribution : The potential due to a 
continuous charge distribution is the sum of 
potentials of all the infinitesimal charge elements in 
which the distribution may be divided i.e.,

   
r

dQdVV
04

,

(6) Graphical representation of potential : As 
we move on the line joining two charges then 
variation of potential with distance is shown below

(7) Potential difference : In an electric field 
potential difference between two points A and B is 
defined as equal to the amount of work done (by 
external agent) in moving a unit positive charge from 
point A to point B  i.e.,  

0q
WVV AB 

Electric Field and Potential Due to Various 
Charge Distribution

(1) Point charge : Electric field and potential at 
point P due to a point charge Q is 

  ,   r
r
QkE ˆor

2




2r
QkE 










04
1
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k
r
QkV 

Graph 

(2) Line charge: Electric field and potential due 
to a charged straight conducting wire of length l and 
charge density   
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(i) If point P lies at perpendicular bisector of 
wire i.e.  = ;   and Ey = 0
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2

r
kEx 

(ii) If wire is infinitely long i.e. l   so  =  = 
;  and Ey = 0   and 
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(iii) If point P lies near one end of infinitely long 
wire i.e.   = 0, and 
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(3) Charged circular ring : Suppose we have a 
charged circular ring of radius 
R and charge Q. On it’s axis 
electric field and potential is 
to be determined, at a point 
‘x’ distance away from the 
centre of the ring.

At point P 

,
)( 2/322 Rx

xQkE



22 Rx

QkV




At centre x = 0 so Ecentre = 0 and 
R

kQVcentre 

At a point on the axis such that x >> R  , 
2x

kQE 

x
kQV 

If  ,  and  
2

Rx 
2

0
max

36 a
QE



0

max
62 
QV 

Graph

(4) Some more results of line charge : If a thin 
plastic rod having charge density  is bent in the 
following shapes then electric field at P in different 
situations shown in the following table

Table 18.4 : Bending of charged rod

                         


sin
2

r
kE 

                        


cos
2

r
kE 

                                                     

r
kE 2

 r
kE 2



r
kE 2

 0E

(5) Charged cylinder 

(i) Non-conducting 
uniformly charged 
cylinder

(ii) Conducting 
charged cylinder

If point of observation (P) lies outside the 
cylinder then for both type of cylindrical charge 
distribution , and 

r
Eout

02


 crV eout 


 log
2 0



If point of observation lies at surface i.e. r = R so 
for both cylinder  and 

R
Esuface

02




cRV esurface 


 log
2 0



If point of observation lies inside the cylinder then 
for conducting cylinder  and for non-conducting 0inE
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0

in 2 R
rE
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



Graph 

    

(6) Charged Conducting sphere (or shell of 
charge) : If charge on a conducting sphere of radius 
R is Q (and  = surface charge density) as shown in 

E

(A) For non-conducting cylinder

O

r
Eout

1


r = R

Ein  r

r
Ein=0

E

r

r
Eout

1


O

(B) For conducting cylinder

Fig. 18.29

x O

2

R


2

R x

E

Fig. 18.27

Fig. 18.26

+
+

+

+

+

+
+

+ +
+

+

+
+

+

+

+
++

+

+

P

E


R

E

r

r

r

++ +

+

+

+

++

+

+

+

+ + +

 

+

+

+

+

+

P

r

+

+

+

+

+

+

+

+

+

+

P

r

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Fig. 18.28
(A) (B)

++
+

+

+

45°
45°

E

r

++
+

+

+

+ +
+

+
+

+
+

+
+

+

E

r

++
+

+

+

+ +
+

+
+

E

90° 90°

r

+

+

+
+

+



E




r

++++++
+

+

+

+
+

+
+

+ + + + + +

r



Electrostatics 916

figure then electric field and potential in different 
situation are 

(i) Out side the sphere : If point P lies outside 
the sphere 

 and 
2

0

2

2
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.
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1
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QEout 


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
r

R
r
QVout

0

2

0
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4
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(Q =  A =   4 R2)
(ii) At the surface of sphere : At surface Rr 

So,  and 
0
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

R
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00
.

4
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

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R

R
QVs 

(iii) Inside the sphere : Inside the conducting 
charge sphere electric field is zero and potential 
remains constant every where and equals to the 
potential at the surface.

 and = constant 0inE inV sV

Graph 

(7) Uniformly charged non-conducting sphere 
: Suppose charge Q is uniformly distributed in the 
volume of a non-conducting sphare of radius R as 
shown below  

(i) Outside the sphere : If point P lies outside 
the sphere  
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If the sphere has uniform volume charge density 

3

3
4 R

Q


 

then  and 
2

0

3

3 r
REout 




r
RVout

0

3

3




(ii) At the surface of sphere : At surface Rr 

  and     
0

2
0 3

.
4

1




R

R
QEs 

0

2

0 3
.

4
1





R

R
QVs 

(iii) Inside the sphere : At a distance r from the 
centre

  
3

0
.

4
1

R
QrEin 


03

r
  rEin 

and 
0

22

3

22

0 6
)3(

2
]3[

4
1





rR

R
rRQVin







At centre   so, 0r sV
R
QV

2
3

.
4

1
2
3

0
centre 



i.e.,   outsurfacecentre VVV 

Graph 

(8) Infinite thin plane sheet of charge : 
Consider a thin infinite non-conducting plane sheet 
having uniform surface charge density is  . Electric 
field and potential near the sheet are as follows

)(
2 0

orEE 



and CrV 
02



(9) Electric field due to two thin infinite plane 
parallel sheet of charge : Consider two large, 
uniformly charged parallel. Plates A and B, having 
surface charge densities are  and  respectively. A B
Suppose net electric field at points P, Q and R is to 
be calculated.
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At P,  )(
2
1

)(
0

BABAP EEE 




At Q, )(
2
1)(

0
BABAQ EEE 




At R, )(
2
1

)(
0

BABAR EEE 




Special case 
(i) If A = B =  then EP = ER = /0 and Eq = 0
(ii) If A =  and B = –  then EP = ER = 0 and 

EQ  = /0 
(10) Hemispherical charged body 

At centre O,    
04


E

02
RV 

(11) Uniformly charged disc : At a distance x 
from centre O on it’s axis
















220
1

2 Rx

xE



 



  xRxV 22

02


If x  0,  i.e. for points situated near the 
02

–~

E

disc, it behaves as an infinite sheet of charge.
Potential Due to Concentric Spheres  

(1) If two concentric conducting shells of radii r1 
and r2(r2 > r1) carrying uniformly distributed charges 
Q1 and Q2 respectively. Potential at the surface of 
each shell

2

2

01

1

0
1 .

4
1

.
4

1
r
Q

r
QV




2

2

02

1

0
2 .

4
1

.
4

1
r
Q

r
QV




(2) The figure shows three conducting concentric 
shell of radii a, b and c (a < b < c) having charges 
Qa, Qb and Qc respectively 

Potential at A; 






 
c

Q
b

Q
a

QV cba
A

04
1


Potential at B; 






 
c

Q
b

Q
b

QV cba
B

04
1


Potential at C; 






 
c

Q
c

Q
c

QV cba
C

04
1


(3) The figure shows two concentric spheres 
having radii r1 and r2 respectively (r2 > r1). If charge 
on inner sphere is +Q and outer sphere is earthed 
then 

(i) Potential at the 
surface of outer sphere

0.
4

1
.

4
1

2020
2 

r
Q'

r
QV



 QQ' 

(ii) Potential of the inner sphere 

2010
1

)(
4

1
.

4
1

r
Q

r
QV 


 










210

11
4 rr

Q


(4) In the above case if outer sphere is given a 
charge +Q and inner sphere is earthed then

(i) In this case potential at the surface of inner 
sphere is zero, so if  is the charge induced on inner Q'

sphere

then 0
4

1

210
1 










r
Q

r
Q'V



i.e.,   Q
r
r

Q'
2

1

(Charge on inner sphere is less than that of the 
outer sphere.)

(ii) Potential at the surface of outer sphere
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Relation Between Electric Field and Potential 
(1) In an electric field rate of change of potential 

with distance is known as potential gradient.
(2) Potential gradient is a vector quantity and it’s 

direction is opposite to that of electric field.
(3) Potential gradient relates with electric field 

according to the following relation  This ;
dr
dVE 

relation gives another unit of electric field is .
meter
volt

(4) In the above relation negative sign indicates 
that in the direction of electric field potential 
decreases. 

(5) Negative of the slope of the V-r graph 
denotes intensity of electric field i.e. E

r
V

tan

(6) In space around a charge distribution we can 
also write  kEjEiEE zyx

ˆˆˆ 


where   and ,
x
VEx 




y
VEy 




z
VEz 




(7) With the help of formula potential ,
dr
dVE 

difference between any two points in an electric field 
can be determined by knowing the boundary 
conditions 

 
2

1

2

1

cos..
r

r

r

r
drEdrEdV 

Electric Lines of Force
(1) Definition : The electric field in a region is 

represented by continuous lines (also called lines of 
force). Field line is an imaginary line along which a 
positive test charge will move if left free.

(2) Properties of electric lines of force
(i) Electric field lines come out of positive 

charge and go into the negative charge.
(ii) Tangent to the field line at any point gives 

the direction of the field at that point.

(iii) Field lines never intersect each other.
(iv) Field lines are always normal to conducting 

surface.

(v) Field lines do not exist inside a conductor.
(vi) The electric field lines never form closed 

loops. (While magnetic lines of forces form closed 
loop)

(vii) The number of lines originating or 
terminating on a charge is proportional to the 
magnitude of charge i.e. |Q|  number of lines.  In 
the following figure |Q||Q| BA 

(ix) If the lines of forces are equidistant and 
parallel straight lines the field is uniform and if 
either lines of force are not equidistant or straight 

Fig. 18.44
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line or both the field will be non uniform, also the 
density of field lines is proportional to the strength of 
the electric field.

Equipotential Surface 
For a given charge distribution, locus of all 

points having same potential is called “equipotential 
surface” regarding equipotential surface following 
points should keep in mind :

(1) The density of the equipotential lines gives an 
idea about the magnitude of electric field. Higher the 
density larger the field strength. 

(2) The direction of electric field is perpendicular 
to the equipotential surfaces or lines. 

(3) The equipotential surfaces produced by a 
point charge or a spherically charge distribution are a 
family of concentric spheres.

(4) For a uniform electric field, the equipotential 
surfaces are a family of plane perpendicular to the 
field lines.

(5) A metallic surface of any shape is an 
equipotential surface.

(6) Equipotential surfaces can never cross each 
other 

(7) The work done in moving a charge along an 
equipotential surface is always zero.
Motion of Charge Particle in Electric Field

(1) When charged particle initially at rest is 
placed in the uniform field 

Suppose a charge particle having charge Q and 
mass m is initially at rest in an electric field of 
strength E. The particle will experience an electric 
force which causes it's motion. 

(i) Force and acceleration : The force 
experienced by the charged particle is . QEF 

Acceleration produced by this force is 

m
QE

m
Fa 

(ii) Velocity : Suppose at point A particle is at 
rest and in time t, it reaches the point B  where it's 
velocity becomes v. Also if V = Potential difference 
between A and B, S = Separation between A and B

    
m

QEtv 
m

VQ


2

(iii) Momentum : Momentum p = mv, 
  QEt

m
QEtmp 

or  VmQ
m

VQmp 


 2
2

(iv) Kinetic energy : Kinetic energy gained by 

the particle in time t is 
m

tEQ
m

QEtmmvK
22

1
2
1 2222

2 







or VQ
m
QVmK 

2
2
1

(v) Work done : According to work energy 
theorem we can say that gain in kinetic energy = 
work done in displacement of charge i.e. W = QV 

where V = Potential difference between the two 
position of charge Q. (  where  is cos. rErEV 

the angle between direction of electric field and 
direction of motion of charge).

If charge Q is given a displacement 
 in an electric field  )ˆˆˆ( 321 krjrirr  ).ˆˆˆ( 321 kEjEiEE 

The work done is .)().( 332211 rErErEQrEQW 

Work done in displacing a charge in an electric 
field is path independent. 

V = V2

V = V1

Spherical E.P.S.
For a point charge

V1 V2 V3 V4 V5

Equipotential 
surfaceV1 > V2 > V3 > V4 > V5

Fig. 18.47

E


A B
S

Fig. 18.48

WI = WII = WIIIA B
I

II

III
Fig. 18.49
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(2) When a charged particle enters with an 
initial velocity at right angle to the uniform field 

When charged particle enters perpendicularly in 
an electric field, it describe a parabolic path as 
shown

(i) Equation of trajectory : Throughout the 
motion particle has uniform velocity along x-axis 
and horizontal displacement (x) is given by the 
equation x = ut 

Since the motion of the particle is accelerated 
along y–axis

So ; this is the equation of 
2

2
1

















u
x

m
QEy

parabola which shows 2xy 

(ii) Velocity at any instant : At any instant t, 

 and  so uvx 
m

QEtvy  2

222
222||

m
tEQuvvvv yx 

If  is the angle made by v with x-axis than 

.
mu
QEt

v
v

x

y tan

Equilibrium of Charges
(1) Definition : A charge is said to be in 

equilibrium, if net force acting on it is zero. A 
system of charges is said to be in equilibrium if each 
charge is separately in equilibrium. 

(2) Type of equilibrium : Equilibrium can be 
divided in following type:

(i) Stable equilibrium : After displacing a 
charged particle from it's equilibrium position, if it 
returns back then it is said to be in stable 
equilibrium. If U is the potential energy then in case 

of stable equilibrium  is positive i.e., U is 
2

2

dx
Ud

minimum.

(ii) Unstable equilibrium : After displacing a 
charged particle from it's equilibrium position, if it 
never returns back then it is said to be in unstable 

equilibrium and in unstable equilibrium  is 
2

2

dx
Ud

negative i.e., U is maximum.
(iii) Neutral equilibrium : After displacing a 

charged particle from it's equilibrium position if it 
neither comes back, nor moves away but remains in 
the position in which it was kept it is said to be in 

neutral equilibrium and in neutral equilibrium  
2

2

dx
Ud

is zero i.e., U is constant
Table 18.5 : Different cases of equilibrium of 

charge
Suspended charge System of three collinear 

charge

Freely suspended charge
In equilibrium

            mgQE 

        
Q

mgE 

Suspension of charge from 
string

In equilibrium 

….(i)QET sin

….(ii)mgT cos

From equations (i) and (ii) 

    22 mgQET 

and 
mg
QE

tan

In the following figure three 
charges Q1, Q and Q2 are kept 
along a straight line, charge Q 
will be in equilibrium if and 
only if 
|Force applied by charge Q1|
= |Force applied by charge Q2 |

i.e. 
2
2

2
2
1

1

x
QQ

x
QQ



  

2

2

1

2

1










x
x

Q
Q

This is the necessary condition 
for Q to be in equilibrium.
If all the three charges (Q1, Q 
and Q2) are similar, Q will be in 
stable equilibrium.
If extreme charges are similar 
while charge Q is of different 
nature so Q will be in unstable 
equilibrium.

Time Period of Oscillation of a Charged Body
(1) Simple pendulum based : If a simple 

pendulum having length l and mass of bob m 
oscillates about it's mean position than it's time 

period of oscillation 
g
lT 2

l

O
Fig. 18.52
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u
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Fig. 18.50
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Case-1 : If some charge say +Q is given to bob 
and an electric field E is applied in the direction as 
shown in figure then equilibrium position of charged 
bob (point charge) changes from O to O.

On displacing the bob from it’s equilibrium 
position 0. It will oscillate under the effective 
acceleration g, where

 .  Hence    22 QEmgmg'   22 / mQEgg' 

the new time period is  
g'
l

T 21 

  2
1

22

2

QE/mg

l



 

Since >g, so T1 < T i.e. time period of pendulum g'

will decrease.
Case-2 : If electric field is applied in the 

downward direction then.
Effective acceleration

mQEgg' /

So new time period

 QE/mg
lT


 22

T2 < T 
Case-3 : In case 2 if electric field is applied in 

upward direction then, effective acceleration.
mQEgg' /

So new time period

 QE/mg
lT


 π23

T3 > T
(2) Charged circular ring : A thin stationary 

ring of radius R has a positive charge +Q unit. If a 
negative charge – q (mass m) is placed at a small 

distance x from the centre. Then motion of the 
particle will be simple harmonic motion.

Having time period  
qQ
mRT 0

34
2

π

(3) Spring mass system : A block of mass m 
containing a negative charge – Q is placed on a 
frictionless horizontal table and is connected to a 
wall through an unstretched spring of spring constant 
k as shown. If electric field E applied as shown in 
figure the block experiences an electric force, hence 
spring compress and 
block comes in new 
position. This is called 
the equilibrium position 
of block under the 
influence of electric 
field. If block compressed further or stretched, it 

execute oscillation having time period  . 
k
mT 2

Maximum compression in the spring due to electric 
field = 

k
QE

Neutral Point and Zero Potential
A neutral point is a point where resultant electrical 

field is zero. 
(1) Neutral point Due to a system of two like 

point charge : For  this case neutral point is 
obtained at an internal point along the line joining 
two like charges. 

If N is the neutral point at a distance  from  1x 1Q

and at a distance  from  then  12 xxx  2Q

At N  |E.F. due to Q1| = |E.F. due to Q2|

i.e.,    2
2
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
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Short Trick :  and 
1/ 12

1



QQ
xx

1/ 21
2




QQ
xx

(2) Neutral point due to a system of two unlike 
point charge : For this condition neutral point lies at 
an external point along the line joining two unlike 
charges. Suppose two unlike charge  and  1Q 2Q

separated by a distance x from each other.

Here neutral point lies outside the line joining two 
unlike charges and also it lies nearer to charge which is 
smaller in magnitude.

If  then neutral point will be obtained on 21 QQ 

the side of , suppose it is at a distance l from  so 1Q 1Q

 112 


/QQ
xl

(3) Zero potential due to a system of two point 
charge

(i) If both charges are like then resultant potential 
is not zero at any finite point.

(ii) If the charges are unequal and unlike then all 
such points where resultant potential is zero lies on a 
closed curve.

(iii) Along the line joining the two charge, two 
such points exist, one lies inside and one lies outside 
the charges on the line joining the charges. Both the 
above points lie nearer the smaller charge.

For internal point
(It is assumed that ).|||| 21 QQ 

At P,    1

2

1

1

xx
Q

x
Q




       112
1 


/QQ
xx

For External point 

At P,    1

2

1

1

xx
Q

x
Q




       112
1 


/QQ

xx

Electrostatic Potential Energy

(1) Work done in bringing the given charge from 
infinity to a point in the electric field is known as 
potential energy of the charge. Potential can also be 
written as potential energy per unit charge. i.e. 

.
Q
U

Q
WV 

(2) Potential energy of a system of two charge
Potential energy of Q1 = Potential energy of Q2 = 

potential energy of system 
r
QQkU 21

In C.G.S.  
r
QQU 21

(3) Potential energy of a system of n charge 

It is given by          



n

ji
ji ij

ji

r
QQkU

,2 









04
1


k

The factor of  is applied only with the 
2
1

summation sign because on expanding the 
summation each pair is counted twice. 

For a system of 3 charges 











13

31

23

32

12

21

r
QQ

r
QQ

r
QQkU

(4) Work energy relation : If a charge moves 
from one position to another position in an electric 
field so it’s potential energy change and work done 
by external force for this change is if UUW 

(5) Electron volt (eV) : It is the smallest 
practical unit of energy used in atomic and nuclear 
physics. As electron volt is defined as “the energy 
acquired by a particle having one quantum of charge 
(1e), when accelerated by 1volt” i.e. 

  = 1.6  10–12 erg 
C
JCeV 1

106.11 19   J19106.1 

(6) Electric potential energy of a uniformly 
charged sphere : Consider a uniformly charged 
sphere of radius R having a total charge Q. The 
electric potential energy of this sphere is equal to the 
work done in bringing the charges from infinity to 

assemble the sphere.   
R

QU
0

2

20
3




(7) Electric potential energy of a uniformly 

Fig. 18.59
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charged thin spherical shell : It is given by the 

following formula  
R

QU
0

2

8


(8) Energy density : The energy stored per unit 
volume around a point in an electric field is given by 

. If in place of vacuum some 2
02

1
Volume

EUUe 

medium is present then 2
02

1 EU re 

Force on a Charged Conductor 
To find force on a charged conductor (due to 

repulsion of like charges) imagine a small part XY to 
be cut and just separated from the rest of the 
conductor MLN. The field in the cavity due to the 
rest of the conductor is E2, while field due to small 
part is E1. Then

Inside the conductor  or 021  EEE 21 EE 

Outside the conductor 
0

21 


 EEE

Thus 
0

21 2


 EE

(1) To find force, imagine charged part XY 
(having charge  placed in the cavity MN having dA

field E2). Thus force  or . The 2)( EdAdF  dAdF
0

2

2




force per unit area or electrostatic pressure p = 

0

2

2



dA
dF

(2) The force is always outwards as  is 2)( 

positive i.e., whether charged positively or 
negatively, this force will try to expand the charged 
body. [A soap bubble or rubber balloon expands on 
charging to it (charge of any kind + or –)].
Equilibrium of Charged Soap Bubble

(1) For a charged soap bubble of radius R and 
surface tension T and charge density  The pressure .

due to surface tension  and atmospheric pressure 
R
T

4

 act radially inwards and the electrical pressure outP

 acts radially outward.)( elP

(2) The total pressure inside the soap bubble 

0

2

outin 2
4





R
TPP

(3) Excess pressure inside the charged soap 
bubble 

. 
0

2

excessoutin 2
4





R
TPPP

(4) If air pressure inside and outside are assumed 

equal then i.e., . So, outin PP  0excessP
0

2

2
4





R
T

(i) Charge density : Since  
0

2

2
4





R
T

kR
T

R
T


 28 0 

(ii) Radius of bubble 
2

08

 T

R 

(iii) Surface tension 
0

2

8
 RT 

(iv) Total charge on the bubble TRRQ 028 

(v) Electric field intensity at the surface of the 
bubble 

R
kT

R
TE 


328

0


(vi) Electric potential at the surface 

0

8
32


 RTRTkV 
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Electric Dipole 
System of two equal and opposite charges 

separated by a small fixed distance is called a dipole.

(1) Dipole moment : It is a vector quantity and 
is directed from negative charge to positive charge 
along the axis. It is denoted as  and is defined as p



the product of the magnitude of either of the charge 
and the dipole length  i.e.  )2( lqp




Its S.I. unit is coulomb-metre or Debye (1 Debye 
= 3.3 × 10–30 C  m) and its dimensions are 
M0L1T1A1.

(2) When a dielectric is placed in an electric 
field, its atoms or molecules are considered as tiny 
dipoles. 

Water (H2O), Chloroform (CHCl3), Ammonia 
(NH3), HCl, CO molecules are some example of 
permanent electric dipole.

(3) Electric field and potential due to an electric 
dipole : If a, e and g are three points on axial, 
equatorial and general position at a distance r from 
the centre of dipole 

(i) At axial point : Electric field and potential 
are given as 

 (directed from – q to +q)3
0

2
.

4
1

r
pEa 



.  Angle between  and  is 0o.
2

0
.

4
1

r
pVa 

 aE p

(ii) At equatorial point : (directed 3
0

.
4

1
r
pEe 



from +q to – q) and . Angle between  and  0eV eE p


is 180o. 
(iii) At general point :  )1cos3(.

4
1 2

3
0

 
 r

pEg

and . Angle between  and  is ( + 2
0

cos
.

4
1

r
pVg




 E p

) (where )  tan
2
1

tan 

(4) Dipole in an external electric field : When a 
dipole is kept in an uniform electric field. The net 
force experienced by the dipole is zero as shown in 
fig. 

The net torque experienced by the dipole is 
 sinpE

 Epτ 

Hence due to torque so produced, dipole align 
itself in the direction of electric field. This is the 
position of stable equilibrium of dipole.

(i) Work done in rotation : Suppose initially, 
dipole is kept in a uniform electric field at an angle 
1. Now to turn it through an angle 2 (with the field) 
Work done  . )cos(cos 21   pEW

+

+

–
–O2–

H+

H+

Fig. 18.67

Fig. 18.68
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If 1 = 0o and 2 =  i.e. initially dipole is kept 
along the field then it turn through  so work done 

)cos1(  pEW

(ii) Potential energy of dipole : It is defined as 
work done in rotating a dipole from a direction 
perpendicular to the field to the given direction, i.e. 
from above formula of work. 

If 1 = 90o and 2 =     W = cospEU 

      = 0o           = 90O         = 180o 
Stable equilibrium          Not in equilibrium     Unstable equilibrium
 = 0          max = pE          = 0
W = 0          W = pE         Wmax = 2pE 
Umin = – pE          U = 0         Umax = pE 

(iii) Equilibrium of dipole : When  = 0o i.e. 
dipole is placed along the electric field it is said to be 
in stable equilibrium, because after turning it through 
a small angle, dipole tries to align itself again in the 
direction of electric field.

When  = 180o i.e. dipole is placed opposite to 
electric field, it is said to be in unstable equilibrium.

(iv) Oscillation of dipole : In a uniform electric 
field if a dipole is slightly displaced from it’s stable 
equilibrium position it executes angular SHM having 
period of oscillation. 

  where I = moment of inertia of dipole 
pE
IT 2

about the axis passing through it’s centre and 
perpendicular to it’s length.

(5) Electric dipole in non-uniform electric 
field : In non-uniform electric field 0,0  netnetF 

Motion of the dipole is combination of 
translatory and rotatory motion

Table 18.6 : Dipole-dipole interaction

Relative position of dipole Force
Potential 
energy

 4
21

0

6
.

4
1

r
pp



(attractive)

3
21

0

2
.

4
1

r
pp



 
4

21

0

3
.

4
1

r
pp



(repulsive)

3
21

0

.
4

1
r
pp



 
4

21

0

3
.

4
1

r
pp



(perpendicular 
to r )

0

Electric Flux 
Electric flux is a measure of 'flow' of electric 

field through a surface. It is equal to the product of 
an area element and the perpendicular component of 

, integrated over a surface.E

(1) Flux of electric field  E

through any area  is defined A

as. 
            or           cos.AE

AE.

(2) In case of variable electric field or curved 
area.   dAE.

(3) It’s S.I. Unit is (Volt  m) or 
C
mN 2-

(4) For a closed body outward flux is taken to be 
positive while inward flux is taken to be negative.

p

E


p
E


p
E


r

+q+q

– q – q

p1


p2


+q

– q

p1


p2


+q– q

r
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r
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Gauss's Law and it's Application 
(1) According to this law, the total flux linked 

with a closed surface called Gaussian surface. (The 
surface need not be a real physical surface, it can 
also be an hypothetical one) is (1/o) times the 
charge enclosed by the closed surface i.e., 

 
s

enc
o

)(Q
ε

dAE 1

(2) Electric field in  is complete electric  dAE.

field. It may be partly due to charge with in the 
surface and partly due to charge outside the surface. 
However if there is no charge enclosed in the 
Gaussian surface, then .0.  dAE

(3) The electric field  is resulting from all E

charge, both those inside and those outside the 
Gaussian surface. 

(Keep in mind, the electric field due to a charge 
outside the Gaussian surface contributes zero net 
flux through the surface, Because as many lines due 
to that charge enter the surface as leave it).

Flux from surface S1 = , Flux from surface 
0

Q


S2 = , and flux from S3= flux from surface S4 = 0
0

Q


Application of Gauss's law : See flux 
emergence in the following cases 

(1) If a dipole is enclosed by a surface 
0encQ

 0

(2) The net charge Qenc is the algebraic sum of all 
the enclosed positive, and negative charges. If Qenc is 
positive the net flux is outward; if Qenc is negative, 
the net flux is inward.

)(
1

321
0

QQQ 




(3) If a closed body (not enclosing any charge) is 
placed in an electric field (either uniform or non-
uniform) total flux linked with it will be zero

 
(4) If a hemispherical body is placed in uniform 

electric field then flux linked with the curved surface 
calculated as follows

0 CircularCurved 

CircularCurved  

           )180cos( 2  RE 

           ER2

(5) If a hemispherical body is placed in non-
uniform electric field as shown below. then flux 
linked with the circular surface calculated as follows

 CurvedCircular  

 )0cos2( 2  RECircular 

            ER22

(6) If charge is kept at the centre of cube

+Q– Q

Fig. 18.75

Sphere

(A)  0T

Fig. 18.77

(B) in = out = Ea2  T = 0
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     ).(
1

0
Qtotal 

 
06

 Q
face 

         
08

 Q
corner 

012
 Q

edge 

(7) If charge is kept at the centre of a face : First 
we should enclosed the charge by assuming a 
Gaussian surface (an identical imaginary cube) 

Total flux emerges from the system (Two cubes) 

0
 Q

total 

Flux from given cube (i.e. from 5 face only) 
 

02
 Q

cube 

(8) If a charge is kept at the corner of a cube 

For enclosing the charge seven more cubes are 
required so total flux from the 8 cube system is T =

. Flux from given cube . Flux from one 
0

Q

08
 Q

cube 

face opposite to change, of the given cube 
 (Because only three faces are 

0

0

243
8/


 QQ

face 

seen).
(9) A long straight wire 

of charge density  
penetrates a hollow body 
as shown. The flux 
emerges from the body is

  =   (Length of the 
wire inside the body)

Capacitance

(1) Capacitance of a conductor : Charge given 
to a conductor increases it’s potential i.e.,    VQ 

CVQ 

Where C is a proportionality constant, called 
capacity or capacitance of conductor. Hence 
capacitance is the ability of conductor to hold the 
charge.

(2) It's S.I. unit is Farad (F)
Volt

Coulomb


Smaller S.I. units are mF, F, nF and pF (
, , , FmF 3101  FF 6101  FnF 9101 

)FFpF 121011  

(3) It's C.G.S. unit is Stat Farad 
.FaradStatF 111091 

(4) It's dimension : .][][ 2421 ATLMC 

(5) Capacity of a body is independent of charge 
given to the body or it’s potential raised and depends 
on shape and size only.

(6) Capacity of an isolated 
spherical conductor : When 
charge Q is given to a spherical 
conductor of radius R, then 
potential at the surface of sphere is 

  
R
QV

04
1


 R
V
Q

04

.RRπεC
90 109

1
4




If earth is assumed to be a conducting sphere 
having radius  It’s theoretical capacitance .6400 kmR 

. But for all practical purpose capacitance FC 711

of earth is taken infinity and its potential .0V

(7) Energy of a charged conductor : 
Electrostatic potential energy of a conductor carrying 

Fig. 18.84
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charge Q, capacitance C and potential V is given by  

C
QCVQVU
22

1
2
1 2

2 

Combination of Charged Drops 
Suppose we have n identical drops each having 

Radius – r, Capacitance – c, Charge – q, Potential – v 
and Energy – u.

If these drops are combined to form a big drop of 
Radius – R, Capacitance – C, Charge – Q, Potential – V 
and Energy – U then 

(1) Charge on big drop :  nqQ 

(2) Radius of big drop : Volume of big drop = n  
volume of a single drop i.e., ,  33

3
4

3
4 rnR   rnR /31

(3) Capacitance of big drop : cnC /31

(4) Potential of big drop :   
cn

nq
C
QV

3/1


 vnV /32

(5) Energy of big drop :  
        23/23/12 )()(

2
1

2
1 vncnCVU 

       unU /35

(6) Energy difference : Total energy of big drop 
is greater than the total energy all smaller drop. 
Hence energy difference 

U = U – nu 






  3/23/5
1

1
n

U
n

UnU

Redistribution of Charges and Loss of Energy
When two charged conductors joined together 

through a conducting wire, charge begins to flow 
from one conductor to another from higher potential 
to lower potential.

This flow of charge stops when they attain the 
same potential. 

Due to flow of charge, loss of energy also takes 
place in the form of heat through the connecting 
wire.

Suppose there are two spherical conductors of 
radii  and having charge  and  potential  1r ,2r 1Q ,2Q 1V

and energies  and  and capacitance  and ,2V 1U 2U 1C

 respectively.2C

If these two spheres are connected through a 
conducting wire, then alteration of charge, potential 
and energy takes place.

(1) New charge : According to the conservation 
of charge 

 (say), also  QQQQQ  '
2

'
121

2

1

2

1
'
2

'
1

r
r

C
C

Q
Q



            and similarly 










21

2
2 rr

rQQ '












21

1
1 rr

r
QQ '

(2) Common potential : Common potential 
       

capacityTotal 
chargeTotal 

)( V
21

'
2

'
1

21

21

CC
QQ

CC
QQ










 
21

2211

CC
VCVC






(3) Energy loss : The loss of energy due to 
redistribution of charge is given by 

2
21

21

21 )(
)(2

VV
CC

CCUUU fi 




Capacitor or Condenser 
(1) A capacitor is a device that stores electric 

energy. or A capacitor is a pair of two conductors of 
any shape, which are close to each other and have 
equal and opposite charge.

(2) The capacitance of a 
capacitor is defined as the 
magnitude of the charge Q 
on the positive plate divided 
by the magnitude of the 
potential difference V 
between the plates i.e.,  

 
V
QC 

(3) A capacitor get’s charged when a battery is 
connected across the plates. Once capacitor get’s 
fully charged, flow of charge carriers stops in the 

Fig. 18.85
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circuit and in this condition potential difference 
across the plates of capacitor is same as the potential 
difference across the terminals of battery.

(4) Net charge on a capacitor is always zero, but 
when we speak of the charge Q on a capacitor, we 
are referring to the magnitude of the charge on each 
plate. 

(5) Energy stored : When a capacitor is 
charged by a voltage source (say battery) it stores 
the electric energy. If C  = Capacitance of 
capacitor; Q = Charge on capacitor and V = 
Potential difference across capacitor then energy 
stored in capacitor  

C
QQVCVU
22

1
2
1 2

2 

In charging capacitor by battery half the energy 
supplied is stored in the capacitor and remaining half 
energy (1/2 QV) is lost in the form of heat.
Dielectric

Dielectrics are insulating (non-conducting) 
materials which transmits electric effect without 
conducting.

Dielectrics are of two types 
(1) Polar dielectrics : A polar molecule has 

permanent electric dipole moment  in the absence )(p


of electric field also. But a polar dielectric has net 
dipole moment zero in the absence of electric field 
because polar molecules are randomly oriented as 
shown in figure.

In the presence of electric field polar molecules 
tends to line up in the direction of electric field, and 
the substance has finite dipole moment e.g. water, 
Alcohol, , , HCl etc. are made of polar 2CO 3NH

atoms/molecules.

(2) Non polar dielectric : In non-polar 
molecules, Each molecule has zero dipole moment in 
its normal state.

When electric field is applied, molecules 
becomes induced electric dipole e.g. , , 2N 2O

Benzene, Methane etc. are made of non-polar 
atoms/molecules

In general, any non-conducting, material can be 
called as a dielectric but broadly non conducting 
material having non polar molecules referred to as 
dielectric. 

(3) Polarization of a dielectric slab : It is the 
process of inducing equal and opposite charges on 
the two faces of the dielectric on the application of 
electric field.

(i) Electric field between the plates in the 
presence of dielectric medium is  where E = iEEE '

Main field, E' = Induced field.
(ii) Dielectric constant of dielectric medium is 

defined as :

      K
E
E


medium  with plates the betweenfieldElectric 

air  with plates the betweenfieldElectric 
'

(iii) K is also known as relative permittivity  )( r

of the material or SIC (Specific Inductive 
Capacitance)

(4) Dielectric breakdown and dielectric 
strength : If a very high electric field is created in a 
dielectric,. The dielectric then behaves like a 
conductor. This phenomenon is known as dielectric 
breakdown.

The maximum value of electric field (or 
potential gradient) that a dielectric material can 
tolerate without it’s electric breakdown is called it’s 
dielectric strength.
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S.I. unit of dielectric strength of a material is  
m
V

but practical unit is .
mm
kV

Capacity of Various Capacitor 
(1) Parallel plate capacitor : It consists of two 

parallel metallic plates (may be circular, rectangular, 
square) separated by a small distance. If A = 
Effective overlapping area of each plate.

(i) Electric field between the plates : 
00 


A
QE 

(ii) Potential difference between the plates : 

0
 ddEV 

(iii) Capacitance : .  In C.G.S. : 
d
AC 0


d

AC
4



(iv) If a dielectric medium of dielectric constant 
K is filled completely between the plates then 
capacitance increases by K times i.e.    

d
AK

C 0'




KCC '

(v) The capacitance of parallel plate capacitor 

depends on A (C  A) and d . It does not 






 
d

C 1

depend on the charge on the plates or the potential 
difference between the plates. 

(vi) If a dielectric slab is partially filled between 
the plates 

    
K
ttd

A
C


 0'



(vii) If a number of dielectric slabs are inserted 
between the plate as shown 













................)(

'

3

3

2

2

1

1
321

0

K
t

K
t

K
ttttd

AC 

(viii) When a metallic slab is inserted between 
the plates

)(
' 0

td
A

C





If metallic slab fills the 
complete space between the 
plates (i.e. t = d) or both 
plates are joined through a 
metallic wire then 
capacitance becomes 
infinite.

(ix) Force between the plates of a parallel plate 
capacitor.

  
d

CV
A

QAF
222

||
2

0

2

0

2






(x) Energy density between the plates of a parallel 
plate capacitor.

Energy density 
Volume
Energy

 .
2
1 2

0E

Table 18.7 : Variation of different variable (Q, C, 
V, E and U) of parallel plate capacitor

Quantity Battery is Removed Battery Remains 
connected

Capacity C = KC C = KC

Charge Q = Q Q = KQ

Potential V = V/K V = V

Intensity E = E/K E = E 

Energy U = U/K U' = KU 

(2) Spherical capacitor : It consists of two 
concentric conducting spheres of radii a and b (a < 
b). Inner sphere is given charge +Q, while outer 
sphere is earthed

Fig. 18.90
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(i) Potential difference : Between the spheres is 

b
Q

a
QV

00 44 


(ii) Capacitance : .
ab

abC


 .4 0

In C.G.S. . In the presence of dielectric 
ab

abC




medium (dielectric constant K) between the spheres 

ab
abKC


 04' 

(iii) If outer sphere is given a charge +Q while 
inner sphere is earthed

Induced charge on the inner sphere
 and capacitance of Q

b
aQ .' 

the system 
ab

bC



2

0 .4' 

This arrangement is not a capacitor. But it’s 
capacitance is equivalent to the sum of capacitance 
of spherical capacitor and spherical conductor i.e. 

b
ab

ab
ab

b
00

2

0 44.4  





(3) Cylindrical capacitor : It consists of two 
concentric cylinders of radii a and b (a < b), inner 
cylinder is given charge +Q while outer cylinder is 
earthed. Common length of the cylinders is l then 

 










a
b
l

C

elog

2 0

Grouping of Capacitor
(1) Series grouping 
(i) Charge on each capacitor remains same and 

equals to the main charge supplied by the battery but 
potential difference distributes  i.e. V = V1 + V2 + V3 

(ii) Equivalent capacitance
  or 

321

1111
CCCCeq

 11
3

1
2

1
1 )(   CCCCeq

(iii) In series combination potential difference 
and energy distributes in the reverse ratio of 
capacitance i.e., 

 and .
C

V 1


C
U 1



(iv) If two capacitors having capacitances C1 and 
C2 are connected in series then 

Addition
tionMultiplica





21

21

CC
CCCeq

   and V
CC

CV .
21

2
1 










 V
CC

CV .
21

1
2 












(v) If n identical capacitors each having 
capacitances C are connected in series with supply 
voltage V then Equivalent capacitance  and 

n
CCeq 

Potential difference across each capacitor .
n
VV '

(vi) If n identical plates are arranged as shown 
below, they constitute (n – 1) capacitors in series. If 
each capacitors having capacitance  then  

d
A0

dn
ACeq )1(

0






In this situation except two extreme plates each 
plate is common to adjacent capacitors.

(2) Parallel grouping 
(i) Potential difference across each capacitor 

remains same and equal to the applied potential 
difference but charge distributes i.e. Q = Q1 + Q2 + 
Q3 

(ii) Ceq = C1 + C2 + C3 
(iii) In parallel combination charge and energy 

distributes in the ratio of capacitance i.e. Q  C and 
U  C
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(iv) If two capacitors having capacitance C1 and 
C2 respectively are connected in parallel then 

 21 CCCeq 

 and  Q
CC

CQ .
21

1
1 










 Q

CC
CQ .

21

2
2 












(v) If n identical capacitors are connected in 
parallel

Equivalent capacitance  and Charge on nCCeq 

each capacitor 
n
QQ '

If n identical plates are arranged such that even 
numbered of plates are connected together and odd 
numbered plates are connected together, then (n – 1) 
capacitors will be formed and they will be in parallel 
grouping. 

Equivalent capacitance CnC )1(' 

where C = capacitance of a capacitor 
d
A0

Charging and Discharging of Capacitor in Series 
RC Circuit 

As shown in the following figure (A) when 
switch S is closed, capacitor start charging. In this 
transient state potential difference appears across 
capacitor as well as resistor. When capacitor gets 
fully charged the entire potential difference appeared 
across the capacitor and nothing is left for the 
resistor. [Shown in figure (B)]

(i) Charging : In transient state of charging 

charge on the capacitor at any instant  
















RC

t

eQQ 10

and potential difference across the capacitor at any 

instant  
















RC

t

eVV 10

(Here Q and V are the instantaneous values of 
charge and potential difference while maximum 
charge on capacitor is  )

00 CVQ 

(ii) Discharging : After the completion of 
charging, if battery is removed capacitor starts 
discharging. In transient state charge on the capacitor 
at any instant  and potential difference RCteQQ /

0


cross the capacitor at any instant .CRteVV /
0



(iii) Time constant () : The quantity RC is 
called the time constant as it has the dimension of 
time during charging if , RCt  

= 63% of Q0 ( )  or  0
1

0 63.0)1( QeQQ   37.0
1


e

during discharging it is defined as the time during 
which charge on a capacitor falls to 0.37 times 
(37%) of the initial charge on the capacitor.
Kirchhoff’s Law for Capacitor Circuits

According to Kirchhoff’s junction law    0q

and Kirchhoff’s second law (Loop law) states that in 
a close loop of an electric circuit 0V

Use following sign convention while solving the 
problems.
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When an arrangement of capacitors cannot be 
simplified by the method of successive reduction, 
then we need to apply the Kirchhoff’s laws to solve 
the circuit.

 After earthing a positively charged conductor 
electrons flow from earth to conductor and if a 
negatively charged conductor is earthed then 
electrons flows from conductor to earth.

 When a charged spherical conductor placed 
inside a hollow insulated conductor and connected 
through a fine conducting wire the charge will be 
completely transferred from the inner conductor to 
the outer conductor.

 Lightening-rod arrestors are made up of 
conductors with one of their ends earthed while 
the other sharp, and protects a building from 
lightening either by neutralising or conducting the 
charge of the cloud to the ground.
 With rise in temperature dielectric constant of 
liquid decreases.

 If X-rays are incident on a charged 
electroscope, due to ionisation of air by X-rays the 
electroscope will get discharged and hence its 
leaves will collapse. However, if the electroscope 
is evacuated. X-rays will cause photoelectric effect 
with gold and so the leaves will further diverge if 
it is positively charged (or uncharged) and will 
converge if it is negatively charged.

 Two point charges separated by a distance r in 
vacuum and a force F acting between them. After 
filling a dielectric medium having dielectric 
constant K completely between the charges, force 
between them decreases. To maintain the force as 
before separation between them has to be changed 
to . This distance known as effective air Kr

separation.

 No point charge produces electric field at it’s 
own position.

 The electric field on the surface of a conductor 
is directly proportional to the surface charge density 
at that point i.e, E

 Two charged spheres having radii  and , 1r 2r

charge densities  and  respectively, then the 1 2

ratio of electric field on their surfaces will be 

          2
1

2
2

2

1

2

1

r
r

E
E











  24 r

Q




 In air, if intensity of electric field exceeds the 
value , air ionizes. CN/103 6

 A small ball is suspended in a uniform electric 
field with the help of an insulated thread. If a high 
energy X–ray beam falls on the ball, X-rays knock 
out electrons from the ball so the ball is positively 
charged and therefore the ball is deflected in the 
direction of electric field.

 Electric field is always directed from higher 
potential to lower potential.

 A positive charge if left free in electric field 
always moves from higher potential to lower 
potential while a negative charge moves from 
lower potential to higher potential.

–
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–
– –

–
– –

e–+
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+
+ +

+
+ +
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+Q

F= QE
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 An electric potential can exist at a point in a 
region where the electric field is zero and it’s vice 
versa.

 It is a common misconception that the path 
traced by a positive test charge is a field line but 
actually the path traced by a unit positive test 
charge represents a field line only when it moves 
along a straight line.

 An electric field is completely characterized by 
two physical quantities Potential and Intensity. 
Force characteristic of the field is intensity and 
work characteristic of the field is potential.

 For a short dipole, electric field intensity at a 
point on the axial line is double the electric field 
intensity at a point on the equatorial line of electric 
dipole i.e. Eaxial = 2Eequatorial 

 It is interesting to note that dipole field  
3

1
r

E 

decreases much rapidly as compared to the field of 

a point charge .1
2 





 

r
E

 Franklin (i.e., e.s.u. of charge) is the smallest 
unit of charge while faraday is largest (1 Faraday 
= 96500 C).

 The e.s.u. of charge is also called stat coulomb 
or Franklin (Fr) and is related to e.m.u. of charge 

through the relation  10103
chargeof  esu
chargeof  emu



 Recently it has been discovered that 
elementary particles such as proton or neutron are 
composed of quarks having charge e and  3/1

e. However, as quarks do not exist in free  3/2

state, the quanta of charge is still e.

 Inducting body neither gains nor loses charge.

 Dielectric constant of an insulator can not be  

 For metals in electrostatics K =  and so 
 i.e. in metals induced charge is equal and ;QQ' 

opposite to inducing charge.

 A truck carrying explosives has a metal chain 
touching the ground, to conduct away the charge 
produced by friction.

 Coulombs law is valid at a distance greater 
than .10 15m

 Ratio of gravitational force and electrostatic 
force between (i) Two electrons is 10–43/1. (ii) 
Two protons is 10–36/1 
(iii) One proton and one electron 10–39/1. 

 Decreasing order to fundamental forces 
nalGravitatioWeakneticElectromagNuclear FFFF 

 At the centre of the line joining two equal and 
opposite charge V = 0 but E  0.

 At the centre of the line joining two equal and 
similar charge .0,0  EV

 Electric field intensity and electric potential 
due to a point charge q, at a distance t1 + t2 where 
t1 is thickness  of medium of dielectric constant K1 
and t2 is thickness of medium of dielectric constant 
K2 are :

; 
2

2210 )(4
1

KtKt
QE

1 


πε )22104
1

KtK(t
QV

1 


πε

 If an electron (charge e and mass m) is moving 
on a circular path of radius r about a positively 
charge infinitely long linear charge, (charge 
density ) then the velocity of electron in dynamic 

equilibrium will be .
m

ev
02




 A metal plate is charged uniformly with a 
surface charge density . An electron of energy W 
is fired towards the charged metal plate from a 
distance d, then for no collision of electron with 

plate 



e
Wd 0

 It is a very common misconception that a 
capacitor stores charge but actually a capacitor 
stores electric energy in the electrostatic field 
between the plates. 
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 Two plates of unequal area can also form a 
capacitor, but effective overlapping area is 
considered.

 Capacitance of a parallel plate capacitor 
doesn't depends upon the charge given, potential 
raised or nature of metals and thickness of plates.

 The distance between the plates is kept small 
to avoid fringing or edge effect (non-uniformity of 
the field) at the boundaries of the plates.

 Spherical conductor is equivalent to a spherical 
capacitor with it’s outer sphere of infinite radius.

 A spherical capacitor behaves as a parallel 
plate capacitor if it’s spherical surfaces have large 
radii and are close to each other.

 The intensity of electric field between the plates 
of a parallel plate capacitor (E = /0) does not 
depend upon the distance between them. 

 The plates of a parallel plate capacitor are 
being moved away with some velocity. If the plate 
separation at any instant of time is ‘d’ then the rate 
of change of capacitance with time is proportional 

to . 
2

1
d

 Radial and non-uniform electric field exists 
between the spherical surfaces of spherical 
capacitor.

 Two large conducting plates X and Y kept 
close to each other. The plate X is given a charge 

 while plate Y is given a charge , the 1Q )( 212 QQQ 

distribution of charge on the four faces a, b, c, d 
will be as shown in the following figure.

 When dielectric is partially filled between the 
plates of a parallel plate capacitor then it’s 
capacitance increases but potential difference 
decreases. To maintain the capacitance and 
potential difference of capacitor as before 
separation between the plates has to be increased 
say by . In such case'd

  
d't

tK




 In series combination equivalent capacitance is 
always lesser than that of either of the individual 
capacitors. In parallel combination, equivalent 
capacitance is always greater than the maximum 
capacitance of either capacitor in network.

 If n identical capacitors are connected in parallel 
which are charged to a potential V. If these are 
separated and connected in series then potential 
difference of combination will be nV.

 Two capacitors of capacitances C1 and C2 are 
charged to potential of V1 and V2 respectively. 
After disconnecting from batteries they are again 
connected to each other with reverse polarity i.e., 
positive plate of a capacitor connected to negative 
plate of other. Then common potential is given by 
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