

RK VISION ACADEMY

NEET | IIT – JEE | FOUNDATIONS

MATRIC PRACTICE PAPER (2024)

(Mathematics)

Grade: XII Chapter: Applications Of Vector Algebra	Marks: 40 marks Time: 90 minutes	
SECTION A	(10x1=10)	
Choose the correct option.	, , , , , , , , , , , , , , , , , , ,	

Choose	tne	correct	option.	

1. l	Distance from the	origin to the plane 3x	x-6y+2z+7=0 is	
((a) 2	(b) 0	(c) 3	(d) 1

2. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to (a) 1 (d) -1

3. The angle between the lines $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$ and $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{4}$

4. If the vectors $2\hat{\imath}-\hat{\jmath}+3\hat{k}$; $3\hat{\imath}+2\hat{\jmath}+\hat{k}$; $\hat{\imath}+m\hat{\jmath}+4\hat{k}$ are coplanar, then the value of m is

(c) -2(a) 2 (b) 3 (d) -3

5. The shortest distance between two given straight lines $\vec{r} = (2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}) + t(-1)$ $2\hat{i} + \hat{j} - 2\hat{k}) \text{ and } \frac{x-3}{2} = \frac{y}{-1} = \frac{z+2}{2} \text{ is}$ $(a) \frac{365}{2} \qquad (b) \frac{\sqrt{365}}{3}$

(d) $\frac{365}{\sqrt{3}}$

6. If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x+3y-\alpha z+\beta=0$, then (α,β) is (a) (-5,5) (b) (-6,7) (c) (5,-5) (d) (6,-7)

7. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then (b) $c = \pm \sqrt{3}$ (a) $c = \pm 3$ (c) c > 0(d) 0 < c < 1

8. If the direction of the point (1,1,1) from the origin is half of its distance from the plane x+y+z+k=0, then the values of k are

(c) -3.9(d) 3.-9 $(a) \pm 3$ (b) ± 6

1 | Page

- 9. If the length of the perpendicular from the origin to the plane $2x+3y+\lambda z=1$, $\lambda>0$ is $\frac{1}{5}$, then the value of λ is
- (a) $2\sqrt{3}$
- (b) $3\sqrt{2}$
- (c) 0
- (d) 1
- 10. The angle between the line $\vec{r} = (\hat{\imath}+2\hat{\jmath}-3\hat{k}) + t(2\hat{\imath}+\hat{\jmath}-2\hat{k})$ and the plane $\vec{r} \cdot (\hat{\imath}+\hat{\jmath}) + 4 = 0$ is
 - (a) 0°
- (b) 30°
- (c) 45°
- (d) 90°

SECTION B

(3x2=6)

Answer the following.

- 11. Find the angle between the planes \vec{r} . $(\hat{\imath}+\hat{\jmath}-2\hat{k})=3$ and 2x-2y+z=2.
- 12. Show that the vectors $\hat{i}+2\hat{j}-3\hat{k}$; $2\hat{i}-\hat{j}+2\hat{k}$; $3\hat{i}+\hat{j}-\hat{k}$ are coplanar.
- 13. Verify whether the line $\frac{x-3}{-4} = \frac{y-4}{-7} = \frac{z+3}{12}$ lies in the plane 5x-y+z=8.

SECTION C

(3x3=9)

Answer the following.

- 14. If \vec{a} , \vec{b} , \vec{c} are three vectors, prove that $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}]$.
- 15. With usual notation, in any triangle ABC, prove by vector method that $\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$.
- 16.Prove by vector method that the area of the quadrilateral ABCD having diagonal AC and BD is $\frac{1}{2}|\overrightarrow{AC} \times \overrightarrow{BD}|$.

SECTION D

(3x5=15)

Answer the following.

- 17. Find the non-parametric form of vector and cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$.
- 18. Find the vector equation and cartesian equation of a plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x+6y+6z=9.
- 19. Prove by vector method: sin(A+B) = sinAcosB + cosAsinB.