SET - I

RK VISION ACADEMY

NEET | IIT – JEE | FOUNDATIONS

MATRIC PRACTICE PAPER (2024)

(Mathematics)

Grade: XII Chapter: Applications Of Vector Algebra

Marks: 40 marks Time: 90 minutes

SECTION A

$$(10x1=10)$$

Choose the correct option.

- 1. The distance between the planes x+2y+3z+7=0 and 2x+4y+6x+7=0 is (a) $\frac{7}{2\sqrt{2}}$ (b) $\frac{\sqrt{7}}{2\sqrt{2}}$ (c) $\frac{7}{2}$ (d) $\frac{\sqrt{7}}{2}$
- 2. r = sî + tĵ is the equation of (s, t are parameters)
 (a) zox plane
 (b) a straight line joining the points î and ĵ
 (c)xoy plane
 (d) yoz plane
- 3. If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is (a) $|\vec{a}| \cdot |\vec{b}| \cdot |\vec{c}|$ (b) $\frac{1}{3} |\vec{a}| \cdot |\vec{b}| \cdot |\vec{c}|$ (c) 1 (d) -1
- 4. The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, z = 2 and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$
- 5. If the planes $\vec{r} \cdot (2\hat{\imath} \lambda\hat{\jmath} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{\imath} + \hat{\jmath} \mu\hat{k}) = 5$ are parallel, then the values of λ and μ are (a) $\frac{1}{2}$, -2 (b) $\frac{-1}{2}$, 2 (c) $\frac{-1}{2}$, -2 (d) $\frac{1}{2}$, 2
- 6. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$; $\vec{b} = \hat{\imath} + \hat{\jmath}$; $\vec{c} = \hat{\imath}$ and $(\vec{a}x\vec{b})x\vec{c} = \lambda\vec{a} + \mu\vec{b}$, then the value of $\lambda + \mu$ is (a) 0 (b) 1 (c) 6 (d) 3
- 7. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{1}{4}$, then the angle between \vec{a} and \vec{b} is
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$

1 | Page

Mail: <u>rkvisionkorattur@gmail.com</u>

- 8. If $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} \hat{k}$; $\vec{b} = \hat{\imath} + 2\hat{\jmath} 5\hat{k}$; $\vec{c} = 3\hat{\imath} + 5\hat{\jmath} \hat{k}$, then a vector perpendicular to \vec{a} and lies in the plane containing \vec{b} and \vec{c} is (a) $-17\hat{\imath} + 21\hat{\jmath} - 97\hat{k}$ (b) $17\hat{\imath} + 21\hat{\jmath} - 123\hat{k}$ (c) $-17\hat{\imath} - 21\hat{\jmath} + 97\hat{k}$ (d) $-17\hat{\imath} - 21\hat{\jmath} - 97\hat{k}$
- 9. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then (a) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ (b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$ (c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$ (d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$
- 10. The volume of the parallelopiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) π

SECTION B

Answer the following.

- 11. Find the magnitude and direction cosines of the tangent about the point (2,0,-1) of a force $2\hat{i} + \hat{j} \hat{k}$ whose line of action passes through the origin.
- 12. Find the vector equation of a plane which is at a distance of 7 units from the origin having 3, -4 and 5 as direction ratios of normal to it.
- 13.Show that the distance from the origin to the plane 3x+6y+2z+7=0 is 1.

SECTION C

- Answer the following.
- 14. Find the vector and cartesian equations of a straight line passing through the points (-5,7,-4) and (13,-5,2). Find the point where the straight line crosses the xy-plane.
- 15. Find the length of the perpendicular from the point (1,-2,3) to the plane x-y+z=5.
- 16. Find the angle made by the straight line $\frac{x+3}{2} = \frac{y-1}{2} = -z$ with coordinate axis.

SECTION D

Answer the following.

17. Using vector method, prove that $\cos(\alpha-\beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$.

Ph: 8248951556

(3x5=15)

(3x2=6)

(3x3=9)

- 18. Find the parametric form of a vector equation and cartesian equation of the plane containing the line $\vec{r} \cdot (\hat{i} \hat{j} + \widehat{3k}) + t(2\hat{i} \hat{j} + 4\hat{k})$ and perpendicular to the plane $\vec{r} \cdot (\hat{i} + 2\hat{j} + \widehat{4k}) = 8$.
- 19. If $\vec{a} = \hat{\imath} \hat{\jmath}$; $\vec{b} = \hat{\imath} \hat{\jmath} 4\hat{k}$; $\vec{c} = 3\hat{\jmath} \hat{k}$; $\vec{d} = 2\hat{\imath} + 5\hat{\jmath} + \hat{k}$, verify that $(\vec{a}\times\vec{b})\times(\vec{c}\times\vec{d}) = [\vec{a},\vec{b},\vec{d}]\vec{c} - [\vec{a},\vec{b},\vec{c}]\vec{d}$.