Ph: 8248951556

RK VISION ACADEMY

 $NEET \mid IIT - JEE \mid FOUNDATIONS$

MATRIC PRACTICE PAPER (2024)

Grade: XII Chapter: Applicati	(Mathema ons Of Differential Calcu		Marks: 40 marks Time: 90 minutes
SECTION A Choose the correct option.		(10x1=10)	
1. The maximum	n value of the function x^2	$e^{-2x}, x > 0$ is	
$(a)\frac{1}{e^2}$	(b) $\frac{1}{e}$	$(c)\frac{4}{e^4}$	$(d)\frac{1}{2e}$
2. The point of in (a) (1,0)	nflection of the curve y=((b) (0,0)	$(x-1)^3$ is (c) $(1,1)$	(d) (0,1)
3. Angle between $(a) \frac{\pi}{2}$	in the curves $y^2=x$ and $x^2=$ (b) $tan^{-1}(\frac{3}{4})$	•	(d) $\tan^{-1}(\frac{4}{3})$
the balloon let radian per sec	ft the ground. The rate of ond when the balloon is 3	change of the base 30m above the g	m away from the spot where alloon's angle of elevation in round is $(d) \frac{1}{3} \text{radian/sec}$
5. The function f	$E(x) = \frac{x}{logx}$ increases in the	e interval	
(a) $(1,\infty)$	(b) $(-1, \infty)$	$(c) (0,\infty)$	(d) none of the above
6. One of the clo (a) (2,0)	esest points on the curve (b) $(\sqrt{5},1)$		oint (6,0) is (d) $(\sqrt{13}, -\sqrt{3})$
			t time t seconds is given by ime t seconds is given by (d) 3.5
8. The number g (a) 1	iven by the Rolle's theorem (b) $\sqrt{2}$	em for the function $(c) \frac{3}{2}$	ion x^3-3x^2 , $x \in [0,3]$ is (d) 2

1 | Page

9. The point on the curve 6y=x³+2 at which y-coordinate changes 8 times as fast as x-coordinate is

(a)(4,11)

(b) (4,-11)

(c)(-4,11)

(d) (-4,-11)

10. The tangent to the curve y^2 -xy+9=0 is vertical when

(a) y=0

(b) $y=\pm\sqrt{3}$

(c) $y = \frac{1}{2}$

(d) $y=\pm 3$

SECTION B

(3x2=6)

Answer the following.

- 11.find the value in the interval $(\frac{1}{2}, 2)$ satisfied by the Rolle's theorem for the function $f(x) = x + \frac{1}{x}$, $x \in \left[\frac{1}{2}, 2\right]$.
- 12. Suppose f(x) is a differentiable function for all x with $f'(x) \le 29$ and f(2)=17. What is the maximum value of f(7)?
- 13.Evaluate: $\lim_{x\to 0} (\frac{sinmx}{x})$.

SECTION C

(3x3=9)

Answer the following.

- 14. Find the absolute extrema of the function $f(x) = 6x^{\frac{4}{3}} 3x^{\frac{1}{3}}$ on the closed interval [-1,1].
- 15. Find the asymptotes of the curve $f(x) = \frac{2x^2 8}{x^2 16}$.
- 16. Write the Maclaurin series expansion of the function $\tan^{-1} x$; $-1 \le x \le 1$.

SECTION D

(3x5=15)

Answer the following.

- 17. If the curves $ax^2+by^2=1$ and $cx^2+dy^2=1$ intersect each other orthogonally, then show that $\frac{1}{a} \frac{1}{b} = \frac{1}{c} \frac{1}{d}$.
- 18. Find intervals of concavity and points of inflexion for the function $f(x) = \frac{1}{2}(e^x e^{-x})$.

2 | Page

Mail: rkvisionkorattur@gmail.com

19	19.A police jeep approaching an orthogonal intersection from the northern direction, chasing a speeding car that has turned and moving straight east. When the jeep is 0.6km north of the intersection and the car is 0.8km to the east. The police determine with a radar that the distance between them and the car is increasing at 20km/hr. If the jeep is moving at 60km/hr at the instant of measurement, what is t speed of the car?			
3 Page				

Ph: 8248951556