	NEET	ION ACAL	JEIVI Y TION
ACADEM	CBSE	PRACTICE PAPER(2	2024)
		(Mathematics)	
Grade	: XII		Marks: 40
Chapter minutes	: VECTORS SET -2		Time: 90
	SE	CTION A	
The position vector the ratio 1 : 2 is	tor of the point which divides	the join of points with po	is it is a state of the state
$3\vec{a}+2\vec{b}$	(B) \vec{a}	$5\vec{a}-\vec{b}$	$4\vec{a} + \vec{b}$
(A) 3	(D) "	(C) <u>3</u>	(D) 3
The vector with i	initial point P $(2, -3, 5)$ and te	rminal point Q(3, –4, 7) i	S
$(A)^{\hat{i}-\hat{j}+2\hat{k}}$	(B) $\hat{5}i - \hat{j}_{+12}\hat{k}$	(C) $\hat{-}i_+\hat{j}2\hat{k}$	(D) None of these
The angle between π	en the vectors $\hat{i} - \hat{j}_{and} \hat{j} - \hat{k}_{-\pi}$	is 2π	5π
(A) $\overline{3}$	(B) 3	(C) 3	(D) 3
The value of λ for (A) 2	or which the two vectors $2\hat{i} - (B) 4$	$\hat{j} + 2\hat{k}_{\text{and }} \hat{j} + \hat{\lambda}\hat{j} + \hat{\lambda}\hat{j}$ (C) 6	- $\hat{k}_{are perpendicular is}$ (D) 8
The area of the p (A) $\sqrt{2}$	arallelogram whose adjacent s (B) $\sqrt{3}$	sides $\hat{i} + k_{\text{are and }} \hat{2i} + \hat{k}_{\text{c}}$	$\hat{j} + \hat{j} + 2\hat{k}_{is}$ (D) 4
The 2 vectors \hat{j} - length of the med	+ $\hat{k}_{and} \hat{3i} - \hat{j} + 4\hat{k}_{repres}$	ents the two sides AB an	d AC, respectively of a \triangle ABC. The
$(A) \frac{\sqrt{34}}{2}$	$(B)\frac{\sqrt{48}}{2}$	(C) $\sqrt{18}$	(D) None of these
The projection of	f vector $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}_{alor}$	$\lim_{i \to i} \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}_{is}$	_
$(A)^{\frac{2}{3}}$	$\frac{1}{(B)}\frac{1}{3}$	(C) 2	(D) √6
If a b and $\rho \rho$ are	e unit vectors, then what is the	angle between \vec{a} and \vec{b} for	or to $\sqrt{3\vec{a}-\vec{b}}$ be a unit vector?
(A) 30°	(B) 45°	(C) 60°	(D) 90°
The unit vector p	perpendicular to the vectors \hat{i}	$-\hat{j}_{and}\hat{i}+\hat{j}_{forming a r}$	ight handed system is
(A) k	(B) - k	$(C) \frac{\hat{i} - \hat{j}}{\sqrt{2}}$	$\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

P and $-1 \le k \le 2$, then $|\mathcal{K}\mathcal{U}|$ lies in the interval а -1

	(A) $[0, 6]$ (B) $[-3, 6]$ (C) $[3, 6]$ (D) $[1, 2]$				
	SECTION B				
('his section comprises of very short answer type-questions (VSA) of 2 marks each.)				
1	Find a unit vector in the direction of PQ , where P and Q have co-ordinates $(5, 0, 8)$ and $(3, 3, 2)$, respectively.				
1	Using vectors, find the value of k such that the points $(k, -10, 3)$, $(1, -1, 3)$ and $(3, 5, 3)$ are collinear.				
	A vector \vec{r} has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of \vec{r} , given that \vec{r} makes an acute angle with x-axis.				
	SECTION C				
	This section comprises of short answer type questions (SA) of 3 marks each)				
	Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}_{and} \hat{3i} + 4\hat{j} - \hat{k}$				
1	Using vectors, find the area of the triangle ABC with vertices $A(1, 2, 3)$, $B(2, -1, 4)$ and $C(4, 5, -1)$.				
1	Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.				
	SECTION D				
(his section comprises of long answer-type questions (LA) of 5 marks each)				
1	Find the position vector of a point C which divides the line segment joining A and B, whose position				
1	vectors are $2\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$, externally in the ratio 1 : 2. Also, show that A is the mid-point of the				
	line segment BC.				

 (\mathbf{D})

By computing shortest distance, determine whether the following pair of lines intersect or not $\vec{r} = (\hat{4}\hat{i}+\hat{5}\hat{j})+\lambda(\hat{i}+\hat{2}\hat{j}-\hat{3}\hat{k})$ and $\vec{r} = (\hat{i}-\hat{j}+\hat{2}\hat{k})+\mu(\hat{2}\hat{i}+\hat{4}\hat{j}-\hat{5}\hat{k})$. 18

19

 (\mathbf{D}) [1

Show that area of the parallelogram whose diagonals are given by \vec{a} and \vec{b} is $\frac{|\vec{a} \times \vec{b}|}{2}$. Also find the area of the parallelogram whose diagonals are $2i - \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} - \hat{k}$.