

coordinate.

5, 8) at right angles.

RK VISION ACADEMY

NEET | IIT – JEE | FOUNDATION

CBSE PRACTICE PAPER(2024)

(Mathematics)

Grade: XII marks Chapter: 3D GEOMENTRY-1 minutes				Marks: 40	
			Time: 90		
		SECT	TON A		
(Tł	nis section compris	ses of Multiple-choice qu	estions (MCQ) of 1	mark each.)	
1.	The coordinates of the $(A) (2, 0, 0)$	foot of the perpendicular drawn (B) $(0, 5, 0)$	from the point (2, 5, 7) on (C) (0, 0, 7)	the x-axis are given by (D) $(0, 5, 7)$	
2.	P is a point on the line (A) 2	segment joining the points (3, 2, (B) 1	-1) and (6, 2, -2). If x co-(C) -1	ordinate of P is 5, then its y co- (D) -2	
3.	If α , β , γ are the ang direction cosines of t (A) $\sin \alpha$, $\sin \beta$, $\sin \gamma$		e positive direction of x, (C) $\tan \alpha$, $\tan \beta$, $\tan \gamma$	y, z axis, respectively, then the (D) $\cos^2 \alpha$, $\cos^2 \beta$, $\cos^2 \gamma$	
4.	The equations of x-axis in space are				
	(A) $x = 0$, $y = 0$	(B) $x = 0, z = 0$	(C) x = 0	(D) $y = 0, z = 0$	
5.	Distance of the point (α, β, γ) from y-axis is				
	(A) β	(B) <i>β</i>	(C) $ \beta + \gamma $	(D) $\sqrt{\alpha^2 + \beta^2}$	
6.	If the directions cosin	nes of a line are k,k,k, then			
	(A) k>0	(B) 0 <k< td=""><td>(C) k=1</td><td>$\frac{1}{\sqrt{5}}$ $\frac{-1}{\sqrt{5}}$</td></k<>	(C) k=1	$\frac{1}{\sqrt{5}}$ $\frac{-1}{\sqrt{5}}$	
7.	The reflection of the	point (α, β, γ) in the xy– plane	is		
	(A) $(\alpha,\beta,0)$	(B) $(0,0,\gamma)$	(C) $(-\alpha, -\beta, \gamma)$	(D) $(\alpha,\beta,-\gamma)$	
8.	The plane $2x - 3y + \sqrt{3}$	$6z - 11 = 0$ makes an angle sin $\sqrt{2}$	2	value of α is equal to 3	
9.	(A) ² The area of the quadr	(B) ² rilateral ABCD, where A(0,4,	(C) $\overline{7}$ 1), B (2, 3, -1), C(4, 5, 0)	(D) $\frac{7}{7}$ and D (2, 6, 2), is equal to	
	(A) 9 sq. units	(B) 18 sq. units	(C) 27 sq. units	(D) 81 sq. units	
10	The locus represented	d by xy + yz = 0 is			
	(A) A pair of perpendicular lines	(B) A pair of parallel lines	(C) A pair of parallel planes	(D) A pair of perpendicular planes	
			TION B		
(1 1 11		ses of very short answer gle of 30°, 60°, 90° with the p		A) of 2 marks each.) z-axes, respectively, then find	
12		The x-coordinate of a point on the line joining the points Q $(2, 2, 1)$ and R $(5, 1, -2)$ is 4. Find its z-			

Find the equation of a plane which bisects perpendicularly the line joining the points A (2, 3, 4) and B (4,

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each)

- Find the vector equation of the line which is parallel to the vector $3\hat{i} 2\hat{j} + 6\hat{k}$ and which passes through the point (1,-2,3).
- Find the angle between the lines $\vec{r} = 3\hat{i} 2\hat{j} + 6\hat{k} + \lambda(2\hat{i} + \hat{j} + 2\hat{k})_{and} \vec{r} = 2\hat{j} 5\hat{k} + \lambda(6\hat{i} + 3\hat{j} + 2\hat{k})$ 5
- Find the coordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, -1, 0)

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

Find the foot of perpendicular from the point (2,3,-8) to the line $\frac{4-X}{2} = \frac{Y}{6} = \frac{1-Z}{3}$ Also, find the perpendicular distance from the given point to the line.

- Find the distance of a point (2,4,-1) from the line $\frac{X+5}{1} = \frac{Y+3}{4} = \frac{Z-5}{-9}$ 18
- Find the shortest distance between the lines given by $\vec{r} = (8 + 3\lambda)\hat{i} 2(9 + 16\lambda) + (10 + 7\lambda)\hat{k}$ and $\vec{r} = (15 + 3\mu)\hat{i} - 2(29 + 8\mu) + (5 - 5\mu)\hat{k}$