ACADEMY	CDCE		
	CBSE 1	PRACTICE PAPER(202	.4)
	r.	(Mathematics)	
Grade : XII marks	l		Marks: 40
Chapter: Re	lations & Functions Set-1	l	Time: 90
minutes	SECT	ΓΙΟΝ Α	
us section comprise	sec 1 es of Multiple-choice qu		ark each)
	v set consisting of children in a		
(A) symmetric but not transitive	(B) transitive but not symmetric	transitive	(D) both symmetric and transitive
Let $f: [0, 1] \to [0, 1]$ be	e defined by $f(x) = \begin{cases} x ; x \text{ is } \\ 1 - x ; s \text{ is } \end{cases}$	s irrational, Then (f o f) x is	
(A) constant	(B) 1 + x	(C) x	(D) none of these
The maximum numbe	er of equivalence relations on	the set $A = \{1, 2, 3\}$ are	
(A) 1	(B) 2	(C) 3	(D) 5
Let $f: [2, \infty) \to R$ be (A) R	the function defined by $f(x)$ (B) [1, ∞)	= $x^{2} - 4x + 5$, then the range (C) [4, ∞)	ge of f is (D) [5, ∞)
Let us define a relatio	n R in R as aRb if $a \ge b$. The	en R is	
(A) an equivalence relation	(B) reflexive, transitive but not symmetric	(C) symmetric, transitive but not reflexive	(D) neither transitive nor reflexive
	_	$\frac{x-1}{2}$	
	function defined by $f(x) = 3$	2 and $g: Q \to R$ be and	other function defined by g
(A) 2	(B) 1	(C) 72	(D) none of these
The identity element	for the binary operation * det	fined on $Q \sim \{0\}$ as a * b =	2 ab \forall a, b \in Q \sim {0} is
(A) 1	(B) 0	(C) 2	(D) none of these
Let $f : R \rightarrow R$ be define	d by f(x)= $\begin{cases} 2x ; x > 3 \\ x^2 ; 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$ Ther	1	
f(-1) + f(2) + f(4) is			
(A) 9	(B) 14	(C) 5	(D) none of these
Let $A = \{1, 2, 3,, n\}$	and $B = \{a, b\}$. Then the number of the second se		
(A) ${}^{n}P_{2}$	(B) $2^n - 2$	(C) $2^n - 1$	(D) None of these
Let $f : R \to R$ be given	by $f(x) = \tan x$. Then $f^{-1}(1)$ is		
(A) 4 π	(B) $\{n \pi + 4 \pi : n \in Z\}$	(C) does not exist	(D) none of these

SECTION B

This section comprises of very short answer type-questions (VSA) of 2 marks each.)

- Let $A = \{a, b, c\}$ and the relation R be defined on A as follows: $R = \{(a, a), (b, c), (a, b)\}$. Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.
- Let f, g : R \rightarrow R be defined by f (x) = 2x + 1 and g (x) = x² 2, $\forall x \in \mathbb{R}$, respectively. Then, find g o f.
- 13 Let $f: R \to R$ be the function defined by $f(x) = 2x 3 \forall x \in R$. write f^{-1}

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each)

- Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in A ×A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A ×A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)].
- 15 Functions f, g: R \rightarrow R are defined, respectively, by $f(x) = x^2 + 3x + 1$, g(x) = 2x 3, find (i) f o g (ii) g o f(ii) f o f
- 16 Using the definition, prove that the function $f: A \rightarrow B$ is invertible if and only if f is both one-one and onto.

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

- If $A = \{1, 2, 3, 4\}$, define relations on A which have properties of being:(a) reflexive, transitive but not symmetric(b) symmetric but neither reflexive nor transitive(c) reflexive, symmetric and transitive.
- Let $A = R \{3\}$, $B = R \{1\}$. Let $f : A \rightarrow B$ be defined by $f(x) = x 2/x 3 \forall x \in A$. Then show that f is bijective.
- 19 An organization conducted bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race. Ravi decides to explore these sets for various types of relations and functions Ravi wishes to form all the relations possible from B to G.

1. How many such relations are possible?

a. 2 6 b. 2 5 c. 0 d. 2 3

2. Let R: B \rightarrow B be defined by R = {(*x*, *y*): *x* and *y* are students of same sex}, Then this relation R is

a. Equivalence b. Reflexive only

c. Reflexive and symmetric but not transitive

- d. Reflexive and transitive but not symmetric
- 3. Ravi wants to know among those relations, how many functions can be formed from B to G? a. 2.2 b. 2.12 c. 3.2 d. 2.3
- 4. Let $R: B \rightarrow G$ be defined by $R = \{ (b1,g1), (b2,g2), (b3,g1) \}$, then R is

a. Injective b. Surjective c. Neither Surjective nor Injective d. Surjective and Injective