		RK VISI	ON ACAD	EMY	
	(🕷)	NEET IIT	– JEE FOUNDATI	ON	
	ACADEMY	CBSE PR	ACTICE PAPER (202	24)	
(Mathematics)					
	Grade : XII	Marks: 40	Marks: 40		
	marks Chapter: DIFFENT minutes	IAL EQUATION	Set-1	Time: 9	0
SECTION A					
(Tł 1	is section comprises of M	ultiple-choice q	uestions (MCQ) of 1 $dy dy$	l mark each.)	
	The order and degree of the di (a)1 and $1/2$ (b)2 ar	fferential equation v d 1	$\frac{dy}{dx} - 4\frac{dy}{dx} - 7x = 0$ (c)1 and 1 (c)1	(d)1 and 2	
2.	The differential equation of all circles in the first quadrant which touch the coordinate axes is of order				
	(a)1 (b)2		(c)3	(d)None of these	
3. 4.	The differential equation of th $\frac{dy}{dx} + \frac{2y}{x} = 0 \qquad \frac{dy}{(b)dx}$ The differential equation of all	e family of curves re + $\frac{2x}{y} = 0$ l straight lines passi	epresented by the equation $\frac{dy}{dx} - \frac{2y}{x} = 0$ Ing through the point (1)	on $x^2 y = a$, is $\frac{dy}{dx} - \frac{2x}{y} = 0$ (d) $\frac{dy}{dx} - \frac{2x}{y} = 0$ (d) $\frac{dy}{dx} - \frac{2x}{y} = 0$	
5.	$y = (x+1)\frac{dy}{dx} + 1$ The solution of the differentia	$(x+1)\frac{dy}{dx} - 1$ l equation $x\cos ydy$	$y = (x - 1)\frac{dy}{dx} + 1$ $y = (xe^{x}\log x + e^{x})dx$ _{is}	$y = (x - 1)^{\frac{1}{2}}$	$\frac{y}{1} - 1$
	$\sin y = \frac{1}{x}e^x + c \qquad (b)$ (a) $\sin y = \sin y + c$	$e^{x}\log x + c = 0$	$(c)\sin y = e^x \log x + c$	(d)None of thes	e
6. 7.	The solution of the differentia (a) $y = \tan^{-1} x + c$ (b) $y =$	$(1+x^2)^{-1}$ $-\tan^{-1}x + c$ $x^2 \frac{dy}{dt} = x$	$\frac{dy}{dx} = x$ $y = \frac{1}{2}\log_e(1 + x^2) + \frac{1}{2}\log_e(1 + x^2) +$	$-c \qquad y = -\frac{1}{2}\log_e($	$1+x^2)+c$
8.	The solution of the differentia (a) (b) $\tan^{-1}\left(\frac{y}{r}\right) = \log x + c \tan^{-1} d$	equation dx $\left(\frac{y}{x}\right) = -\log x + c$ y = x + y	$\sin^{-1}\left(\frac{y}{x}\right) = \log x + $	c $\tan^{-1}\left(\frac{x}{y}\right) =$	$\log x + c$
	The solution of the equation $\frac{dx}{dx} - \frac{dx}{x - y}$ is				
	(a) $c(x^2 + y^2)^{1/2} + e^{\tan^{-1}}c(x^2 + y^2)^{1/2}$	$(-y^2)^{1/2} = e^{\tan^{-1}(y)}$	(c) /x $c(x^2 - y^2) = e^{\tan^{-1}(y/x)}$	(d) None of th	iese
9. 10	Integrating factor of the differ (a) $e^{\sin x}$ $\frac{1}{(b)\sin y}$	ential equation $\frac{dy}{dx}$ + $\frac{1}{x}$	$y \tan x - \sec x = 0$ is $\frac{1}{(c)^{\cos x}}$	(d) $e^{\cos x}$	
	$\begin{array}{c} \cos x \frac{-}{x} + y \sin x \\ \text{Solution of} & dx \\ \text{(a)} y \sec x \tan x = c \\ \text{(b)} y \sec x \tan x = c \end{array}$	= 1 is is $cx \tan x = c$	$(c)y\tan x = \sec x + c$	(d) <i>y</i> tan <i>x</i> = sec	$x \tan x + c$

SECTION B

(This section comprises of very short answer type-questions (VSA) of 2 marks each.)

- Find the differential equation of all non vertical lines in a plane. 11
- 2

- Solve the differential equation $\frac{dy}{dx} + 2xy = y$
- 3 Solve: $ydx - xdy = x^2ydx$

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each) dy

14

Solve : $x dx = y(\log y - \log x + 1)$.

- Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, 5 y) is equal to the square of the difference of the abcissa and ordinate of the point.
- 6 Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point y – 1

(x, y) is $\overline{x^2 + x}$

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

- Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the 7 normal at any point P(x, y) of the curve is equal to the distance of P from the x – axis
- Solve $x^2 \frac{dy}{dx} xy = \frac{y}{1 + \cos x}$, $x \neq 0$ and x = 1, $y = \frac{\pi}{2}$. 18

State the type of the differential equation for the equation. $xdy - ydx = \sqrt{x^2 + y^2}dx$ and solve it. 19