	RK VISION ACADEMY			
	REVISION	NEET IIT – JEE FOUNDATION		
	ACADEMY	CBSE PRACTICE PAPER(2024)		
	(Mathematics)			
	Grade : XII			Marks: 40
	marks Chapter: DETE minutes	RMINANTS Set-1		Time: 90
SECTION A				
(This section comprises of Multiple-choice questions (MCQ) of 1 mark each.)				
1.	If A and B are invertible squ (a) $adj A = A \cdot A^{-1}$	hare matrices of the same orde (b) $det(A)^{-1} = [det(A)]^{-1}$	r, then which of the following (c) $(AB)^{-1} = B^{-1}A^{-1}$	g is not correct? (d) $(A + B)^{-1} = B^{-1} + A^{-1}$
2.	If the area of the triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq units, then the value(s) of k will			
	(a) 9	(b) ± 3	(c) -9	(d) 6
3.	The value of $ A $, if $\begin{bmatrix} 0 & 2x - 1 \end{bmatrix}$	\sqrt{x}		
	$A = \begin{bmatrix} 1 - 2x & 0 & 2\sqrt{x} \end{bmatrix}$, where $x \in R^+$,			
	$-\sqrt{x}$ $-2\sqrt{x}$	0		
	(a) $(2x + 1)^2$	(b) 0	(c) $(2x+1)^3$	(d) None of these
4.	Given that A is a square n	natrix of order 3 and $ A = -3$	2, then adj (2A) is equal to	0
	(a) -2^6	(b) 4	(c) -2^8	(d) 2^8
5.	If A is a square matrix of order 3, such that A(adj A) = 10I, then adj A is equal to			
	(a) 1	(b) 10	(c) 100	(d) 101
6.	Evaluate the determinant $\begin{vmatrix} x-1 & 1 \\ x^3 & x^2 + x + 1 \end{vmatrix}$			
	(a) 3	(b) 0	(c) -1	(d) 1
7.	If A is a 3×3 matrix such that $ A = 8$, then $ 3A $ equals			
	(a) 8	(b) 24	(c) 72	(d) 216
8.	If $\begin{vmatrix} 2 & 2 \\ 2 & 3 \end{vmatrix} = \begin{vmatrix} 3x & 1 \\ 4x & 2 \end{vmatrix}$, the	nen <i>x</i> equals		
	(a) 1	(b) 2	(c) 3	(d) 4
9.	The value of determinant $\begin{vmatrix} 1 & 4 & 3 \\ 9 & -1 & 4 \\ 5 & 0 & 2 \end{vmatrix}$ is			
	(a) 21	(b) 166	(c) 64	(d) None of these
10	The value of $\begin{vmatrix} x & -7 \\ x & 5x+1 \end{vmatrix}$ at $x = -1$ is			
	(a) -1	(b) -3	(c) 2	(d) -5

SECTION B This section comprises of very short answer type-questions (VSA) of 2 marks each.) The determinant $\begin{vmatrix} \sin A & \cos A & \sin A + \cos B \\ \sin B & \cos A & \sin B + \cos B \\ \sin C & \cos A & \sin C + \cos B \end{vmatrix}$ is equal to zero. 1 x sin A cos A2 – sin A -x1 If | cos A 1 $x \mid = 8$, write the value of x. In the interval it $\pi/2 < x < \pi$, find the value of x for which the matrix $\begin{bmatrix} 2sinx & 3\\ 1 & 2sinx \end{bmatrix}$ is singular. 3 SECTION C (This section comprises of short answer type questions (SA) of 3 marks each) If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, then find AB. Use this to solve the system of equations x - y = 3, 2x + 3y + 4z = 17 and y + 2z = 7. Show that $A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix}$ satisfies the 15 equation $A^3 - A^2 - 3A - 1 = 0$. 16 Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}.$ **SECTION D** This section comprises of long answer-type questions (LA) of 5 marks each) Using the matrix method, solve the following system of linear equations. 7 $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1,$

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

⁸ If
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, then find A^{-1} .

Using A⁻¹ solve the following system of equations 2x - 3y + 5z = 113x + 2y - 4z = -5x + y - 2z = -3

Area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by 19

Area of a triangle ... $\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ Since, area is position quantity, so always we take the absolute value of the triangle formed by three collinear points is zero.

(i) Find the area of the triangle whose vertices are (-2, 6), (3, -6) and (1, 5).

(ii) Find the equation of the line joining the points (1, 2) and (3, 6).

(iii) Find the value of k, if area of a AABC with vertices A(1, 3), 5(0, 0) and C(k, 0) is 3 sq units.