			DN ACADEN	МY
	CBSE PRACTICE PAPER(2024) (Mathematics)			
	Grade : XII			Marks: 40
	Chapter: LIN	A AND DER Set-2 SECT	Time: 90 minutes ION A	
(This section comprises of Multiple-choice questions (MCQ) of 1 mark each.)				
1.	$\frac{\sin x}{x} + \cos x \text{if } x \neq 0$			
	(A) 3	if = 0	(C) 1	(D) 1.5
2.	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at			
	(A) 4	(B) – 2	(C) 1	(D) 1.5
3.	(A) 4	$\frac{1}{(B)-2}$	(C) 1 · · · ·	(D) 1.5
4. The function given by $f(x) = \tan x$ is discontinuous on the set				
	(A) $\{n \pi; n \in : Z\}$	(B) $\{2 \ n \ \pi : n \in Z\}$	\underline{n}	<u>n π</u>
5.	Let $f(x) = \cos x $. Then,			2
	(A) f is everywhere differentiable.	(B) f is everywhere continuous but not differentiable at $n = n\pi$, $n \in \mathbb{Z}$.	(C) f is everywhere continuous but not differentiable at π	(D) none of these.
6.	The function $f(x) = x $	+ x-1 is		
	(A) continuous at $x = 0$ as well as at $x = 1$.	(B) continuous at $x = 1$ but not at $x = 0$.	(C) discontinuous at $x = 0$ as well as at $x = 1$.	(D) continuous at $x = 0$ but not at $x = 1$.
7.	(A) f(x) + g(x)	$\frac{x^2}{-2} + 1$ (B) f(x) - g(x)	$(C) f(x) \cdot g(x)$	$\frac{f(x)}{\sigma(x)}$
8.		dy		$(\mathbf{D}) g(\mathbf{x})$
	If $v = \sqrt{\sin x + y}$ then for $\cos x$ (A) $\frac{2y - 1}{2y - 1}$	$(B) \frac{\cos x}{1-2y}$	$(C)\frac{\cos x}{2y-1}$	$(D)\frac{\sin x}{1-2y}$
9.	The derivative of cos-	$1 (2x^2 - 1)$ w.r.t. cos ⁻¹ x is		1 49
	(A) 2	(D) $\frac{-1}{2\sqrt{1-x^2}}$	$\frac{2}{(C)x}$	(D) $1 - x^2$
10	The value of c in Rolle's theorem for the function $f(x) = x^3 - 3x$ in the interval [0, 3] is			
	(A) 1	(B) – 1	$\frac{3}{2}$	$\frac{1}{2}$

SECTION B

