		RK VISI	ON ACAD	EMY on	
	ACADEMY	CBSE PR	CBSE PRACTICE PAPER(2024)		
		(Mathematics)		
	Grade : XII			Marks: 40	
	marks Chapter: AC minutes	DD Set-1		Time: 90	
		SEC	ΓΙΟΝ Α		
(TI 1.	his section comprise If $y = x^4 - 10$ and if x	es of Multiple-choice q c changes from 2 to 1.99, wh	uestions (MCQ) of 1 hat is the change in y	l mark each.)	
2.	(A) .32 The equation of tange	(B) .032 ent to the curve y $(1 + x^2) =$	(C) 5.68 $2 - x$, where it crosses x-	(D) 5.968 -axis is:	
3.	(A) $x + 5y = 2$ The points at which t	(B) $x - 5y = 2$ the tangents to the curve $y =$	(C) $5x - y = 2$ x ³ - 12x + 18 are parallel	(D) $5x + y = 2$ el to x-axis are:	
4.	(A) (2, -2), (-2, -34) The tangent to the cur	(B) (2, 34), (-2, 0) rve $y = e^{2x}$ at the point (0, 1	(C) (0, 34), (-2, 0)) meets x-axis at:	(D) (2, 2), (-2, 34)	
5.	(A) (0, 1) The slope of tangent t	(B) (-1/2,0) to the curve $x = t^2 + 3t - 8$, y	(C) (2, 0) $y = 2t^2 - 2t - 5$ at the point	(D) (0, 2) nt (2, -1) is:	
6.	(A) 22 /7 The two curves x 3 – 3	(B) 6 / 7 $3xy^2 + 2 = 0$ and $3x^2y - y^3$	(C) - 6/7 $-2 = 0 intersect at an an$	(D) – 6 gle of	
7.	(A) $\pi/4$ The interval on which	(B) $\pi/3$ the function f (x) = 2x ³ + 9	(C) $\pi/2$ 9x ² + 12x - 1 is decreasi	(D) π /6 ng is:	
8.	(A) $[-1, \infty)$ Let the f : R \rightarrow R be c	(B) $[-2, -1]$ defined by f (x) = 2x + cosx	(C) $(-\infty, -2]$, then f :	(D) [-1,1]	
	(A) has a minimum at $x = \pi$	(B) has a maximum, at x = 0	(C) is a decreasing function	(D)is an increasing function	
9.	$y = x (x - 3)^2$ decrease	es for the values of x given	by :		
10	(A) $1 < x < 3$ The function f (x) = ta	(B) $x < 0$ an $x - x$	(C) $x > 0$	(D) $0 < x < 3/2$	
	(A) always increases	(B) always decreases	(C) never increases	(D)sometimes increases and sometimes decreases.	

SECTION B

This section comprises of very short answer type-questions (VSA) of 2 marks each.)

- A kite is moving horizontally at a height of 151.5 meters. If the speed of kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of boy is 1.5 m.
- Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm, respectively.
- 13 The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each)

- 14 At what points on the curve $x^2 + y^2 2x 4y + 1 = 0$, the tangents are parallel to the y-axis
- 15 Show that $f(x) = 2x + \cot^{-1}x + \log(\sqrt{1 + x^2} x)$ is increasing on R
- At what point, the slope of the curve $y = -x^3 + 3x^2 + 9x 27$ is maximum? Also find the maximum slope.

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

- Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.
- AB is a diameter of a circle and C is any point on the circle. Show that the area of \triangle ABC is maximum, when it is isosceles.
- A plane started from airport O with a velocity of 120 m/s towards east. Air is blowing at a velocity of 50 m/s towards the north As shown in the figure.

The plane travelled 1 hr in OA direction with the resultant velocity. From A and B travelled 1 hr with keeping velocity of 120 m/s and finally landed at B.

- 1. What is the resultant velocity from O to A?
 - 1. 100 m/s
 - 2. 130 m/s
 - 3. 120 m/s
 - 4. 170 m/s
- 2. What is the direction of travel of plane O to A with east?
 - 1. $\tan^{-1}(5/12)$
 - 2. $\tan^{-1}(12/3)$
 - 3. 40°
 - 4. 30°
- 3. What is the total displacement from O to A?
 - 1. 500 km
 - 2. 468 km
 - 3. 432 km
 - 4. 400 km
- 4. What is the resultant velocity from A to B?
 - 1. 120 m/s
 - 2. 70 m/s
 - 3. 170 m/s
 - 4. 200 m/s
- 5. What is the displacement from A to B?
 - 1. 550 km
 - 2. 432 km
 - 3. 600 km
 - 4. 612 km