			SION ACAD			
	RKVISION					
		CBSE P	RACTICE PAPER(2024)		
			(Mathematics)	,		
	Grade : X marks			Marks: 40		
		lynomial SET-1		Time: 90		
		SECT				
(Tł 666	-	es of Multiple-choice qu	estions (MCQ) of 1 m	ark each.)		
1.)		$1 \downarrow 1$			
	If α, β are the zeros of the polynomial $f(x)=x^2+x+1$, then $\frac{1}{\alpha} + \frac{1}{\beta} =$					
	(a)1	(b)-1	(c)0	(d) None of the these		
2.			$\frac{1}{-} + \frac{1}{-}$			
	If α , β are the zeros of	eros of the polynomial f(x)=4x ² +3x+7 then $\frac{1}{\alpha} + \frac{1}{\beta} =$				
		$\frac{7}{(b)}$ - $\frac{7}{3}$	$\frac{3}{(c)}$	$\frac{-3}{-}$		
	$(a)^{\overline{3}}$	(b)- 3	(c) 7	(d) 7		
3.	If the sum of the zeros of the polynomial $f(x)=2x^{3}-3kx^{2}+4x-5$ is 6, then the value of k is					
	(a)4	(b)4	(c)-2	(d) -4		
4.	If the product the zeros of the polynomial $f(x)=ax^3-6x^2+11x-6$ is 4, then the value of a is 7					
	$(a)^{\overline{3}}$	(b)- $\frac{7}{3}$	$(c)\frac{5}{7}$	(d) $\frac{3}{7}$		
5.		dratic polynomial $x^2 + 99x +$				
	(A) both positive	(B) both negative	(C) one positive and one negative	(D) both equal		
6.	The zeroes of the quadratic polynomial $x^2 + kx + k$, $k \neq 0$					
	(A) cannot both be positive	(B) cannot both be negative	(C) are always unequal	(D) are always equal		
7.	If the zeroes of the qu (A) c and a have opposite signs	adratic polynomial ax ² + bx - (B) c and b have opposite signs	+ c, c ≠ 0 are equal, then (C) c and a have the same sign	(D) c and b have the same sign		
8.	The product the zeros of the polynomial $f(x)=x^3+x^2+x-6$ is					
	(a)4	(b)-4	(c)6	(d) -6		
9.	If the zeroes of a qua sign.	adratic polynomial ax ² + bx -	- c are both positive, then a	a, b and c all have the same		

	(A) True	(B) False	(C) None of these	(D) Statement wrong				
10		The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeros is $\frac{1}{2}$.						
	(A) True	(B) False	(C) None of these	(D) Statement wrong				
SECTION B								
(This section comprises of very short answer type-questions (VSA) of 2 marks each)								
11	Find the zeros of the polynomial $f(x) = x^2 + 7x + 12$ and verify the relation between the zeros and coefficient.							
12	If two zeros of the polynomial $f(x)=x^3-4x^2-3x+12$ are $\sqrt{3}$ and $\sqrt{3}$, then find its third zero.							
13	Find the cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and product of its zeros as 2, -7, -14 respectively.							
SECTION C (This section comprises of short answer type questions (SA) of 3 marks each)								
14	Find the zeros of the polynomial $f(x)=abx^2+(b^2-ac)x-bc$, and verify the relation between the zeros and co efficient.							
15			$\frac{1}{1} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$	2				
	If α,β are the zeros of the polynomial $f(x)=ax^2-bx+c$ then $\frac{1}{\alpha}+\frac{1}{\beta}$, $\alpha^2+\beta^2$.							
16	If the zeros off the polynomial $f(x)=x^3-3x^2+x+1$ are a-b, a, a+b find a and b.							
SECTION D								
(1			-type questions (LA) of 5 m x^2 -p(x+1)-c, show that $(\alpha + 1)(\beta$					
18	If one zero of the polynomial $f(x)=4x^2-8kx-9$, is negative of the other, find the value of k.							
19		ros of the polynomial f(x)=	x ² -1, find a quadratic polynomia	I whose zeros are $\frac{2\alpha}{\beta}$, $\frac{2\beta}{\alpha}$.				