

			1	Definition of various terms	
		Basic	c Level		
1,	Two coins are tossed. L shows a tail. Two event		rst coin shows head and <i>B</i> t	e the event that the second coin	
	(a) Mutually exclusive		(b) Dependent		
	(c) Independent and m	utually exclusive	(d) None of these		
2.	A card is drawn from a diamond, then events A	-	is of diamond, $B = card$ is a	an ace and $A \cap B$ = card is ace of	
	(a) Independent	(b) Mutually exclusive	(c) Dependent	(d) Equally likely	
3.	The probabilities of three	ee mutually exclusive events	are $2/3$, $1/4$ and $1/6$. The s	statement is	
	(a) True	(b) False	(c) Could be either	(d) Do not know	
4.	If $P(A_1 \cup A_2) = 1 - P(A_1^c) P(A_1^c)$	A_2^c), where <i>c</i> stands for comp	lement, then the events A_1	and A_2 are	
	(a) Mutually exclusive	(b) Independent	(c) Equally likely	(d) None of these	
5۰	If $\frac{1-3p}{2}, \frac{1+4p}{3}$ and $\frac{1+p}{6}$ are the probabilities of three mutually exclusive and exhaustive events, then the set				
	of all values of <i>p</i> is				
				ajasthan PET 2000; UPSEAT 2000]	
	(a) [0, 1]	(b) $\left[-\frac{1}{4},\frac{1}{3}\right]$	(c) $\left[0,\frac{1}{3}\right]$	(d) (0,∞)	
6.	The event A is independ	lent of itself if and only if $P(A)$	A) =		
	(a) O	(b) 1	(c) 0, 1	(d) None of these	
7.	If A and B are independ	ent events and $P(C) = 0$, then			
	(a) A and C are indepen		(b) <i>B</i> and <i>C</i> are indepe	ndent	
	(c) A, B and C are indep	pendent	(d)	All of these	
				Definition of Probability	
		Basic	e Level		
8.	The probability that an	ordinary or a non-leap year l	has 53 Sundays, is		
	(a) 2/7	(b) 1/7	(c) 3/7	(d) None of these	
9.		sent to different persons and s, the probability that the let		elopes are also written. Without pe is equal to	
	(a) 1/27	(b) 1/9	(c) 4/27	(d) 1/6	
10.	The probability of gettin	ng head and tail alternately i	n three throws of a coin (or	a throw of three coins), is	

(a)
$$\frac{1}{8}$$
 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{3}{8}$
11. In a lottery there were 90 tickets numbered 1 to 90. Five tickets were drawn at random. The probability that two of the tickets drawn numbers 15 and 89 is
(a) 2/801 (b) 2/623 (c) 1/267 (d) 1/623
12. Two numbers are selected randomly from the set $s = [1, 2, 4, 5, 6]$ without replacement one by one. The probability that minimum of the two numbers is less than 4 is
(a) 1/15 (b) 14/15 (c) 1/5 (d) 4/5
13. Among 15 players, 8 are batsmen and 7 are bowlers. Find the probability that a team is chosen of 6 batsmen and 7 bowlers
(b) $\frac{k_{C_1}^2 - k_{C_2}^2}{2C_{11}}$ (c) $\frac{1}{25}$ (d) None of these
14. The probability of obtaining sum '8' in a single throw of two dice
(a) $\frac{1}{26}$ (b) $\frac{5}{36}$ (c) $\frac{4}{36}$ (c) $\frac{4}{36}$ (d) $\frac{5}{36}$
15. Three mangoes and three apples are in a box. If two fruits are chosen at random, the probability that one is a mango and the other is an apple is
(a) $\frac{2}{3}$ (b) $\frac{3}{3}$ (c) $\frac{1}{3}$ (d) None of these
16. A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is
(a) $\frac{1}{3}$ (b) $\frac{3}{5}$ (c) $\frac{1}{10}$ (d) None of these
17. A bag contains 5 white, 7 black and 4 red balls. Three balls are drawn from the bag at random. The probability that all the three balls are white, is
(a) $\frac{1}{3}$ (b) $\frac{3}{5}$ (c) $\frac{1}{10}$ (d) None of these
18. Two dice are thrown together. The probability that their product is greater than 1000 is
(a) $\frac{7}{9}$ (b) $\frac{7}{10}$ (c) $\frac{3}{11}$ (d) $\frac{1}{2}$
19. The sum of two positive numbers is 100. The probability that the product is a reat integer is
(a) $\frac{1}{36}$ (b) $\frac{3}{2}$ (c) $\frac{1}{31}$ (d) $\frac{1}{2}$
21. A pair of a dice thrown, if 5 appears on at least one of the dice, then the probability that the sum is 10 or greater is (MP PET 2001)
(a) $\frac{1}{36}$ (b) $\frac{2}{3}$ (c) $\frac{3}{11}$ (d) $\frac{1}{2}$
21. Two to positive numbers is 100. The probability that their product is areat niteger is
(a) 1/

22	Probability			
	(a) $\frac{2}{19}$	(b) $\frac{3}{29}$	(c) $\frac{17}{19}$	(d) $\frac{4}{19}$
6.	Two dice are thrown.	The probability that the sum o	f the points on two dice w	ill be 7, is
		[IIT 19	74; MNR 1981, 91; Rajasthar	n PET 1995, 97, 2002; UPSEAT 200
	(a) $\frac{5}{36}$	(b) $\frac{6}{36}$	(c) $\frac{7}{36}$	(d) $\frac{8}{36}$
	50	50	50	20
7.	A bag contains tickets prime, is	Intered from 1 to 20. Two [AISSE 1981]	tickets are drawn. The pro	bability that both the numbers a
	(a) $\frac{14}{95}$	(b) $\frac{7}{95}$	(c) $\frac{1}{95}$	(d) None of these
8.	<i>)</i> 5)5	<i>)</i> 5	
0.	7	o dice, the probability of getti	-	5
	(a) $\frac{7}{36}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{5}{36}$
9.	If two balanced dice a upper sides of the two		ty of the event that the su	um of the integers coming on t
	(a) 7/18	(b) 5/36	(c) 1/9	(d) 1/6
0.	The probability of gett	ing number 5 in throwing a di	e is	[MP PET 198
	(a) 1	(b) 1/3	(c) 1/6	(d) 5/6
1.		ing a number greater than 2 ir		
	(a) 1/3	(b) 2/3	(c) 1/2	(d) 1/6
2.	The chance of throwin	g at least 9 in a single throw v	_	
	(a) $\frac{1}{18}$	(b) $\frac{5}{18}$	(c) $\frac{7}{18}$	(d) $\frac{11}{18}$
3.	10	e three cards drawn from a pa	18	
		-	•	2
	(a) $\frac{1}{17}$	(b) $\frac{3}{19}$	(c) $\frac{2}{19}$	(d) $\frac{2}{17}$
4.	The probability of gett	ing a total of 5 or 6 in a single	throw of 2 dice is	
	(a) 1/2	(b) 1/4	(c) 1/3	(d) 1/6
5.	probability that you w	s to be chosen from a group ill be on the committee	o of 38 people of which	you are a member. What is t
	(a) $\begin{pmatrix} 38\\ 3 \end{pmatrix}$	(b) $\begin{pmatrix} 37\\2 \end{pmatrix}$	(c) $\binom{37}{2} / \binom{38}{3}$	(d) 666/8436
6.	The chance of getting	a doublet with 2 dice is		[Kurukshetra CEE 200
	(a) $\frac{2}{3}$	(b) $\frac{1}{2}$	(c) $\frac{5}{6}$	(d) $\frac{5}{36}$
		-	-	
7.	A bag contains 3 white	and 5 black balls. If one ball i	s drawn, then the probabi	
	(a) $\frac{3}{8}$	(b) $\frac{5}{8}$	(c) $\frac{6}{8}$	(d) $\frac{10}{20}$
8.	Two dice are thrown t	ogether. The probability that s	um of the two numbers w	ill be a multiple of 4 is
-	(a) 1/9	(b) 1/3	(c) 1/4	(d) 5/9
9.		pening of an impossible event		
	(a) 1	(b) o	(c) 2	(d) – 1
0.	For any event A			[Rajasthan PET 199
		(b) $P(A) + P(\overline{A}) = 1$	(c) $P(A) > 1$	(d) $P(\overline{A}) < 1$
1.				om. The probability of being the
	different colours is			
				[Rajasthan PET 199
	(a) 2/11	(h) $2/11$	(c) $8/11$	(d) None of these

	(a) 3/11	(b) 2/11	(c) 8/11	(d) None of these
--	----------	----------	----------	-------------------

Find the probability that the two digit number formed by digits 1, 2, 3, 4, 5 is divisible by 4 (while repetition of 42. digit is allowed) [UPSEAT 2002] (c) $\frac{1}{40}$ (a) $\frac{1}{30}$ (b) $\frac{1}{20}$ (d) None of these If P(A) = 0.65, P(B) = 0.15, then $P(\overline{A}) + P(\overline{B}) =$ [Pb. CET 1989; EAMCET 43. 1988] (a) 1.5 (b) 1.2 (c) 0.8 (d) None of these If four persons are chosen at random from a group of 3 men, 2 women and 4 children. Then the probability that 44. exactly two of them are children, is [Kurukshetra CEE 1996; DCE 1999] (a) 10/21(b) 8/63 (c) 5/21 (d) 9/21 45. A single letter is selected at random from the word "PROBABILITY". The probability that the selected letter is a vowel is [MNR 1986; UPSEAT 2000] (a) 2/11 (b) 3/11 (c) 4/11 (d) 0 The probability of three persons having the same date and month for the birthday is 46. (b) $1/(365)^2$ (c) $1/(365)^3$ (d) None of these (a) 1/365 Out of 20 consecutive positive integers, two are chosen at random, the probability that their sum is odd is 47. (a) 1/20 (b) 10/19 (c) 19/20 (d) 9/19 48. A and B play a game where each is asked to select a number from 1 to 25. If the two numbers match, both of them win a prize. The probability that they will not win a prize in a single trial is (b) 24/25 (c) 2/25 (a) 1/25 (d) None of these If *E* and *F* are events with $P(E) \le P(F)$ and $P(E \cap F) > 0$, then 49. (a) Occurrence of $E \Rightarrow$ occurrence of F(b) Occurrence of $F \Rightarrow$ occurrence of E(c) Non-occurrence of $E \Rightarrow$ non-occurrence of F(d) None of the above implications holds A single letter is selected form the word 'KURUKSHETRA UNIVERSITY' the probability that it is a vowel is [Kurukshetr 50. (c) 8/21 (d) 2/5 (a) 4/5 (b) 3/7 From the word 'POSSESSIVE', a letter is chosen at random. The probability of it to be S is 51. (c) $\frac{3}{6}$ (a) $\frac{3}{10}$ (b) $\frac{4}{10}$ (d) $\frac{4}{6}$ Out of 40 consecutive natural numbers, two are chosen at random. Probability that the sum of the numbers is 52. odd. is [MP PET 2002] (a) $\frac{14}{29}$ (b) $\frac{20}{39}$ (c) $\frac{1}{2}$ (d) None of these Two dice are tossed. The probability that the total score is a prime number is 53. (b) $\frac{5}{12}$ (a) $\frac{1}{6}$ (c) $\frac{1}{2}$ (d) None of these A lot consists of 12 good pencils, 6 with minor defects and 2 with major defects. A pencil is choosen at random. 54. The probability that this pencil is not defective is (a) 3/5(b) 3/10 (c) 4/5 (d) 1/27 white balls and 3 black balls are placed in a row at random. The probability that no two black balls are 55. adjacent is (c) $\frac{2}{15}$ (d) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{7}{15}$ Advance Level

56. Twenty children are standing in a line outside a ticket window at Appu Ghar in New Delhi. Ten of these children have a one-rupee coin each and the remaining 10 have a two-rupee coin each. The entry ticket is priced Re. 1. If all the arrangements of the 20 children are equally likely, the probability that the 10th will be the first to wait for change is (Assume that the cashier has no change to begin with) (b) $\frac{{}^{20}C_{10}}{2^{10}}$ (a) $\frac{2^{10}}{2^{20}C}$ (c) 0 (d) None of these 4 five-rupee coins, 3 two-rupee coins and 2 one-rupee coins are stacked together in a column at random. The 57. probability that the coins of the same denomination are consecutive is (a) $\frac{13}{13}$ (b) $\frac{1}{210}$ (c) $\frac{1}{25}$ (d) None of these 58. Two small squares on a chess board are chosen at random. Probability that they have a common side is (c) 1/18 (d) None of these (a) 1/3(b) 1/9 There are n persons $(n \ge 3)$, among whom are A and B, who are made to stand in a row in random order. 59. Probability that there is exactly one person between A and B is (a) $\frac{n-2}{n(n-1)}$ (b) $\frac{2(n-2)}{n(n-1)}$ (d) None of these (c) 2/n 60. If *m* rupee coins and *n* ten paise coins are placed in a line, then the probability that the extreme coins are ten paise coins is (b) $\frac{n(n-1)}{(m+n)(m+n-1)}$ (c) $^{m+n}P_m$ (a) ${}^{m+n}C_m$ (d) $^{m+n}P_n$ Twelve balls are distributed among three boxes. The probability that the first box contains 3 balls is 61. (a) $\frac{110}{9} \left(\frac{2}{3}\right)^{10}$ (b) $\frac{9}{110} \left(\frac{2}{3}\right)^{10}$ (c) $\frac{{}^{12}C_3}{12^3} \cdot 2^9$ (d) $\frac{{}^{12}C_3}{3^{12}}$ Six boys and six girls sit in a row. What is the probability that the boys and girls sit alternately 62. (b) 1/924 (c) 1/2 (d) None of these (a) 1/462 Word 'UNIVERSITY' is arranged randomly. Then the probability that both 'I' does not come together, is 63. (b) $\frac{2}{5}$ (c) $\frac{4}{5}$ (a) $\frac{3}{2}$ (d) $\frac{1}{2}$ A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on 64. fifth toss equals [IIT 1998] (a) 1/2(b) 1/32 (c) 31/32 (d) 1/5A determinant is chosen at random. The set of all determinants of order 2 with elements 0 or 1 only. The 65. probability that value of the determinant chosen is positive, is (a) $\frac{3}{16}$ (b) $\frac{3}{2}$ (c) $\frac{1}{4}$ (d) None of these 66. Out of 13 applicants for a job, there are 5 women and 8 men. It is desired to select 2 persons for the job. The probability that at least one of the selected persons will be a woman is (a) 25/39 (b) 14/39 (c) 5/13 (d) 10/13 Two numbers are selected at random from 1, 2, 3.....100 and are multiplied, then the probability correct to two 67. places of decimals that the product thus obtained is divisible by 3, is (a) 0.55 (b) 0.44 (c) 0.22 (d) 0.33 Five digit numbers are formed using the digits 1, 2, 3, 4, 5, 6, and 8. What is the probability that they have 68. even digits at both the ends [Rajasthan PET 1999] (c) 4/7 (d) None of these (a) 2/7(b) 3/7 The corners of regular tetrahedrons are numbered 1, 2, 3, 4. Three tetrahedrons are tossed. The probability 69. that the sum of upward corners will be 5 is (a) 5/24 (b) 5/64 (c) 3/32 (d) 3/16

[AMU 1999]

- **70.** If four vertices of a regular octagon are chosen at random, then the probability that the quadrilateral formed by them is a rectangle is
 - (a) 1/8 (b) 2/21 (c) 1/32 (d) 1/35
- 71. In a college, 25% of the boys and 10% of the girls offer Mathematics. The girls constitute 60% of the total number of students. If a student is selected at random and is found to be studying Mathematics, the probability that the student is a girl, is [MP PET 2001]
 - (a) $\frac{1}{6}$ (b) $\frac{3}{8}$ (c) $\frac{5}{8}$ (d) $\frac{5}{6}$
- **72.** There are *m* persons sitting in a row. Two of them are selected at random. The probability that the two selected persons are not together, is

(a)
$$\frac{2}{m}$$
 (b) $1 - \frac{2}{m}$ (c) $\frac{m(m-1)}{(m+1)(m+2)}$ (d) None of these

- **73.** If the integers *m* and *n* are chosen at random between 1 and 100, then the probability that a number of the form $7^m + 7^n$ is divisible by 5 equals
 - (a) $\frac{1}{4}$ (b) $\frac{1}{7}$ (c) $\frac{1}{8}$ (d) $\frac{1}{49}$
- **74.** Cards are drawn one by one at random from a well shuffled full pack of 52 cards until two aces are obtained for the first time. If *N* is the number of cards required to be drawn, then $P_r[N = n]$, where $2 \le n \le 50$, is

(a)
$$\frac{(n-1)(52-n)(51-n)}{50\times49\times17\times13}$$
 (b) $\frac{2(n-1)(52-n)(51-n)}{50\times49\times17\times13}$ (c) $\frac{3(n-1)(52-n)(51-n)}{50\times49\times17\times13}$ (d) $\frac{4(n-1)(52-n)(51-n)}{50\times49\times17\times13}$

75. A locker can be opened by dialing a fixed three digit code (between 000 and 999). A stranger who does not know the code tries to open the locker by dialing three digits at random. The probability that the stranger succeeds at the k^{th} trial is

(a)
$$\frac{k}{999}$$
 (b) $\frac{k}{1000}$ (c) $\frac{k-1}{1000}$ (d) None of these

76. Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals

77. A committee consists of 9 experts taken from three institutions *A*, *B* and *C*, of which 2 are from *A*, 3 from *B* and 4 from *C*. If three experts resign, then the probability that they belong to different institutions is

(a)
$$\frac{1}{729}$$
 (b) $\frac{1}{24}$ (c) $\frac{1}{21}$ (d) $\frac{2}{7}$

78. There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. The probability that only two tests are needed is

(a) 1/3
(b) 1/6
(c) 1/2
(d) 1/4
79. A five digit number is formed by writing the digits 1, 2, 3, 4, 5 in a random order without repetitions. Then the probability that the number is divisible by 4 is

- **80.** Five persons entered the lift cabin on the ground floor of an 8-floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first. The probability of all five persons leaving at different floors is
 - (a) $\frac{7^5}{{}^7P_5}$ (b) $\frac{{}^7P_5}{7^5}$ (c) $\frac{5!}{7^5}$ (d) 1
- **81.** If *A* and *B* are two events than the value of the determinant choosen at random from all the determinants of order 2 with entries 0 or 1 only is positive or negative respectively. Then

(a)
$$P(A) \ge P(B)$$
 (b) $P(A) \le P(B)$ (c) $P(A) = P(B) = 1/2$ (d) None of these

(a)

82. $x_1, x_2, x_3, \dots, x_{50}$ are fifty real numbers such that $x_r < x_{r+1}$ for $r = 1, 2, 3, \dots, 49$. Five numbers out of these are picked up at random. The probability that the five numbers have x_{20} as the middle number is

(a)
$$\frac{{}^{20}C_2 \times {}^{30}C_2}{{}^{50}C_5}$$
 (b) $\frac{{}^{30}C_2 \times {}^{19}C_2}{{}^{50}C_5}$ (c) $\frac{{}^{19}C_2 \times {}^{31}C_3}{{}^{50}C_5}$ (d) None of these

- **83.** A card is drawn from a pack. The card is replaced and the pack is reshuffled. If this is done six times, the probability that 2 hearts, 2 diamonds and 2 black cards are drawn is
 - (a) $90.\left(\frac{1}{4}\right)^6$ (b) $\frac{45}{2}.\left(\frac{3}{4}\right)^4$ (c) $\frac{90}{2^{10}}$ (d) None of these
- **84.** An even number of cards is drawn from a pack of 52 cards. The probability that half of these cards will be red and the other half black is

(a)
$$\frac{{}^{52}C_2}{2^{51}-1}$$
 (b) $\frac{{}^{52}C_{26}-1}{2^{51}-1}$ (c) $\frac{{}^{52}C_2-1}{2^{51}-1}$ (d) $\frac{{}^{52}C_2}{2^{51}+1}$

- **85.** Two numbers *a* and *b* are chosen at random from the set {1, 2, 3,....,3*n*} the probability that $a^2 b^2$ is divisible by 3 is
 - (a) $\frac{5(n-3)}{3n-1}$ (b) $\frac{5(n+3)}{3n-1}$ (c) $\frac{5n-3}{3(3n-1)}$ (d) None of these
- 86. The probability that the birth days of six different persons will fall in exactly two calendar months is
 - (a) $\frac{1}{6}$ (b) ${}^{12}C_2 \times \frac{2^6}{12^6}$ (c) ${}^{12}C_2 \times \frac{2^6 1}{12^6}$ (d) $\frac{341}{12^5}$
- 87. A bag contains n white and n red balls. Pairs of balls are drawn without replacement until the bag is empty. The probability of each pair consisting of balls of different colours is
 - (a) $\frac{2^n}{2^n C_n}$ (b) $\frac{2^{n-1}}{2^n C_n}$ (c) $\frac{2^n}{2^{n-1} C_n}$ (d) 1

88. To avoid detection at customs, a traveller has placed six narcotic tablets in a bottle containing nine vitamin pills that are similar in appearance. If the customs official selects three of the tablets at random for analysis, the probability that traveller will be arrested for illegal possession of narcotics is

(a)
$$\frac{53}{63}$$
 (b) $\frac{53}{65}$ (c) $\frac{51}{65}$ (d) $\frac{11}{65}$

89. Six different balls are put in three different boxes, no box being empty. The probability of putting balls in the boxes in equal numbers is

(a) 3/10
(b) 1/6
(c) 1/5
(d) None of these
90. A man and a woman appear in an interview for two vacancies in the same post. The probability of man's selection is 1/4 and that of woman's selection is 1/3. What is the probability that none of them will be selected (a) 1/2
(b) 1/12
(c) 1/4
(d) None of these
91. Three six faced unbiased dice are thrown together. The probability that exactly two of the three numbers are equal is

$$117/216$$
 (b) $5/12$ (c) $165/216$ (d) None of these

92. If the papers of 4 students can be checked by any one of the seven teachers, then the probability that all the four papers are checked by exactly two teachers is
(a) 2/7
(b) 12/49
(c) 32/343
(d) None of these

93. m boys and m girls take their seats randomly around a circle. The probability of their sitting is $({}^{2m-1}C_m)^{-1}$ when(a) No two boys sit together(b)No two girls sit together

(c) Boys and girls sit alternatively (d) All the boys sit together **94.** m men and w women seat themselves at random on m+w seats arranged in row (circle). If $p_1(p_2)$ denote the probability of all women sitting together when they are arranged in row (circle), then

(a)
$$p_1 = \frac{m+1}{m + m} \frac{m}{m}$$
 (b) $p_1 + p_2 = \frac{2m + n + 1}{m + m}$ (c) $p_1 = p_2$ if and only if $w = 1$ (d) $p_2 < p_1$ if $w > 1$
95. Three player *A*, *B* and *C*, toss a coin cyclically in that order (that is *A*, *B*, *C*, *A*, *B*, *C*, *A*, *B*,...) till a head shows. Let *p* be the probability that the coin shows a head. Let *a*, *β* and *f* be, respectively, the probabilities that *A*, *B* and *C* gets the first head. Then
(a) $\beta = (1 - p)\alpha$ (b) $\gamma + 2p\alpha = (1 + p^3)\alpha$ (c) $\alpha + \beta + \gamma = 1$ (d) $\alpha = 1/(3 - 3p + p^3)$
96. Two players *A* and *B* toss a fair coin cyclically in the following order *A*, *B*, *A*

(a)
$$\frac{10^{10}-10}{10^{10}}$$
 (b) $\frac{10^{10}-10!}{10^{10}}$ (c) $\frac{10^{10}-1}{10^{10}}$ (d) None of these

(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards draw the four cards draw the four cards draw the beam of the numbers is (a) $\frac{3}{4}$ A point is selected at rank the boundary of the circle (a) $\frac{3}{4}$ Let <i>A</i> and <i>B</i> are two in	(b) $\frac{1}{40}$ dom from the interior of a circle e is (b) $\frac{1}{2}$ ndependent events. The probation of them occurs is 1/3. The probation	(c) $\frac{(30)}{17}$ a pack of (c) $\frac{1}{17}$ the set <i>A</i> (c) $\frac{1}{8}$ e. The pro- (c) $\frac{1}{4}$ bility that bability of	$\frac{P_{10}}{(30)^{10}} = \frac{P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$ = {1, 2, 3,, 10}. The bbability that the point at both <i>A</i> and <i>B</i> occ	birthday is (d) None of these of 52 cards. The probabil (d) None of these probability that the prod (d) None of these nt is closer to the centre th (d) None of these
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards dr (a) $\frac{44}{85 \times 49}$ Three different numbers of two of the numbers is (a) $\frac{3}{4}$ A point is selected at ran the boundary of the circle (a) $\frac{3}{4}$ Let A and B are two in probability that neither	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ eeach, one after another, from rawn are of the same suit is (b) $\frac{11}{85 \times 49}$ s are selected at random from to s equal to the third is (b) $\frac{1}{40}$ dom from the interior of a circle e is (b) $\frac{1}{2}$ independent events. The probation of them occurs is 1/3. The probation	(c) $\frac{(30)}{17}$ a pack of (c) $\frac{1}{17}$ the set A (c) $\frac{1}{8}$ e. The pro- (c) $\frac{1}{4}$ bility that	$\frac{P_{10}}{(30)^{10}} = \frac{P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$ = {1, 2, 3,, 10}. The bbability that the point at both <i>A</i> and <i>B</i> occ	birthday is (d) None of these of 52 cards. The probabil (d) None of these probability that the prod (d) None of these nt is closer to the centre th (d) None of these
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards due (a) $\frac{44}{85 \times 49}$ Three different numbers is of two of the numbers is (a) $\frac{3}{4}$ A point is selected at rank the boundary of the circle	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ e each, one after another, from rawn are of the same suit is (b) $\frac{11}{85 \times 49}$ s are selected at random from to s equal to the third is (b) $\frac{1}{40}$ dom from the interior of a circle e is	(c) $\frac{(30)}{17}$ a pack of (c) $\frac{1}{17}$ the set A (c) $\frac{1}{8}$ e. The pro-	$\frac{10^{10} - {}^{30}P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$ = {1, 2, 3,, 10}. The	birthday is (d) None of these of 52 cards. The probabil (d) None of these probability that the prod (d) None of these nt is closer to the centre th
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards due (a) $\frac{44}{85 \times 49}$ Three different numbers is (a) $\frac{3}{4}$ A point is selected at ran	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ e each, one after another, from rawn are of the same suit is (b) $\frac{11}{85 \times 49}$ s are selected at random from to s equal to the third is (b) $\frac{1}{40}$ dom from the interior of a circle	(c) $\frac{(30)}{(20)}$ a pack of (c) $\frac{11}{17}$ the set <i>A</i> (c) $\frac{1}{8}$	$\frac{10^{10} - {}^{30}P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$ = {1, 2, 3,, 10}. The	birthday is (d) None of these of 52 cards. The probabil (d) None of these probability that the prod (d) None of these
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards due (a) $\frac{44}{85 \times 49}$ Three different numbers is	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ each, one after another, from rawn are of the same suit is (b) $\frac{11}{85 \times 49}$ s are selected at random from to s equal to the third is	(c) $\frac{(30)}{(30)}$ a pack of (c) $\frac{1}{17}$ the set A	$\frac{P_{10}^{10} - {}^{30}P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$	birthday is (d) None of these of 52 cards. The probabil (d) None of these probability that the prod
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards due (a) $\frac{44}{85 \times 49}$ Three different numbers	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ e each, one after another, from rawn are of the same suit is (b) $\frac{11}{85 \times 49}$ s are selected at random from the	(c) $\frac{(30)}{2}$ a pack of (c) $\frac{1}{17}$	$\frac{P_{10}^{10} - {}^{30}P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$	birthday is (d) None of these of 52 cards. The probabi (d) None of these
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards that all the four cards due (a) $\frac{44}{85 \times 49}$	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ each, one after another, from rawn are of the same suit is (b) $\frac{11}{85 \times 49}$	(c) $\frac{(30)}{2}$ a pack of (c) $\frac{1}{17}$	$\frac{P_{10}^{10} - {}^{30}P_{10}}{(30)^{10}}$ f well-shuffled pack $\frac{13 \times 24}{\times 25 \times 49}$	birthday is (d) None of these of 52 cards. The probabi (d) None of these
(a) $\frac{{}^{30}P_{10}}{(30)^{10}}$ A and B draw two cards	(b) $1 - \frac{{}^{30}C_{10}}{30!}$ each, one after another, from	(c) (<u>30</u>	$\frac{(30)^{10} - {}^{30}P_{10}}{(30)^{10}}$	birthday is (d) None of these
				birthday is
The probability that out	of 10 persons, all born in April	, at least	two have the same	11
				11
(a) $\frac{5}{11}$	(b) $\frac{7}{11}$	(c) $\frac{2}{3}$		(d) $\frac{6}{11}$
		-	so that each gets e	qual number of things.
(a) $\frac{9}{70}$	(b) $\frac{9}{35}$	(c) $\frac{4}{35}$		(d) None of these
	—	t random	n. The probability th	at the middle seat is alw
(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$		(d) None of these
	is given a positive integral value	e at rando	om. The probability t	hat the value of <i>x</i> will have
(a) $\frac{4}{35}$	(b) $\frac{1}{70}$			(d) $\frac{1}{35}$
(a) 119/120	(b) 1/15	., ,	-	(d) None of these
(a) $\frac{241}{1456}$	(b) $\frac{164}{4165}$	00-	+	(d) None of these
P(Fi:c(4)(1))	precede the first ace is a) $\frac{241}{1456}$ Five different objects <i>A</i> is picked at random. The orresponding to its number a) 119/120 gentlemen and 4 ladie a) $\frac{4}{35}$ Let $x = 33^n$. The index <i>n</i> in the units place is a) $\frac{1}{4}$ There are 7 seats in a re- occupied and no two per a) $\frac{9}{70}$ o different books and probability that the same	precede the first ace is a) $\frac{241}{1456}$ (b) $\frac{164}{4165}$ Five different objects A_1, A_2, A_3, A_4, A_5 are distributed rances s picked at random. The probability that in the select orresponding to its number, is a) 119/120 (b) 1/15 gentlemen and 4 ladies take seats at random round at a) $\frac{4}{35}$ (b) $\frac{1}{70}$ set $x = 33^n$. The index <i>n</i> is given a positive integral value in the units place is a) $\frac{1}{4}$ (b) $\frac{1}{2}$ There are 7 seats in a row. Three persons take seats at percupied and no two persons are consecutive is a) $\frac{9}{70}$ (b) $\frac{9}{35}$ o different books and 2 different pens are given to probability that the same boy does not receive both the	precede the first ace is a) $\frac{241}{1456}$ (b) $\frac{164}{4165}$ (c) $\frac{45}{88}$ Five different objects A_1, A_2, A_3, A_4, A_5 are distributed randomly is s picked at random. The probability that in the selected array orresponding to its number, is a) 119/120 (b) 1/15 (c) 11/2 gentlemen and 4 ladies take seats at random round a table. The a) $\frac{4}{35}$ (b) $\frac{1}{70}$ (c) $\frac{2}{35}$ set $x = 33^n$. The index <i>n</i> is given a positive integral value at random in the units place is a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ There are 7 seats in a row. Three persons take seats at random orcupied and no two persons are consecutive is a) $\frac{9}{70}$ (b) $\frac{9}{35}$ (c) $\frac{4}{35}$	a) $\frac{241}{1456}$ (b) $\frac{164}{4165}$ (c) $\frac{451}{884}$ Five different objects A_1, A_2, A_3, A_4, A_5 are distributed randomly in 5 places marked 1, as picked at random. The probability that in the selected arrangement, none of the orresponding to its number, is a) 119/120 (b) 1/15 (c) 11/30 (c) 11/30 (c) $\frac{2}{35}$ (d) $\frac{1}{70}$ (c) $\frac{2}{35}$ (et $x = 33^n$. The index <i>n</i> is given a positive integral value at random. The probability that the number is a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (c) $\frac{1}{3}$ (c) $\frac{1}{3}$ (c) $\frac{1}{3}$ (c) $\frac{9}{70}$ (c) $\frac{9}{35}$ (c) $\frac{4}{35}$ (c) $\frac{4}{35}$

119. For an event, odds against is 6 : 5. The probability that event does not occur, is

	(a) $\frac{5}{6}$	(b) $\frac{6}{11}$	(c) $\frac{5}{11}$	(d) $\frac{1}{6}$
120.	An event has odds in fav	our 4 : 5, then the probability t	that event occurs, is	
	(a) $\frac{1}{5}$	(b) $\frac{4}{5}$	(c) $\frac{4}{9}$	(d) $\frac{5}{9}$
121.	A card is drawn from a his winning this bet	pack of 52 cards. A gambler be	ts that it is a spade or an ac	ce. What are the odds against
	(a) 17:52	(b) 52:17	(c) 9:4	(d) 4:9
122.		a certain event are 2 : 5 and or robability of happening of at le	-	t are 5 : 6. If the events are
	(a) 50/77	(b) 51/77	(c) 52/77	(d) 53/77
123.	In a horse race the odds will win the race is	s in favour of three horses are a	1 : 2, 1 : 3 and 1 : 4. The pro	bability that one of the horse
	(a) $\frac{37}{60}$	(b) $\frac{47}{60}$	(c) $\frac{27}{60}$	(d) $\frac{17}{60}$
	00	00	00	00
		Advance	Level	
124.		erson who is 40 years old livin Probability that one of them wi		ainst another person now 50
	(a) 59/91	(b) 44/91	(c) 51/91	(d) 32/91
125.		nust occur. If the chance of one		
126	(a) $2:3$	(b) 1 : 3 sit at a round table, then the or	(c) 3:1	(d) 3:2
120.	other are	[MP PET 2002]	ius against two specified in	urviduals sitting next to each
	(a) $2:(n-3)$	(b) $(n-3): 2$	(c) $(n-2): 2$	(d) $2:(n-2)$
127.	If odds against solving a the question is solved on	a question by three students ar nly by one student is	e 2 : 1, 5 : 2 and 5 : 3 respe	ectively, then probability that
	(a) 31/56	(b) 24/56	(c) 25/56	(d) None of these
128.		ent <i>A</i> are 2 to 1 and odds in fav values for the probability of ev		isistent with this information
	(a) $\frac{1}{6} \le P(B) \le \frac{1}{3}$	(b) $\frac{1}{3} \le P(B) \le \frac{1}{2}$	(c) $\frac{1}{12} \le P(B) \le \frac{3}{4}$	(d) None of these
129.		happening is the square of the against the second. The chance		but the odds against the first
	(a) $\frac{1}{9}, \frac{1}{3}$	(b) $\frac{1}{16}, \frac{1}{4}$	(c) $\frac{1}{4}, \frac{1}{2}$	(d) None of these
			Addition	Theorem on Probability
		Basic I	level	
130.	If <i>A</i> and <i>B</i> are two mutu [MNR 1978; MP PET 1991,	ally exclusive events, then <i>P</i> (<i>A</i> 1992]	+ <i>B</i>) =	
	(a) $P(A) + P(B) - P(AB)$	(b) $P(A) - P(B)$	(c) $P(A) + P(B)$	(d) $P(A) + P(B) + P(AB)$
131.	If A and B are two event	ts such that $P(A \cup B) + P(A \cap B) =$	$=\frac{7}{8}$ and $P(A)=2P(B)$, then $P(A)=2P(B)$	(<i>A</i>) =

30	Trobability			
	(a) 7/12	(b) 7/24	(c) 5/12	(d) 17 / 24
32.	A bag contains 5 brown same colour is	n and 4 white socks. A man pu	lls out two socks. The pro	bability that these are of the
				[UPSEAT 1999; MP PET 2000]
	(a) 5/108	(b) 18/108	(c) 30/108	(d) 48/108
33.	The probability that a le	ap year will have 53 Fridays or	53 Saturdays is	[MP PET 2002; Roorkee
	(a) 2/7	(b) 3/7	(c) 4/7	(d) 1/7
34.	A box contains 10 good a it is either good or has a	articles and 6 with defects. One a defect	article is chosen at randon	n. What is the probability that
	(a) 24/64	(b) 40/64	(c) 49/64	(d) 64/64
35.	-	currence of two events are resp Then the probability that none of	-	e probability that both occurs
	(a) 0.30	(b) 0.46	(c) 0.14	(d) None of these
36.	A bag contains 30 balls ball is multiple of 5 or 7	numbered from 1 to 30, one bal 7 is	l is drawn randomly. The p	robability that number on the
	(a) 1/2	(b) 1/3	(c) 2/3	(d) 1/4
37.	If $P(A) = P(B) = x$ and $P(A) = x$	$A \cap B$) = $P(A' \cap B') = \frac{1}{3}$, then $x =$		[UPSEAT 2003]
	(a) 1/2	(b) 1/3	(c) 1/4	(d) 1/6
38.	If the probability of <i>X</i> to <i>Y</i> fail in the examination	o fail in the examination is 0.3 a n is	and that for Y is 0.2, then t	he probability that either X or
	(a) 0.5	(b) 0.44	(c) 0.6	(d) None of these
39.	A card is drawn from a	well shuffled pack of cards. The	probability of getting a que	een of club or king of heart is [MP
	(a) 1/52	(b) 1/26	(c) 1/18	(d) None of these
40.	If A and B are two indep	bendent events, then $P(A+B) =$		[MP PET 1992]
	(a) $P(A) + P(B) - P(A)P(B)$	(b) $P(A) - P(B)$	(c) $P(A) + P(B)$	(d) $P(A) + P(B) + P(A)P(B)$
41.	In two events $P(A \cup B) =$	$5/6$, $P(A^c) = 5/6$, $P(B) = 2/3$, th	en A and B are	[UPSEAT 2001]
	(a) Independent	(b) Mutually exclusive	(c) Mutually exhaustive	(d) Dependent
42.	., 1	least one of the events A and		-
	(a) 2/5	(b) 4/5	(c) 6/5	(d) 7/5
43.	If A and B are arbitrary	events, then		[DCE 2002]
		(b) $P(A \cup B) \le P(A) + P(B)$	(c) $P(A \cap B) = P(A) + P(B)$	(d) None of these
44.	If $P(A) = 2/3$, $P(B) = 1/2$	and $P(A \cup B) = 5/6$ then events	A and B are	[Kerala (Engg.) 2002]
	(a) Mutually exclusive		(b) Independent as well a	as mutually exhaustive
	(c) Independent		(d) Dependent only on <i>A</i>	
45.	-	oalls, 4 white balls and 3 red ba		domwise, the probability that
		-		[EAMCET 2002]
	(a) 1/3	(b) 1/4	(c) 5/12	(d) 2/3
46.	A card is drawn from a	pack of cards. Find the probabi	lity that the card will be a c	lueen or a heart
	(a) $\frac{4}{3}$	(b) $\frac{16}{3}$	(c) $\frac{4}{13}$	(d) $\frac{5}{3}$

147. The chance of India winning toss is 3/4. If it wins the toss, then its chance of victory is 4/5 otherwise it is only 1/2. Then chance of India's victory is

	(a) 1/5	(b) 3/5	(c) 3/40	(d)	29/40
148.	Let A and B be eve	ents for which $P(A) = x$, $P(B) = y$,	$P(A \cap B) = z$, then $P(\overline{A} \cap B)$ equa	ls	[AMU 1999]
	(a) $(1-x)y$	(b) $1 - x + y$	(c) <i>y</i> – <i>z</i>	(d)	1 - x + y - z
49.	A and B are two ev	vents such that $P(A) = 0.4$, $P(A + B)$	P(AB) = 0.7 and $P(AB) = 0.2$, then $P(AB) = 0.2$	<i>B</i>) =	
	(a) 0.1	(b) 0.3	(c) 0.5	(d)	None of these
50.	A card is drawn at	random from a pack of cards. Th	e probability of this card being	a red	or a queen is
	(a) 1/13	(b) 1/26	(c) 1/2	(d)	7/13
51.	If $P(A) = 0.4, P(B) =$	$x, P(A \cup B) = 0.7$ and the events A a	nd B are mutually exclusive, th	x = x	
	(a) 3/10	(b) 1/2	(c) 2/5	(d)	1/5
52.	One card is drawn	randomly from a pack of 52 card	s, then the probability that it is	s a kin	g or spade is
					, 1996; MP PET 1990, 94]
	(a) 1/26	(b) 3/26	(c) 4/13	(d)	3/13
53.		owing a total of 7 or 12 with 2 dic	_		[Kurukshetra CEE 2002]
	(a) $\frac{2}{9}$	(b) $\frac{5}{9}$	(c) $\frac{5}{36}$	(d)	$\frac{7}{36}$
54.	The probability of	f three mutually exclusive events	A B and C are given by $2/3$	1// an	d 1/6 respectively. The
54.	statement	[MNR 1987]	, , , , , , , , , , , , , , , , , , ,	-/	
	(a) Is true	(b) False	(c) Nothing can be said	(d)	Could be either
5 5 .	If A_1, A_2, \dots, A_n are	any <i>n</i> events, then			
	(a) $P(A_1 \cup A_2 \cup, \cup$	$((A_n) = P(A_1) + P(A_2) + \dots + P(A_n) $	(b) $P(A_1 \cup A_2 \cup \cup A_n) > H$	$P(A_1) + P(A_1) + P$	$P(A_2) + \dots + P(A_n)$
	(c) $P(A_1 \cup A_2 \cup, \cup)$	$((A_n) \le P(A_1) + P(A_2) + \dots + P(A_n) $	(d) None of these		
56.		students 70 passed in Mathemat t random from the class, has pass		n both.	The probability that a
	(a) 13/25	(b) 3/25	(c) 17/25	(d)	8/25
57.		60% cases and <i>B</i> speaks truth in		• •	, .
	while describing s	_		5	,
	(a) 0.56	(b) 0.54	(c) 0.38	(d)	0.94
58.	The chances of thr	rowing a total of 3 or 5 or 11 with	two dice is		
	(a) 5/36	(b) 1/9	(c) 2/9		19/36
59 .		2 red, 3 black and 4 white balls.	Out of these three balls are dr	rawn to	ogether. The probability
	of these being of s		5		
	(a) $\frac{1}{84}$	(b) $\frac{1}{21}$	(c) $\frac{5}{84}$	(d)	None of these
60.		t random from a well shuffled pa	ack of 52 cards. The probabilit	v of ge	etting a two of heart or
	diamond is	[DSSE 1979]		.) •1 8	
	(a) $\frac{1}{26}$	(b) $\frac{1}{52}$	(c) $\frac{1}{13}$	(d)	None of these
	$(a) \frac{1}{26}$	$(0) \frac{1}{52}$	$\frac{1}{13}$	(u)	None of these
61.	A committee of five serve together or ne	e is to be chosen from a group of 9 ot at all is	people. The probability that a ce	ertain n	narried couple will either
	(a) $\frac{1}{2}$	(b) $\frac{5}{9}$	(c) $\frac{4}{9}$	(d)	2
	2	,	,		5
62.	A and B toss a coir winning is	n alternately, the first to show a l	head being the winner. If A star	rts the	game, the chance of his
	(-) = (0)				[MP PET 1987]
	(a) 5/8	(b) $1/2$	(c) 1/3	(d)	

163. If A and B are two events, then the probability of the event that at most one of A, B occurs, is

54	Probability			
	(a) $P(A' \cap B) + P(A \cap B')$	$+ P(A' \cap B')$	(b) $1 - P(A \cap B)$	
	(c) $P(A') + P(B') + P(A \cup B)$	8) – 1	(d) All of these	
64.	_	dependently on a problem. If the constant of t		ties that they will solve it are 1/2
	(a) $\frac{2}{5}$	(b) $\frac{3}{5}$	(c) $\frac{1}{3}$	(d) None of these
65.			2 5 4	pectively. The probability that or
		ill hit the target when they fire		
	(a) $\frac{11}{24}$	(b) $\frac{1}{12}$	(c) $\frac{1}{8}$	(d) None of these
66.	If <i>A</i> speaks truth in 75 stating the same staten		, then the probability	that they contradict each other i
	7	12	10	[MP PET 1997, 2002
	(a) $\frac{7}{20}$	(b) $\frac{13}{20}$	(c) $\frac{12}{20}$	(d) $\frac{2}{5}$
67.	The probabilities that A of them will be alive at		re p and q respectively	, then the probability that only on
	(a) $p+q$	(b) $p + q - 2qp$	(c) $p+q-pq$	(d) $p+q+pq$
68.		ee boxes containing 3 white an ndom. Then the probability that (b) 1/4		2 black, 1 white and 3 black ball all will be drawn (d) 3/16
69.		es of the student passing in tes		es either in tests I and II or tests 1/2 respectively. If the probabilit
	(c) $p = 1, q = 0$		(d) There are infini	ite values of p, q
7 0.				lrawn without replacing them. Th
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) $\frac{1}{4}$
71.	The probability of A, B	, <i>C</i> solving a problem are $\frac{1}{3}, \frac{2}{7}$	$\frac{3}{8}$ respectively. If all	the three try to solve the problem
	simultaneously, the pro	bability that exactly one of the	m will solve it, is	
	(a) $\frac{25}{168}$	(b) $\frac{25}{56}$	(c) $\frac{20}{168}$	(d) $\frac{30}{168}$
72.	The two events A and A	50	0.50 respectively. The p	probability that both A and B occu
	(a) 0.39	(b) 0.25	(c) 0.904	(d) None of these
73.	-	oples and 7 oranges and anoth asket. Find the probability that		apples and 8 oranges. One fruit : les or both oranges
	(a) 24/144	(b) 56/144	(c) 68/144	(d) 76/144
	A, B, C are any three ev	ents. If $P(S)$ denotes the proba		
74.			(b) $D(A) + D(D) + D(C)$	D(D)D(C)
74.	(a) $P(A) + P(B) + P(C) - P$		(b) $P(A) + P(B) + P(C)$	$-\Gamma(B)\Gamma(C)$
	(c) $P(A \cap B) + P(A \cap C) -$	$P(A \cap B \cap C)$	(d) None of these	– <i>F(B)F(C)</i> Occur is [Ranchi BIT 1990; IIT 198

176.	If A and B are any	two events, then $P(\overline{A} \cap B) =$		[MP PET 2001]		
	(a) $P(\overline{A})P(\overline{B})$	(b) $1 - P(A) - P(B)$	(c) $P(A) + P(B) - P(A \cap B)$	(d) $P(B) - P(A \cap B)$		
177.	-	two events, then the true relatic tess than $P(A) + P(B) - 1$	on is (b) $P(A \cap B)$ is not greate	[IIT 1988] er than $P(A) + P(B)$		
	(c) $P(A \cap B) = P(A)$		(d) $P(A \cap B) = P(A) + P(B) +$			
78.	A bag contains 3 b		lls are drawn one by one at rand			
	(a) $\frac{4}{49}$	(b) $\frac{1}{7}$	(c) $\frac{4}{7}$	(d) $\frac{12}{49}$		
7 9 .	If $P(A) = 0.25$, $P(B) =$	= 0.50 and $P(A \cap B) = 0.14$, then	$P(A \cap \overline{B})$ is equal to	[Rajasthan PET 2001]		
	(a) 0.61	(b) 0.39	(c) 0.48	(d) None of these		
80.	Suppose that A, B,	<i>C</i> are events such that $P(A) = P(A)$	$B) = P(C) = \frac{1}{4}, P(AB) = P(CB) = 0, P(AC) = 0, P($	$P(A + B) = \frac{1}{8}$, then $P(A + B) = [MP PET 1]$		
	(a) 0.125	(b) 0.25	(c) 0.375	(d) 0.5		
81.	For any two indep	endent events E_1 and E_2 $P\{(E_1$	$\cup E_2) \cap (\overline{E}_1 \cap \overline{E}_2)$ } is	[IIT 1991]		
	(a) $\leq \frac{1}{4}$	(b) $>\frac{1}{4}$	(c) $\geq \frac{1}{2}$	(d) None of these		
82.	Two cards are dra an ace of heart	wn without replacement from a	a well-shuffled pack. Find the p			
	1	- 1	1	[UPSEAT 2002]		
	(a) $\frac{1}{25}$	(b) $\frac{1}{26}$	(c) $\frac{1}{52}$	(d) None of these		
83.	If $P(A \cup B) = 0.8$ and	nd $P(A \cap B) = 0.3$, then $P(\overline{A}) + P(\overline{B})$)=	[EAMCET 2003]		
	(a) 0.3	(b) 0.5	(c) 0.7	(d) 0.9		
84.	If A and B are two	independent events such that <i>H</i>	$P(A \cap B') = \frac{3}{25}$ and $P(A' \cap B) = \frac{8}{25}$, t	hen $P(A) =$		
	(a) $\frac{1}{5}$	(b) $\frac{3}{8}$	(c) $\frac{2}{5}$	(d) $\frac{4}{5}$		
85.	If A and B are two	independent events such that <i>I</i>	P(A) = 0.40, P(B) = 0.50, then P (n	neither A nor B) is equal to		
	(a) 0.90	(b) 0.10	(c) 0.2	(d) 0.3		
		Adv	ance Level			
86.	The probability of	India winning a test match aga	inst West Indies is $\frac{1}{2}$. Assuming	g independence from match to		
	match, the probability that in a 5 match series India's second win occurs at the third test is					
	(a) $\frac{2}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{8}$		
	5	-				
87.	A box contains 3 v	white and 2 red balls. A ball is ty of second ball to be red is	drawn and another ball is drawn	n without replacing first ball,		

188. The probability of solving a question by three students are $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$ respectively. Probability of question is being solved will be

(a) $\frac{33}{48}$ (b) $\frac{35}{48}$ (c) $\frac{31}{48}$ (d) $\frac{37}{48}$

189. Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys, one girl and 3 boys. One child is selected at random from each group. The chance that three selected consisting of 1 girl and 2 boys, is]

(a) $\frac{9}{32}$ (b) $\frac{3}{22}$ (c) $\frac{13}{22}$ (d) None of these

190. A, B, C are three events for which P(A) = 0.6, P(B) = 0.4, P(C) = 0.5, $P(A \cup B) = 0.8$, $P(A \cap C) = 0.3$ and $P(A \cap B \cap C) = 0.2$. If $P(A \cup B \cup C) \ge 0.85$ then the interval of values of $P(B \cap C)$ is

- (a) [0.2, 0.35] (b) [0.55, 0.7]
- (c) [0.2, 0.55] (d) None of these
- 191. A student has to match three historical events-Dandi March, Quit India Movement and Mahatma Gandhi's assassination with the years 1948, 1930 and 1942. The student has no knowledge of the correct answers and decides to match the events and years randomly. Let $E_i(0 \le i \le 3)$ denote the event that the student gets exactly *i* correct answers. Then

(a)
$$P(E_0) + P(E_3) = P(E_1)$$
 (b) $P(E_0)P(E_1) = P(E_3)$ (c) $P(E_0 \cap E_1) = P(E_2)$ (d) $P(E_0) + P(E_1) + P(E_3) = 1$

192. Given that A, B and C are events such that P(A) = P(B) = P(C) = 1/5, $P(A \cap B) = P(B \cap C) = 0$ and $P(A \cap C) = 1/10$.

The probability that at least one of the events A, B or C occurs is

- (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 1
- **193.** Suppose that a die (with faces marked 1 to 6) is loaded in such a manner that for $K = 1, 2, 3, \dots, 6$, the probability of the face marked K turning up when die is tossed is proportional to K. The probability of the event that the outcome of a toss of the die will be an even number is equal to
 - (c) $\frac{2}{5}$ (d) $\frac{1}{21}$ (b) $\frac{4}{7}$ (a) $\frac{1}{2}$
- 194. An unbiased die is tossed until a number greater than 4 appears. The probability that an even number of tosses is needed is
 - (a) 1/2 (b) 2/5 (c) 1/5 (d) 2/3

195. For the three events *A*, *B* and *C*; *P*(exactly one of the events *A* or *B* occurs) = *P*(exactly one of the events *B* or = P(exactly one of the events C or A occurs) = p and P (all the three events occur)C occurs) simultaneously) = p^2 , where 0 . Then the probability of at least one of the three events A, B and Coccurring is [IIT 1996]

- (c) $\frac{p+3p^2}{2}$ (a) $\frac{3p+2p^2}{2}$ (b) $\frac{p+3p^2}{4}$ (d) $\frac{3p+2p^2}{4}$
- 196. A man alternately tosses a coin and throws a dice beginning with the coin. The probability that he gets a head in the coin before he gets a 5 or 6 in the dice is
- (c) $\frac{1}{3}$ (a) $\frac{3}{4}$ (b) $\frac{1}{2}$ (d) None of these Conditional Probability

Basic Level

[UPSEAT 1999]

[IIT Screening 1994]

197. Two cards are drawn successively with replacement from a pack of 52 cards. The probability of drawing two aces is

[MNR 1988; UPSEAT 2000]

(a)
$$\frac{1}{169}$$
 (b) $\frac{1}{221}$ (c) $\frac{1}{2652}$ (d) $\frac{4}{663}$

198. A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of these in an ace, is

(a)
$$\frac{9}{20}$$
 (b) $\frac{3}{16}$ (c) $\frac{1}{6}$ (d) $\frac{1}{9}$

199. From a pack of 52 cards, two cards are drawn one by one without replacement. The probability that first drawn card is king and second is queen, is

(a)
$$\frac{2}{13}$$
 (b) $\frac{8}{663}$
(c) $\frac{4}{663}$ (d) $\frac{103}{663}$

200.	_	s two cards are drawn in succ DR the probability that both are PET 1994]		replacement. The probability
	(a) 2/13	(b) 1/51	(c) 1/221	(d) 2/21
201.		tics is given to three students 1/4. Probability that the proble [EE 2002]		ve probability of solving the
	(a) 3/4	(b) 1/2	(c) 2/3	(d) 1/3
202.	A coin is tossed and a di	ce is rolled. The probability that	at the coin shows the head a	nd the dice shows 6 is
	(a) 1/8	(b) 1/12	(c) 1/2	(d) 1
203.		nead appears or until the coin h e probability that the coin will		a head does not occur on the
	(a) $\frac{1}{2}$	(b) $\frac{3}{5}$	(c) $\frac{1}{4}$	(d) $\frac{1}{3}$
204.	A bag contains 5 white, the probability that all a	7 red and 8 black balls. If four are white	balls are drawn one by one	without replacement, what is
	(a) $\frac{1}{969}$	(b) $\frac{1}{380}$	(c) $\frac{5}{20}$	(d) None of these
205.		ts numbered from 1 to 19. A ti bility that both the tickets will		ther ticket is drawn without
	(a) $\frac{9}{19}$	(b) $\frac{8}{18}$	(c) $\frac{9}{18}$	(d) $\frac{4}{19}$
206.	For two events A and B,	if $P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4}$ and $P\left(\frac{B}{A}\right) =$	$\frac{1}{2}$, then	
	(a) A and B are indepen	dent (b)	$P\left(\frac{A'}{B}\right) = \frac{3}{4}$	(c) $P\left(\frac{B'}{A'}\right) = \frac{1}{2}$ (d)
207.	If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and	$P(A \cap B) = \frac{1}{4}$, then $P\left(\frac{B}{A}\right) =$		
	(a) 1	(b) o	(c) 1/2	(d) 1/3
208.	From a pack of 52 card second is a king is	s two are drawn with replacer	nent. The probability that t	
	(-) + 100			[MNR 1979]
	(a) 1/26	(b) 17/2704	(c) 1/52	(d) None of these
209.		teacher will give an unannoun robability that the student will		leeting is 1/5. If a student is
	(a) 1/5	(b) 2/5	(c) 7/5	(d) 9/25
210.	If <i>E</i> and <i>F</i> are independe	ent events such that $0 < P(E) < 1$	and $0 < P(F) < 1$, then	[IIT 1989]
	(a) <i>E</i> and <i>F</i> ^c (the compleindependent	ement of the event <i>F</i>) are indep	pendent	(b) E^c and F^c are
	(c) $P\left(\frac{E}{F}\right) + P\left(\frac{E^c}{F^c}\right) = 1$		(d) All of these	
211.	The probability of gettin [MNR 1983; Kurukshetra	g at least one tail in 4 throws c CEE 1998]	of a coin is	
	(a) 15/16	(b) 1/16	(c) 1/4	(d) None of these
212.	If any four numbers are 7 is	selected and they are multiplie	ed, then the probability that	the last digit will be 1, 3, 5 or
				[Rajasthan PET 2002]
	(a) 4/625	(b) 18/625	(c) 16/625	(d) None of these

213.				
j.		white balls and 2 black ba bag, then the probability th		alls and 5 black balls. If one ball is
	(a) 0.25	(b) 0.2	(c) 0.3	(d) None of these
214.	A binary number	is made up of 16 bits. The independent of one another	e probability of an incorrect bi . The probability of forming an	t appearing is p and the errors in
	(a) p/16	(b) p^{16}	(c) ${}^{16}C_1p^{16}$	(d) $1 - (1-p)^{16}$
215.			to athletes A and B are $\frac{1}{5}$ and	$\frac{1}{4}$. The probability of winning by
	neither of them, is	2	2	4
	(a) $\frac{3}{5}$	(b) $\frac{3}{4}$	(c) $\frac{2}{3}$	(d) $\frac{4}{5}$
16.	Seven chits are nunber on any se		lrawn one by one with replacem	nents. The probability that the least
	(a) $1 - \left(\frac{2}{7}\right)^4$	(b) $4\left(\frac{2}{7}\right)^4$	(c) $\left(\frac{3}{7}\right)^3$	(d) None of these
217.				n at random. It is given that the nimum number on them is 5 with
	(a) $\frac{1}{8}$	(b) $\frac{13}{15}$	(c) $\frac{1}{9}$	(d) None of these
18.				nd the other 10 have the letter ' <i>T</i> ' ne order, the probability of making
	(a) $\frac{4}{27}$	(b) $\frac{5}{38}$	(c) $\frac{1}{8}$	(d) $\frac{9}{80}$
19.		0}. A number is chosen at is more than 10 is	random from the set A and it i	s found to be a prime number. The
	(a) $\frac{9}{10}$	(b) $\frac{1}{10}$	(c) $\frac{1}{5}$	(d) $\frac{1}{2}$
20.	A number is chose		bers 10 to 99. By seeing the nu	mber a man will laugh if product of bability that he will laugh at least
	(a) $1 - \left(\frac{3}{5}\right)^3$	(b) $\left(\frac{43}{45}\right)^3$	(c) $1 - \left(\frac{4}{25}\right)^3$	(d) $1 - \left(\frac{43}{45}\right)^3$
21.	woman watches t	he show is 0.5. The probab ity that a wife watches the	ility that a man watches the sho shows given that her husband d	and the probability that a married ow, given that his wife does, is 0.7. oes is
	(a) $\frac{7}{8}$	(b) $\frac{3}{5}$	(c) $\frac{2}{7}$	(d) 1
22.	0	e is rolled together till a su [IIT 1989]	um of either 5 or 7 is obtained.	Then the probability that 5 comes
	(a) $\frac{1}{5}$	(b) $\frac{2}{5}$	(c) $\frac{4}{5}$	(d) None of these
23.	A bag contains 3 1	5	second bag contains 6 red and	4 black balls. A ball is drawn from
	(a) $\frac{3}{20}$	(b) $\frac{21}{40}$	(c) $\frac{3}{8}$	(d) All of these
24.			a pair of dice. The first person probability that <i>B</i> wins the game	to through 9 from both dice will be is
	(a) ⁹	(b) $\frac{8}{17}$	(c) $\frac{8}{9}$	(d) $\frac{1}{9}$
	(a) $\frac{5}{17}$	17	9	9
	(a) $\frac{17}{17}$	17	9 Advance Level	, , , , , , , , , , , , , , , , , , ,

225. An anti-aircraft gun take a maximum of four shots at an enemy plane moving away from it. The probability of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. The probability that the gun hits the plane is (a) 0.25 (b) 0.21 (c) 0.16 (d) 0.6976 **226.** If A and B are two events such that P(A | B) = P(A' | B') = p and P(B) = 0.05, then value of p so that P(B | A) = 0.5 is (a) 0.75 (b) 0.85 (c) 0.95 (d) 1 227. Eight tickets numbered 000, 010, 011, 011, 100, 101, 101 and 110 are placed in a bag. One ticket is drawn from the bag at random. Let A, B and C denote the following events: A – "the first digit is 0" B- "the second digit is 0" and C – "the third digit is 0". then A, B and C are (a) Independent (b) Mutually exclusive (c) Mutually non-exclusive (d) Not independent **228.** A die is rolled three times. Let E_1 denote the event of getting a number larger than the previous number each time and E_2 denote the event that the numbers form an increasing A.P., then (a) $P(E_2) \leq P(E_1)$ (b) $P(E_2 \cap E_1) = 1/36$ (c) $P(E_2 \mid E_1) = 3/10$ (d) $P(E_1) = (10/3)P(E_2)$ 229. A reputed coaching employed 8 professors in the staff. Their respective probabilities of remaining in employment for three years are $\frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \frac{8}{10}, \frac{9}{10}$. The probability that after 3 years at least six of these still work in the coaching is (d) None of these (a) 0.15 (b) 0.19 (c) 0.3 230. For a biased die the probabilities for different faces to turn up are given below Face: 2 1 3 4 5 6 Probability: .21 .1 .32 .15 .05 .17 The die is tossed and you are told that either face 1 or 2 has turned up. Then the probability that it is face 1, is[IIT 1981 (d) None of these (a) 5/21 (b) 5/22 (c) 4/21 231. A biased die is tossed and the respective probabilities for various faces to turn up are given below Face: 2 3 6 1 4 5 Probability: .18 .1 .24 .19 .15 .14 If an even face has turned up, then the probability that it is face 2 or face 4, is [MNR 1992] (a) 0.25 (b) 0.42 (c) 0.75 (d) 0.9 232. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then the probability for the ball chosen to be white is (b) 7/15 (c) 8/15 (a) 2/15 (d) 14/15 233. A man draws a card from a pack of 52 playing cards, replaces it and shuffles the pack. He continues this processes until he gets a card of spade. The probability that he will fail the first two times is (a) 9/16 (c) 9/64 (d) None of these (b) 1/16 **234.** For any two events *A* and *B* in a sample space [IIT 1991] (a) $P\left(\frac{A}{B}\right) \ge \frac{P(A) + P(B) - 1}{P(B)}, P(B) \ne 0$ is always true (b) $P(A \cap B) = P(A) - P(A \cap B)$ does not hold (c) $P(A \cup B) = 1 - P(\overline{A})P(\overline{B})$, if A and B are disjoint (d) None of these 235. Three groups A, B, C are competing for positions on the Board of Directors of a company. The probabilities of their winning are 0.5, 0.3, 0.2 respectively. If the group A wins, the probability of introducing a new product is 0.7 and the corresponding probabilities for group B and C are 0.6 and 0.5 respectively. The probability that the new product will be introduced, is [Roorkee 1994] (a) 0.18 (b) 0.35 (c) 0.10 (d) 0.63 **236.** If \overline{E} and \overline{F} are the complementary events of events *E* and *F* respectively and if 0 < P(F) < 1, then

(a) $P(E/F) + P(\overline{E}/F) = 1$ (b) $P(E/F) + P(E/\overline{F}) = 1$ (c) $P(\overline{E}/F) + P(E/\overline{F}) = 1$ (d) $P(E/\overline{F}) + P(\overline{E}/\overline{F}) = 1$ 237. Let A, B, C be three mutually independent events. Consider the two statements S_1 and S_2

 $S_1: A$ and $B \cup C$ are independent; $S_2: A$ and $B \cap C$ are independent

	Then			[IIT Screening 1994]
	(a) Both S_1 and S_2 are t	rue (b)	Only S_1 is true	(c) Only S_2 is true (d)
238.	In a certain town, 40%	of the people have brown hair son selected at random from th [MNR 1988] (b) 3/8	, 25% have brown eyes and	l 15% have both brown hair
239.		and $P(A \cup B) = P(A) + P(B) - P(A)$		[IIT 1995]
	(a) $P(B/A) = P(B) - P(A)$	(b) $P(A^c \cup B^c) = P(A^c) + (B^c)$	(c) $P(A \cup B)^c = P(A^c)P(B^c)$	(d) $P(A / B) = P(A)$
240.	It has been found that if and B take part in a serie	A and B play a game 12 times, es of 3 games. The probability t	A wins 6 times, B wins 4 t hat they will win alternately	imes and they draw twice. A y is
	(a) $\frac{5}{72}$	(b) $\frac{5}{36}$	(c) $\frac{19}{27}$	(d) None of these
41.	on the second is	after the other. The probability		
42.		 (b) 7/18 B have equal number of dauganger aughters of A and B. The prolestication is each of them have is (b) 5 		
43.	A bag contains $(2n+1)$ contains $(n+1)$ coins are fair. A contained at the fair of the f	bins. It is known that n of these coin is picked up at random fr	e have a head on both the s	ides, whereas the remaining
	results in a head is 31/42			
	(a) 10 The letters of the word P	(b) 8 ROPABLIETY are surjetten down	(c) 6	(d) 25 denote the event that two l'
44.		ROBABILITY are written down	-	
	(a) $P(E_1) = P(E_2)$	ote the event that two <i>B</i> 's are to (b) $P(E_1 \cap E_2) = 2/55$	(c) $P(E_1 \cup E_2) = 18/55$	(d) $P(E E) = 1/5$
	$(a) I(E_1) - I(E_2)$	(b) $I(E_1 + E_2) = 2735$	(c) $T(E_1 \cup E_2) = 107.55$	(u) $T(E_2 / E_1) = 1/5$
			Baye's rul	e and Total probability
		Basic Le	evel	
45.	which one is correct. The correct answer to a question of the correct answer to a question of the correct and	e are multiple choice question ne probability that a student k tion, then the probability that h	nows the answer to a que ne was guessing, is	stion is 90%. If he gets the
	(a) $\frac{37}{40}$	(b) $\frac{1}{37}$	(c) $\frac{36}{37}$	(d) $\frac{1}{0}$
46.	Three urns contain 6 re	ed, 4 black; 4 red, 6 black and a ball is drawn from it. If the	d 5 red, 5 black balls resp	ectively. One of the urns is
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{2}{5}$	(d) $\frac{2}{3}$
47.	There are 3 bags, each co	ontaining 5 white balls and 3 bl white ball is drawn at random	ack balls. Also there are 2 b	ags, each containing 2 white
48.	to be hearts. Find the pro	(b) 45/61 cards is lost. From the remaini obability of the missing card to	be a heart	
	(a) $\frac{5}{9}$	(b) $\frac{6}{37}$	(c) $\frac{11}{50}$	(d) $\frac{13}{31}$
49.	One bag contains four w	white balls and three black ball rawn from the first bag and pla	s and a second bag contain	is three white balls and five

	(a) $\frac{7}{11}$	19	3							
	(a) $\frac{7}{2}$	(b) $\frac{7}{19}$	(c) $\frac{2}{3}$	(d) None of these						
59.	the total productio produced at plant	n. 85 out of 100 T.Vs prod B meet the quality standar	uced at plant A meet the quality	duces 80% and <i>B</i> produces 20% standards while 65 out of 100 T. my is selected at random and is n manufactured by the plant <i>B</i> is						
	probability that hi		that he copied it, is 1/8. The pr	at he copies the answer is 1/6. T robability that he knew the answ (d) None of these						
58.	(a) $\frac{1}{4}$ In a test, an exam	(b) $\frac{1}{5}$ ince either guesses or cop	(c) $\frac{1}{6}$ pies or knows the answer to a s	(d) $\frac{1}{7}$ multiple choice question with fo						
57.				nto an empty urn. From this urn balls transferred, 3 are white and						
			the truck driver is 0. the probability that h (c) $\frac{2}{51}$							
56.	An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilit of an accident involving a scooter driver, car driver and a truck driver is 0.01, 0.03 and 0.15 respectively. On									
55.	output 5, 4 and 2	percent respectively are d		and 40% of the total bolts. Of the at random from the product. If the machine <i>B</i> is (d) $\frac{11}{69}$						
			Advance Level							
	(a) 1/2	(b) $1/2^n$	(c) $1/2^{n-1}$	(d) None of these						
	(a) 3/28 If a coin be tossed a	(b) 2/28 n times then probability th	ury chosen at random there will (c) 7/28 at the head comes odd times is	(d) 5/28 [Rajasthan PET 200						
	(a) $\frac{3}{5}$	(b) $\frac{7}{15}$	(c) $\frac{1}{2}$	(d) None of these						
	(a) $3/8$ A bag x contains 3 y and a ball out of it	(b) 1/9 white balls and 2 black ba are picked at random. The	(c) $5/16$ Ils and another bag y contains 2 e probability that the ball is whit	(d) None of these white balls and 4 black balls. A b						
;1.	(a) $\frac{3}{8}$ A coin is tossed 3 ti	(b) $\frac{7}{8}$ mes by 2 persons. What is	(c) $\frac{5}{8}$ the probability that both get eq	(d) None of these ual number of heads						
50.	house. If 40% of t specific home if he	hese homes are usually le selects three master keys	ft unlocked, the probability that at random before leaving the of							
		(b) $\frac{38}{63}$	(c) $\frac{17}{65}$	(d) $\frac{1}{3}$						

260.	A coin is tossed 3 times	(OR Three coins are tossed all t	ogether). The probability of	getting at least two heads is [MP PET 1995]
	(a) $\frac{1}{8}$	(b) $\frac{3}{8}$	(c) $\frac{1}{2}$	(d) $\frac{2}{3}$
261.	The probability of havin	g at least one head in 3 throws	with a coin is	-
	(a) 7/8	(b) 3/8	(c) 1/8	(d) None of these
262.	A fair coin is tossed <i>n</i> to occurs 8 times, then <i>n</i> is [Kurukshetra CEE 1998; A	-	ad occurs 6 times is equal	to the probability that head
	(a) 15	(b) 14	(c) 12	(d) 7
263.		e of a binomial distribution are	e 4 and 3 respectively, the	en the probability of getting
	exactly six successes in $(1)^{10}(2)^6$		$(1)^{10}(2)^{6}$	$(1)^{6}(2)^{6}$
	(a) ${}^{16}C_6\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)$	(b) ${}^{16}C_6\left(\frac{1}{4}\right)^6\left(\frac{3}{4}\right)^{10}$	(c) ${}^{12}C_6\left(\frac{1}{4}\right) \left(\frac{3}{4}\right)$	(d) ${}^{12}C_6\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)$
264.	In a binomial probabilit	y distribution, mean is 3 and sta	andard deviation is $\frac{3}{2}$. The	n the probability distribution
	is [AISSE 1979]			
	(2) $(3, 1)^{12}$	(b) $\left(\frac{1}{4} + \frac{3}{4}\right)^{12}$	(c) $(1 + 3)^9$	(d) $(3, 1)^9$
	(a) $\left(\frac{-}{4}, \frac{-}{4}\right)$	$\left(0\right)\left(\frac{1}{4}+\frac{1}{4}\right)$	$\left(\begin{array}{c} -\frac{1}{4} \\ -\frac{1}{4} \end{array} \right)$	$\left(\frac{1}{4} + \frac{1}{4} \right)$
265.	If X follows a binomial d	listribution with parameters $n =$		X = 2), then $p =$
- 66	(a) 1/2	(b) 1/4	(c) 1/6	(d) 1/3
266.	(a) 18	of a binomial distribution are 6 (b) 12	and 4. The parameter <i>n</i> is (c) 10	[MP PET 2000] (d) 9
267	• •	binomial distribution with pa		
207.	independent of n and r ,		numeters n unu p, where	P(X = n - r)
	- 1	1	(-) 1	
	(a) $p = \frac{1}{2}$	(b) $p = \frac{1}{3}$	(c) $p = \frac{1}{4}$	(d) None of these
268.		of sixes in four consecutive three	ows of a dice, then $P(x = 4)$	is
-	(a) 1/1296	(b) 4/6	(c) 1	(d) 1295/1296
269.	The probability that an consecutive occasions is	event will fail to happen is 0.	05. The probability that the	e event will take place on 4
				[Roorkee 1990]
	(a) 0.00000625		(c) 0.00001875	
270.	A die is thrown three t successes is	imes. Getting a 3 or a 6 is co [DSSE 1981]	onsidered success. Then the	e probability of at least two
	2		1	
	(a) $\frac{2}{9}$	(b) $\frac{7}{27}$	(c) $\frac{1}{27}$	(d) None of these
271.	[MP PET 1999]	of happening an event and q its	failure, then the total chane	ce of <i>r</i> successes in <i>n</i> trials is
	(a) ${}^{n}C_{n+r}p^{r}q^{n-r}$	(b) ${}^{n}C_{r}p^{r-1}q^{r+1}$	(c) ${}^{n}C_{r}q^{n-r}p^{r}$	(d) ${}^{n}C_{r}p^{r+1}q^{r-1}$
272.	In tossing 10 coins, the j	probability of getting exactly 5 h	heads is	
	(a) $\frac{9}{128}$	(b) $\frac{63}{256}$	(c) $\frac{1}{2}$	(d) $\frac{193}{256}$
273.	-	sband-wife couple the chances children being a boy and a girl i		or a girl are the same, the
	(a) $\frac{1}{4}$	(b) 1	(c) $\frac{1}{2}$	(d) $\frac{1}{8}$
274	The probability that a s	tudent is not a swimmer is 1/	5 What is the probability t	hat out of 5 students 4 are

274. The probability that a student is not a swimmer is 1/5. What is the probability that out of 5 students, 4 are swimmers [DCE 1999]

	(a) ${}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\frac{1}{5}$	(b) $\left(\frac{4}{5}\right)^4 \frac{1}{5}$	(c) ${}^{5}C_{1}\frac{1}{5}\left(\frac{4}{5}\right)^{4}^{5}C_{4}$	(d) None of these
75.	Three coins are tossed t (a) $1/2$	ogether, then the probability of (b) 3/4	getting at least one head is (c) 1/8	[Rajasthan PET 2001] (d) 7/8
76.	,	and 4 black balls. A ball is draw		
	(a) $\frac{8}{141}$	(b) $\frac{10}{243}$	(c) $\frac{11}{243}$	(d) $\frac{8}{41}$
77.	success is	. Getting an odd number is cor [AIEEE 2002]		e variance of distribution of
_	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4
78.		s. The probability of getting exa		10 -
	(a) 512/513	(b) 105/512	(c) 100/153	(d) ${}^{10}C_6$
′9 .	-	s twice as often as it fails. Find	the probability that in 4 tria	als there will be at least three
	success	[AMU 1999]	(a) 16/27	
20	(a) $4/27$ The records of a hospit	(b) 8/27 al show that 10% of the cases ((c) 16/27	(d) 24/27
50.	-	he probability that only three w		ai. If o patients are suffering
	(a) 1458×10^{-5}	(b) 1458×10^{-6}	(c) 41×10^{-6}	(d) 8748×10^{-5}
21		oy and girl to be born are same		
,1,	least one girl, is	by and girl to be born are salle		is the probability of being at
	(a) $\frac{14}{16}$	(b) $\frac{15}{15}$	(c) $\frac{1}{8}$	(d) $\frac{3}{8}$
•	10	10	0	8
	present in committee, is	nade of 5 members from 6 men a	and 4 women. The probabili	ity that at least one woman is
	42	(b) $\frac{41}{42}$	(c) $\frac{2}{63}$	(d) $\frac{1}{7}$
33.		success is getting 1 or 6 on a to		ice of number of successes[AI
	(a) $\mu = 1, \sigma^2 = 2/3$	(b) $\mu = 2/3, \sigma^2 = 1$	(c) $\mu = 2, \sigma^2 = 2/3$	(d) None of these
84.	A coin is tossed 4 times.	. The probability that at least of	ne head turns up is	[MP PET 2000]
	(a) 1/16	(b) 2/16	(c) 14/16	(d) 15/16
85.	If a dice is thrown twice	the probability of occurrence	- C + -+ 1 +	
				[UPSEAT 2003]
_	(a) 11/36	(b) 7/12	(c) 35/36	(d) None of these
86.			(c) 35/36	(d) None of these
	In a binomial distribution is [EAMCET 2002] (a) 6	(b) 7/12(b) 7/billity of getting a s(b) 8	(c) 35/36 success is 1/4 and standard ((c) 12	(d) None of thesedeviation is 3, then its mean(d) 10
	In a binomial distribution is [EAMCET 2002] (a) 6	(b) 7/12 on the probability of getting a s	(c) 35/36 success is 1/4 and standard ((c) 12	(d) None of thesedeviation is 3, then its mean(d) 10
	In a binomial distribution is [EAMCET 2002] (a) 6	(b) 7/12(b) 7/billity of getting a s(b) 8	(c) 35/36 success is 1/4 and standard ((c) 12	(d) None of thesedeviation is 3, then its mean(d) 10
37.	In a binomial distribution is [EAMCET 2002] (a) 6 If two coins are tossed 5 (a) $\frac{63}{256}$	 (b) 7/12 on the probability of getting a s (b) 8 5 times, then the probability of g 	(c) $35/36$ success is $1/4$ and standard (c) 12 getting 5 heads and 5 tails is (c) $\frac{2}{205}$	(d) None of these deviation is 3, then its mean (d) 10 s AMU 2002] (d) $\frac{9}{64}$
87.	In a binomial distribution is [EAMCET 2002] (a) 6 If two coins are tossed 5 (a) $\frac{63}{256}$	(b) 7/12 on the probability of getting a s (b) 8 5 times, then the probability of g (b) $\frac{1}{1024}$ ed. The probability that at least	(c) $35/36$ success is $1/4$ and standard (c) 12 getting 5 heads and 5 tails is (c) $\frac{2}{205}$	(d) None of these deviation is 3, then its mean (d) 10 s AMU 2002] (d) $\frac{9}{64}$
37. 38.	In a binomial distribution is [EAMCET 2002] (a) 6 If two coins are tossed as (a) $\frac{63}{256}$ 6 ordinary dice are rolled (a) $41 \times \frac{2^4}{3^6}$	(b) 7/12 on the probability of getting a s (b) 8 5 times, then the probability of g (b) $\frac{1}{1024}$ ed. The probability that at least	(c) $35/36$ success is $1/4$ and standard of (c) 12 getting 5 heads and 5 tails is (c) $\frac{2}{205}$ half of them will show at leas (c) $20 \times \frac{2^4}{3^6}$	(d) None of these deviation is 3, then its mean (d) 10 s AMU 2002] (d) $\frac{9}{64}$ ast 3 is (d) None of these
87. 88.	In a binomial distribution is [EAMCET 2002] (a) 6 If two coins are tossed as (a) $\frac{63}{256}$ 6 ordinary dice are rolled (a) $41 \times \frac{2^4}{3^6}$	(b) 7/12 on the probability of getting a s (b) 8 5 times, then the probability of g (b) $\frac{1}{1024}$ ed. The probability that at least (b) $\frac{2^4}{3^6}$	(c) $35/36$ success is $1/4$ and standard of (c) 12 getting 5 heads and 5 tails is (c) $\frac{2}{205}$ half of them will show at leas (c) $20 \times \frac{2^4}{3^6}$	(d) None of these deviation is 3, then its mean (d) 10 s AMU 2002] (d) $\frac{9}{64}$ ast 3 is (d) None of these
87. 88. 89.	In a binomial distribution is [EAMCET 2002] (a) 6 If two coins are tossed a (a) $\frac{63}{256}$ 6 ordinary dice are rolled (a) $41 \times \frac{2^4}{3^6}$ A fair die is tossed eight (a) ${}^8C_3 \frac{5^5}{6^8}$ A fair coin is tossed a fin	(b) 7/12 on the probability of getting a s (b) 8 5 times, then the probability of g (b) $\frac{1}{1024}$ ed. The probability that at least (b) $\frac{2^4}{3^6}$ t times. Probability that on the o	(c) $35/36$ success is $1/4$ and standard of (c) 12 getting 5 heads and 5 tails is (c) $\frac{2}{205}$ half of them will show at let (c) $20 \times \frac{2^4}{3^6}$ eighth throw a third six is of (c) $\frac{^7C_2.5^5}{6^7}$	(d) None of these deviation is 3, then its mean (d) 10 s AMU 2002] (d) $\frac{9}{64}$ ast 3 is (d) None of these bserved is (d) None of these
87. 88. 89.	In a binomial distribution is [EAMCET 2002] (a) 6 If two coins are tossed a (a) $\frac{63}{256}$ 6 ordinary dice are rolled (a) $41 \times \frac{2^4}{3^6}$ A fair die is tossed eight (a) ${}^8C_3 \frac{5^5}{6^8}$ A fair coin is tossed a fin	(b) 7/12 on the probability of getting a s (b) 8 5 times, then the probability of g (b) $\frac{1}{1024}$ ed. The probability that at least (b) $\frac{2^4}{3^6}$ t times. Probability that on the e (b) $\frac{^7C_2.5^5}{6^8}$ xed number of times. If the pro	(c) $35/36$ success is $1/4$ and standard of (c) 12 getting 5 heads and 5 tails is (c) $\frac{2}{205}$ half of them will show at let (c) $20 \times \frac{2^4}{3^6}$ eighth throw a third six is of (c) $\frac{^7C_2.5^5}{6^7}$	(d) None of these deviation is 3, then its mean (d) 10 s AMU 2002] (d) $\frac{9}{64}$ ast 3 is (d) None of these bserved is (d) None of these

	(a) $15(0.1)^2(0.9)^5$	(b) $20(0.1)^2(0.9)^5$	(c) $21(0.1)^2(0.9)^5$	(d) $23(0.1)^2(0.9)^5$
92.	The probability that least three times is	a man can hit a target is 3/4	4. He tries 5 times. The probal	bility that he will hit the target at
				[MNR 1994]
	(a) 291/364		(b) 371/464	
	(c) 471/502		(d) 459/512	
3.	A fair coin is tossed	100 times. The probability of	f getting tails an odd number o	of times is
	(a) 1/2	(b) 1/8	(c) 3/8	(d) None of these
4.	A coin is tossed 7 tim	mes. Each time a man calls he	ead. The probability that he w	ins the toss on more occasions is
	(a) $\frac{1}{4}$	(b) $\frac{5}{8}$	(c) $\frac{1}{2}$	(d) None of these
5.		_	_	ffling the pack, he again draws a eart for the first time in the third
	(a) $\frac{9}{64}$	(b) $\frac{27}{64}$	(c) $\frac{1}{4} \times \frac{{}^{39}C_2}{{}^{52}C_2}$	(d) None of these
		Adv	vance Level	
6	A fair coin is tossed	n times. Let Y he the number	r of times head is observed. If	P(X = 4), P(X = 5) and $P(X = 6)$ are
0.			of times near 15 observer. If	I(X - 4), I(X - 5) and $I(X - 5)$ are
	in H.P., then <i>n</i> is equ (a) 7	(b) 10	(c) 14	(d) None of these
			d. The chance of obtaining a t	
7				
97.				_
)7.	(a) $\frac{1}{32}$	(b) $\frac{1}{16}$	(c) $\frac{3}{16}$	(d) $\frac{5}{16}$
	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i>	(b) $\frac{1}{16}$ times. The chance that the s	(c) $\frac{3}{16}$	
	(a) $\frac{1}{32}$	(b) $\frac{1}{16}$ times. The chance that the s	(c) $\frac{3}{16}$	(d) $\frac{5}{16}$
	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i>	(b) $\frac{1}{16}$ times. The chance that the s	(c) $\frac{3}{16}$	(d) $\frac{5}{16}$ ad is not equal to the number of
8.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$	(d) $\frac{5}{16}$ ad is not equal to the number of [DCE 2002]
8.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003]	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$	(d) $\frac{5}{16}$ ad is not equal to the number of [DCE 2002] (d) None of these
8. 9.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times <i>n</i> is (a) 2	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5
8. 9.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> tim <i>n</i> is (a) 2 A box contains 24 io	(b) $\frac{1}{16}$ times. The chance that the s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettin [EAMCET 2003] (b) 3 dentical balls, of which 12 ar	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from
8. 9.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> tin <i>n</i> is (a) 2 A box contains 24 id the box one at a tim	(b) $\frac{1}{16}$ times. The chance that the s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettin [EAMCET 2003] (b) 3 dentical balls, of which 12 ar	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5
8.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times <i>n</i> is (a) 2 A box contains 24 is the box one at a time draw is	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro-	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994]	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th
8. 9.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)^2}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times <i>n</i> is (a) 2 A box contains 24 is the box one at a time draw is (a) 5/64	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro-	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) 5/32	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th (d) 1/2
8. 9.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times <i>n</i> is (a) 2 A box contains 24 in the box one at a times (a) 5/64 A die is tossed two probability distributes	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro-	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) 5/32 er than 4 is considered a su	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th
98. 99.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)^2}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times is (a) 2 A box contains 24 is the box one at a time draw is (a) 5/64 A die is tossed two	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro- (b) 27/32 dec. Getting a number great	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) 5/32 er than 4 is considered a su	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th (d) 1/2
8. 9. 0.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times is tossed <i>n</i> times is a container 24 is the box one at a time draw is (a) 5/64 A die is tossed two probability distributed (a) $\frac{2}{9}$	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro- (b) 27/32 ice. Getting a number greated tion of the number of success (b) $\frac{4}{9}$	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) 5/32 er than 4 is considered a sub- ress is (c) $\frac{1}{3}$	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th (d) 1/2 access. Then the variance of the (d) None of these
9. 9. 0.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)^2}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> tin <i>n</i> is (a) 2 A box contains 24 is the box one at a tim draw is (a) 5/64 A die is tossed twi probability distribut (a) $\frac{2}{9}$ In order to get at lea (a) 3	(b) $\frac{1}{16}$ times. The chance that the set s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro- (b) 27/32 tice. Getting a number greated tion of the number of success (b) $\frac{4}{9}$ ast once a head with probabil (b) 4	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) $5/32$ er than 4 is considered a sub- tive is (c) $\frac{1}{3}$ ity ≥ 0.9 , the number of times (c) 5	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th (d) 1/2 access. Then the variance of the (d) None of these a coin needs to be tossed is [Roork
8. 9. 0.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)^2}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> tin <i>n</i> is (a) 2 A box contains 24 is the box one at a tim draw is (a) 5/64 A die is tossed twi probability distribut (a) $\frac{2}{9}$ In order to get at lea (a) 3 India plays two ma	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro- (b) 27/32 ice. Getting a number greated tion of the number of success (b) $\frac{4}{9}$ ast once a head with probabil (b) 4 tches each with West Indies	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) $5/3^2$ er than 4 is considered a sub- ters is (c) $\frac{1}{3}$ ity ≥ 0.9 , the number of times (c) 5 and Australia. In any match	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th (d) 1/2 access. Then the variance of the (d) None of these a coin needs to be tossed is [Roork (d) None of these
98. 99. 90.	(a) $\frac{1}{32}$ A coin is tossed 2 <i>n</i> times one gets tail i (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ A coin is tossed <i>n</i> times is (a) 2 A box contains 24 in the box one at a time draw is (a) 5/64 A die is tossed two probability distribution (a) $\frac{2}{9}$ In order to get at lease (a) 3 India plays two man point 0, 1 and 2 a	(b) $\frac{1}{16}$ times. The chance that the s s (b) $1 - \frac{(2n!)}{(n!)^2}$ mes. The probability of gettim [EAMCET 2003] (b) 3 dentical balls, of which 12 ar ne with replacement. The pro- (b) 27/32 ice. Getting a number greated tion of the number of success (b) $\frac{4}{9}$ ast once a head with probabil (b) 4 tches each with West Indies	(c) $\frac{3}{16}$ number of times one gets here (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ ng head at least once is greate (c) 4 re white and 12 are black. The obability that a white ball is [IIT Screening 1994] (c) $5/3^2$ er than 4 is considered a sub- ters is (c) $\frac{1}{3}$ ity ≥ 0.9 , the number of times (c) 5 and Australia. In any match	 (d) 5/16 ad is not equal to the number of [DCE 2002] (d) None of these r than 0.8, then the least value of (d) 5 e balls are drawn at random from drawn for the 4th time on the 7th (d) 1/2 access. Then the variance of the (d) None of these a coin needs to be tossed is [Roork (d) None of these the probabilities of India getting

304. In a box of 10 electric bulbs, two are defective. Two bulbs are selected at random one after the other from the box. The first bulb after selection being put back in the box before making the second selection. The probability that both the bulbs are without defect is [MP PET 1987] (a) 9/25 (b) 16/25 (c) 4/5 (d) 8/25 305. If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1, is (d) $\frac{15}{16}$ (a) $\frac{2}{3}$ (b) $\frac{4}{5}$ (c) $\frac{7}{8}$ 306. A die is tossed thrice. If getting a four is considered a success, then the mean and variance of the probability distribution of the number of successes are (a) $\frac{1}{2}, \frac{1}{12}$ (b) $\frac{1}{6}, \frac{5}{12}$ (c) $\frac{5}{6}, \frac{1}{2}$ (d) None of these 307. Suppose A and B shoot independently until each hits his target. They have probabilities 3/5, 5/7 of hitting the targets at each shot. The probability that *B* will require more shots than *A* is (c) 8/31 (d) None of these (a) 6/31 (b) 7/31 **308.** A fair coin is tossed *n* times. Let X be the number of times head occurs. If P(X = 4), P(X = 5) and P(X = 6) are in A.P., then value of *n* is (a) 7 (b) 10 (c) 12 (d) 14 **309.** In a precision bombing attack there is a 50% chance that any one bomb will strike the target. Two direct hits are required to destroy the target completely. The minimum number of bombs which should be dropped to give a 99% chance or better of completely destroying the target is (b) 11 (d) None of these (a) 10 (c) 12 **310.** If the mean of a binomial distribution is 25, then its standard deviation lies in the interval given below (c) [0, 25) (a) [0, 5) (b) (0, 5] (d) (0, 25] **311.** If *n* integers taken at random are multiplied together, then the probability that the last digit of the product is 1, 3, 7 or 9 is (b) $\frac{8^n - 2^n}{5^n}$ (c) $\frac{4^n - 2^n}{5^n}$ (a) $\frac{2^n}{5^n}$ (d) None of these 312. A bag contains 14 balls of two colours, the number of balls of each colour being the same. 7 balls are drawn at random one by one. The ball in hand is returned to the bag before each new draw. If the probability that at least 3 balls of each colour are drawn is p then (b) $p = \frac{1}{2}$ (d) $p < \frac{1}{2}$ (a) $p > \frac{1}{2}$ (c) *p* < 1 313. An ordinary dice is rolled a certain number of times. The probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times. Then the probability of getting an odd number an odd number of times is (c) $\frac{1}{2}$ (a) $\frac{1}{32}$ (b) $\frac{5}{16}$ (d) None of these **314.** The probability of a bomb hitting a bridge is $\frac{1}{2}$ and two direct hits are needed to destroy it. The least number of bombs required so that the probability of the bridge being destroyed is greater than 0.9, is (a) 8 (d) 9 (b) 7 (c) 6 315. All the spades are taken out from a pack of cards. From these cards, cards are drawn one by one without replacement till the ace of spade comes. The probability that the ace comes in the 4th draw is (b) $\frac{12}{12}$ (c) $\frac{4}{13}$ (a) $\frac{1}{13}$ (d) None of these

Probability Assignment (Basic and Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	с	b	b	b	с	d	b	d	b	a	d	a	b	b	с	d	a	a	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	b	с	с	с	b	а	с	с	с	b	b	d	b	с	b	b	с	b	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	d	b	a	с	b	b	b	d	с	b	b	b	a	b	с	b	с	b	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
а	а	с	a	a	a	а	a	с	d	b	b	a	a	b	b	d	a	с	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
a,b	b	с	b	с	d	a	b	b	a	b	d	a,b, c	a,b, c,d	a,b, c,d	a,c	b	d	с	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
а	a	a	a,c	b	b	b	b	с	d	a	с	d	с	а	b	с	b	b	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
с	с	b	b	d	b	с	с	a	с	a	d	b	d	b	b	a	b	b	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	с	b	с	d	с	d	с	с	d	a	с	d	b	с	a	b	с	с	a
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
с	d	d	a	a	a	b	a	c,d	d	b	a	d	с	b	d	a,b, c	с	d	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
а	b	d	а	d	с	b	а	с	а	a,b,c, d	а	b	b	а	а	а	а	с	с
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
а	b	с	a	d	d	с	с	d	d	a	с	a	d	a	с	с	b	d	d
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
a	b	b	a	d	с	а	a,b,c, d	b	a	с	с	с	a	d	a,d	a	b	c,d	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	d	a	a,b,c, d	b	с	b	с	b	с	с	b	d	a	a	a	d	b	b	с
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
а	b	b	a	d	a	a	a	d	b	с	b	с	a	d	с	d	b	с	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
b	b	a	d	a	с	a	a	b	с	с	d	a	с	a	d	d	с	b	с
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315					
b	b	b	b	d	d	а	a	b	a	a	a	с	a	a					