

Definition, Equation of the Circle

[AMU 1978]

	Basic	c Level			
1.	The two points A and B in a plane such that for all points P lies on	circle satisfie	ed $\frac{PA}{PB} = k$, then k will n	ot be equal to	[IIT 1982]
2.	(a) 0 (b) 1 Locus of a point which moves such that sum of the squares of its di (a) Straight line (b) Circle	(c) 2 istances from (c) Para	n the sides of a square of	(d) None of theseside unity is 9, is(d) None of these	[HT 1976]
3.	The equation of the circle which touches both the axes and whose r (a) $x^2 + y^2 - 2ax - 2ay + a^2 = 0$	(b) x^2	$+y^2 + ax + ay - a^2 = 0$		[MP PET 1984]
4.	(c) $x^2 + y^2 + 2ax + 2ay - a^2 = 0$ ABCD is a square the length of whose side is a. Taking AB and vertices of the square, is	AD as the c			[MP PET 2003]
5.	(a) $x^2 + y^2 + ax + ay = 0$ (b) $x^2 + y^2 - ax - ay = 0$ The equation of the circle in the first quadrant touching each coordinate.		a distance of one unit from	•	•
	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$ (c) $x^2 + y^2 - 2x - 2y = 0$. ,	$+y^2 - 2x - 2y - 1 = 0$ the of these	,	
6.	The equation of the circle which touches both axes and whose cent	are is (x_1, y_1)), is		[MP PET 1988]
	(a) $x^2 + y^2 + 2x_1(x + y) + x_1^2 = 0$ (c) $x^2 + y^2 = x_1^2 + y_1^2$	` '	$+y^{2} - 2x_{1}(x + y) + x_{1}^{2} =$ $+y^{2} + 2xx_{1} + 2yy_{1} = 0$	= 0	
7.	The equation of the circle which touches x-axis and whose centre is (a) $x^2 + y^2 - 2x + 4y + 1 = 0$		$+y^2 - 2x - 4y + 1 = 0$		[MP PET 1984]
8.	(c) $x^2 + y^2 + 2x + 4y + 1 = 0$ The equation of the circle having centre $(1, -2)$ and passing through		$+y^{2} + 4x + 2y + 4 = 0$ of intersection of lines $3x$	x + y = 14, 2x + 5y = 1	8 is
					[MP PET 1990]
	(a) $x^2 + y^2 - 2x + 4y - 20 = 0$. ,	$+y^2 - 2x - 4y - 20 = 0$		
9.	(c) $x^2 + y^2 + 2x - 4y - 20 = 0$ The equation of the circle passing through (4, 5) and having the cer		$+y^2 + 2x + 4y - 20 = 0$, is [MN]	NR 1986; MP PET 1984;	UPSEAT 2000]
	(a) $x^2 + y^2 + 4x + 4y - 5 = 0$	` '	$+y^2 - 4x - 4y - 5 = 0$		
	(c) $x^2 + y^2 - 4x = 13$	(d) x^2	$+y^2 - 4x - 4y + 5 = 0$		
10.	The equation of the circle which passes through the points (2, 3) and	nd (4, 5) and	the centre lies on the strain	ight line $y - 4x + 3 = 0$ [Rajasthan PET 1985;	

(a) $x^2 + y^2 + 4x - 10y + 25 = 0$

(c) $x^2 + y^2 - 4x - 10y + 16 = 0$

The equation of the circle passing through the points (0, 0), (0, b) and (a, b) is

11.

(b) $x^2 + y^2 - 4x - 10y + 25 = 0$

(d) $x^2 + y^2 - 14y + 8 = 0$

[EAMCET 2002]

12.	The equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ will represent	a circle, if [MNR 1979; M	P PET 1988; Rajasthan PET 1997, 2003]
	(a) $a = b = 0$ and $c = 0$ (b) $f = g$ and $h = 0$	(c) $a = b \neq 0$ and $h = 0$	(d) $f = g$ and $c = 0$
13.	The equation of the circle whose diameters have the end points $(a, 0)$), $(0, b)$ is given by	[MP PET 1993]
	(a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax - by = 0$	(c) $x^2 + y^2 - ax + by = 0$	(d) $x^2 + y^2 + ax + by = 0$
14.	The equation of the circle which touches x -axis at $(3, 0)$ and passes the	hrough (1, 4) is given by	[MP PET 1993]
	(a) $x^2 + y^2 - 6x - 5y + 9 = 0$	(b) $x^2 + y^2 + 6x + 5y - 9 = 0$	
	(c) $x^2 + y^2 - 6x + 5y - 9 = 0$	(d) $x^2 + y^2 + 6x - 5y + 9 = 0$	
15.	From three non-collinear points we can draw		[MP PET 1984; BIT Ranchi 1990]
	(a) Only one circle (b) Three circle	(c) Infinite circles	(d) No circle
16.	Equation of a circle whose centre is origin and radius is equal to the	distance between the lines $x = 1$ and	dx = -1 is [MP PET 1984]
	(a) $x^2 + y^2 = 1$ (b) $x^2 + y^2 = \sqrt{2}$	(c) $x^2 + y^2 = 4$	(d) $x^2 + y^2 = -4$
17.	If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the $(2, 3)$	equation of this circle is	[Rajasthan PET 1985, 1989]
	(a) $(x-2)^2 + (y-3)^2 = 8$ (b) $(x-2)^2 + (y-3)^2 = 3$	(c) $(x+2)^2 + (y+3)^2 = 2\sqrt{2}$	(d) $(x-2)^2 + (y-3)^2 = 2\sqrt{2}$
18.	$ax^2 + 2y^2 + 2bxy + 2x - y + c = 0$ represents a circle through the	origin, if	[MP PET 1984]
	(a) $a = 0, b = 0, c = 2$ (b) $a = 1, b = 0, c = 0$	(c) $a = 2, b = 2, c = 0$	(d) $a = 2, b = 0, c = 0$
19.	If the equation $\frac{K(x+1)^2}{3} + \frac{(y+2)^2}{4} = 1$ represents a circle, then K	ζ=	[MP PET 1994]
	(a) 3/4 (b) 1	(c) 4/3	(d) 12
20.	A circle has radius 3 units and its centre lies on the line $y = x - 1$.	Then the equation of this circle if it I	passes through point (7, 3), is
			[Roorkee 1988]
	(a) $x^2 + y^2 - 8x - 6y + 16 = 0$	(b) $x^2 + y^2 + 8x + 6y + 16 = 0$	
	(c) $x^2 + y^2 - 8x - 6y - 16 = 0$	(d) None of these	
21.	The equation of circle whose diameter is the line joining the points (IP PET 1984; Roorkee 1969; AMU 1979]
	(a) $x^2 + y^2 + 8x + 2y + 51 = 0$	(b) $x^2 + y^2 + 8x - 2y - 51 = 0$	
	(c) $x^2 + y^2 + 8x + 2y - 51 = 0$	(d) $x^2 + y^2 - 8x - 2y - 51 = 0$	1
22.	The equation of the circle which passes through the points $(3, -2)$ ar	and $(-2, 0)$ and centre lies on the line	2x - y = 3, is
			[Roorkee 1971]
	(a) $x^2 + y^2 - 3x - 12y + 2 = 0$	(b) $x^2 + y^2 - 3x + 12y + 2 = 0$	
	(c) $x^2 + y^2 + 3x + 12y + 2 = 0$	(d) None of these	
23.	For $ax^2 + 2hxy + 3y^2 + 4x + 8y - 6 = 0$ to represent a circle, one	must have	
	(a) $a = 3, h = 0$ (b) $a = 1, h = 0$	(-)	(d) $a = h = 0$
24.	The equation of the circle in the first quadrant which touches each ax	-	[MP PET 1997]
	(a) $x^2 + y^2 + 5x + 5y + 25 = 0$	(b) $x^2 + y^2 - 10x - 10y + 25 =$	
	(c) $x^2 + y^2 - 5x - 5y + 25 = 0$	(d) $x^2 + y^2 + 10x + 10y + 25 =$	= 0
25.	If (α, β) is the centre of a circle passing through the origin, then its		[MP PET 1999]
	(a) $x^2 + y^2 - \alpha x - \beta y = 0$ (b) $x^2 + y^2 + 2\alpha x + 2\beta y = 0$	(c) $x^2 + y^2 - 2\alpha x - 2\beta y = 0$	(d) $x^2 + y^2 + \alpha x + \beta y = 0$
26.	The equation of the circle whose diameter lies on $2x + 3y = 3$ and	16x - y = 4 and which passes thro	ough (4, 6) is
			[Kurukshetra CEE 1998]
	(a) $5(x^2 + y^2) - 3x - 8y = 200$	(b) $x^2 + y^2 - 4x - 8y = 200$	

(d) $x^2 + y^2 = 40$

(c) $5(x^2 + y^2) - 4x = 200$

27.

The equation of the circle of radius 5 and touching the coordinate axes in third quadrant is

(a) $x^2 + y^2 + ax + by = 0$ (b) $x^2 + y^2 - ax + by = 0$ (c) $x^2 + y^2 - ax - by = 0$ (d) $x^2 + y^2 + ax - by = 0$

(a) $(x-5)^2 + (y+5)^2 = 25$ (b) $(x+4)^2 + (y+4)^2 = 25$ (c) $(x+6)^2 + (y+6)^2 = 25$ (d) $(x+5)^2 + (y+5)^2 = 25$ The centre of a circle is (2, -3) and the circumference is 10π . Then the equation of the circle is 28. [Kerala (Engg.) 2002] (a) $x^2 + y^2 + 4x + 6y + 12 = 0$ (b) $x^2 + y^2 - 4x + 6y + 12 = 0$ (c) $x^2 + y^2 - 4x + 6y - 12 = 0$ (d) $x^2 + y^2 - 4x - 6y - 12 = 0$ 29. The circle described on the line joining the points (0, 1), (a, b) as diameter cuts the x-axis in points whose abscissae are roots of the equation (b) $x^2 - ax + b = 0$ (c) $x^2 + ax - b = 0$ (d) $x^2 - ax - b = 0$. (a) $x^2 + ax + b = 0$ Four distinct points (2k, 3k), (1, 0), (0, 1) and (0, 0) lie on a circle for 30. (a) All integral values of k (b) 0 < k < 1(c) k < 0(d) For two values of k The equations of the circles which touch both the axes and the line x = a are 31. (a) $x^2 + y^2 \pm ax \pm ay + \frac{a^2}{4} = 0$ (b) $x^2 + y^2 + ax \pm ay + \frac{a^2}{4} = 0$ (c) $x^2 + y^2 - ax \pm ay + \frac{a^2}{4} = 0$ (d) None of these. The equation of the unit circle concentric with $x^2 + y^2 + 8x + 4y - 8 = 0$ is 32. [EAMCET 1991] (b) $x^2 + y^2 - 8x + 4y + 8 = 0$ (a) $x^2 + y^2 - 8x + 4y - 8 = 0$ (c) $x^2 + y^2 - 8x + 4y - 28 = 0$ (d) $x^2 + y^2 - 8x + 4y + 19 = 0$ A circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a complete rotation on the x-axis along the positive

33. direction of the x-axis then the equation of the circle in the new position is

(a)
$$x^2 + y^2 - 4(x + y) - 8\pi x + (2 + 4\pi)^2 = 0$$

(b)
$$x^2 + y^2 - 4x - 4y + (2 + 4\pi)^2 = 0$$

(c)
$$x^2 + y^2 - 8\pi x - 4y + (2 + 4\pi)^2 = 0$$

A circle which touches the axes and whose centre is at distance $2\sqrt{2}$ from the origin, has the equation 34.

(a)
$$x^2 + y^2 - 4x + 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 4x - 4y + 4 = 0$$

(c)
$$x^2 + y^2 + 4x + 4y + 4 = 0$$

If (-1, 4) and (3, -2) are end points of a diameter of a circle, then the equation of this circle is 35.

[Rajasthan PET 1987, 89]

(a)
$$(x-1)^2 + (y-1)^2 = 13$$

(a)
$$(x-1)^2 + (y-1)^2 = 13$$
 (b) $(x+1)^2 + (y+1)^2 = 13$ (c) $(x-1)^2 + (y+1)^2 = 13$ (d) $(x+1)^2 + (y-1)^2 = 13$

(c)
$$(x-1)^2 + (y+1)^2 = 13$$

(d)
$$(x+1)^2 + (y-1)^2 = 13$$

The equation of the circle concentric with the circle $x^2 + y^2 - 3x + 4y - c = 0$ and passing through the point (-1, -2) is 36.

[Rajasthan PET 1984, 92]

(a)
$$x^2 + y^2 - 3x + 4y - 1 = 0$$

(b)
$$x^2 + y^2 - 3x + 4y = 0$$

(c)
$$x^2 + y^2 - 3x + 4y + 2 = 0$$

If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with $x^2 + y^2 + 6x + 8y - 5 = 0$, then c is equal to 37.

[Rajasthan PET 1986]

39.

(c)
$$-24$$

Equation $x^2 + y^2 + 4x + 6y + 13 = 0$ represents 38.

[Roorkee 1990]

(c) A pair of coincident lines (d) A point

(b) A pair of two different lines

If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

[AIEEE 2004]

(a)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(c)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(d)
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

40.	y = mx is a chord of a circle of radius a and the diameter of the the circle described on this chord as diameter is	e circle lies along x -axis and one end of this chord is origin. The equation of [MP PET 1990]
	(a) $(1+m^2)(x^2+y^2)-2ax=0$	(b) $(1+m^2)(x^2+y^2)-2a(x+my)=0$
	(c) $(1+m^2)(x^2+y^2)+2a(x+my)=0$	(d) $(1+m^2)(x^2+y^2)-2a(x-my)=0$
41.	If $y = 2x$ is a chord of the circle $x^2 + y^2 - 10x = 0$, then the ed	quation of the circle of which this chord is a diameter, is
		[Rajasthan PET 1988]
	(a) $x^2 + y^2 - 2x + 4y = 0$ (b) $x^2 + y^2 + 2x + 4y = 0$	(c) $x^2 + y^2 + 2x - 4y = 0$ (d) $x^2 + y^2 - 2x - 4y = 0$
42.	The circle on the chord $x \cos \alpha + y \sin \alpha = p$ of the circle $x^2 + y$	$a^2 = a^2$ as diameter has the equation [Roorkee 1967; MP PET 1993]
	(a) $x^2 + y^2 - a^2 - 2p(x\cos\alpha + y\sin\alpha - p) = 0$	(b) $x^2 + y^2 + a^2 + 2p(x\cos\alpha - y\sin\alpha + p) = 0$
	(c) $x^2 + y^2 - a^2 + 2p(x\cos\alpha + y\sin\alpha + p) = 0$	(d) $x^2 + y^2 - a^2 - 2p(x\cos\alpha - y\sin\alpha - p) = 0$
43.	The equation of circle which touches the axes of coordinates	and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is
	$x^2 + y^2 - 2cx - 2cy + c^2 = 0$, where c is	[Ranchi BIT 1986; Kurukshetra CEE 1996]
	(a) 1 (b) 2	(c) 3 (d) 6
44.	The equation of a circle which touches both axes and the line $3x$	-4y + 8 = 0 and lies in the third quadrant is [MP PET 1986]
	(a) $x^2 + y^2 - 4x + 4y - 4 = 0$	(b) $x^2 + y^2 - 4x + 4y + 4 = 0$
	(c) $x^2 + y^2 + 4x + 4y + 4 = 0$	(d) $x^2 + y^2 - 4x - 4y - 4 = 0$
45.	Equation of the circle which touches the lines $x = 0$, $y = 0$ and $x = 0$	3x + 4y = 4 is [MP PET 1991]
	(a) $x^2 - 4x + y^2 + 4y + 4 = 0$	(b) $x^2 - 4x + y^2 - 4y + 4 = 0$
	(c) $x^2 + 4x + y^2 + 4y + 4 = 0$	(d) $x^2 + 4x + y^2 - 4y + 4 = 0$
46.	The equation of the circumcircle of the triangle formed by the line	es $y + \sqrt{3}x = 6$, $y - \sqrt{3}x = 6$ and $y = 0$, is [EAMCET 1982]
	(a) $x^2 + y^2 - 4y = 0$ (b) $x^2 + y^2 + 4x = 0$	(c) $x^2 + y^2 - 4y = 12$ (d) $x^2 + y^2 + 4x = 12$
47.	A variable circle passes through the fixed point $A(p, q)$ and touc	ches x-axis. The locus of the other end of the diameter through A is
		[AIEEE 2004]
	(a) $(y-q)^2 = 4px$ (b) $(x-q)^2 = 4py$	(c) $(y-p)^2 = 4qx$ (d) $(x-p)^2 = 4qy$
48.	If a circle passes through the points of intersection of the coordin	nate axes with the lines $\lambda x - y + 1 = 0$ and $x - 2y + 3 = 0$, then the value
	of λ is	[HT 1991]
40	(a) 1 (b) 2	(c) 3 (d) 4
49.	Equation to the circles which touch the lines $3x - 4y + 1 = 0$, 4	
	(a) $(x-2)^2 + (y-8)^2 = 25$	(b) $5x^2 + 5y^2 - 12x - 24y + 31 = 0$
50	(c) Both (a) and (b) The equation of the circle which passes through (1, 0) and (0, 1) a	(d) None of these
50.	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$	(b) $x^2 + y^2 - x - y = 0$
	(a) $x + y = 2x + 2y + 1 = 0$ (c) $2x^2 + 2y^2 - 3x - 3y + 1 = 0$	(d) $x^2 + y^2 - 3x - 3y + 2 = 0$
<i>E</i> 1	The centres of a set of circles, each of radius 3, lie on the circle x	
51.	(a) $4 \le x^2 + y^2 \le 64$ (b) $x^2 + y^2 \le 25$	$(x^2 + y^2) = 25$. The locus of any point in the set is [AIEEE 2002] $(x^2 + y^2) \ge 25$ (d) $3 \le x^2 + y^2 \le 9$
52		
52.	The equation of the circle which touches both the axes and the str	aight line $4x + 3y = 6$ in the first quadrant and lies below it is [Roorkee 1992]

(b) $x^2 + y^2 - 6x - 6y + 9 = 0$

(a) $4x^2 + 4y^2 - 4x - 4y + 1 = 0$

(c)
$$x^2 + y^2 - 6x - y + 9 = 0$$

(d)
$$4(x^2 + y^2 - x - 6y) + 1 = 0$$

Three sides of a triangle have the equations $L_r \equiv y - m_r x - c_r = 0$; r = 1, 2, 3. Then $\lambda L_2 L_3 + \mu L_3 L_1 + \nu L_1 L_2 = 0$, where $\lambda \neq 0$, $\mu \neq 0$, $\nu \neq 0$, is the equation of the circumcircle of the triangle, if

(a)
$$\lambda(m_2 + m_3) + \mu(m_3 + m_1) + \nu(m_1 + m_2) = 0$$

(b)
$$\lambda(m_2m_3-1) + \mu(m_3m_1-1) + \nu(m_1m_2-1) = 0$$

(d) None of these

The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines $x^2 - y^2 - 2x + 4y - 3 = 0$ is 54.

(a)
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 2x + 4y - 4 = 0$$

(c)
$$x^2 + y^2 - 2x + 4y + 4 = 0$$

(d) None of these

The equation of a circle which touches x-axis and the line 4x - 3y + 4 = 0, its centre lying in the third quadrant and lies on the line 55. x - y - 1 = 0, is

(a)
$$9(x^2 + y^2) + 6x + 24y + 1 = 0$$

(b)
$$9(x^2 + y^2) - 6x - 24y + 1 = 0$$

(c)
$$9(x^2 + y^2) - 6x + 2y + 1 = 0$$

(d) None of these

Two vertices of an equilateral triangle are (-1, 0) and (1, 0) and its third vertex lies above the x-axis. The equation of the circumcircle of the 56. triangle is

(a)
$$x^2 + y^2 = 1$$

(b)
$$\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$$

(b)
$$\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$$
 (c) $\sqrt{3}(x^2 + y^2) - 2y - \sqrt{3} = 0$ (d) None of these

A triangle is formed by the lines whose combined equation is given by (x + y - 4)(xy - 2x - y + 2) = 0. The equation of its circumcircle is 57.

(a)
$$x^2 + y^2 - 5x - 3y + 8 = 0$$

(b)
$$x^2 + y^2 - 3x - 5y + 8 = 0$$

(c)
$$x^2 + y^2 - 3x - 5y - 8 = 0$$

(d) None of these

If the centroid of an equilateral triangle is (1, 1) and its one vertex is (-1, 2) then the equation of its circumcircle is

(a)
$$x^2 + y^2 - 2x - 2y - 3 = 0$$

(b)
$$x^2 + y^2 + 2x - 2y - 3 = 0$$

(c)
$$x^2 + y^2 + 2x + 2y - 3 = 0$$

- (d) None of these
- The equation of the circle whose one diameter is PQ, where the ordinates of P, Q are the roots of the equation $x^2 + 2x 3 = 0$ and the 59. abscissae are the roots of the equation $y^2 + 4y - 12 = 0$, is

(a)
$$x^2 + y^2 + 2x + 4y - 15 = 0$$

(b)
$$x^2 + y^2 - 4x - 2y - 15 = 0$$

(c)
$$x^2 + y^2 + 4x + 2y - 15 = 0$$

- (d) None of these
- The equation of the circumcircle of an equilateral triangle is $x^2 + y^2 + 2gx + 2fy + c = 0$ and one vertex of the triangle is (1, 1). The equation 60. of incircle of the triangle is

(a)
$$4(x^2 + y^2) = g^2 + f^2$$

(b)
$$4(x^2 + y^2) + 8gx + 8fy = (1 - g)(1 + 3g) + (1 - f)(1 + 3f)$$

(c)
$$4(x^2 + y^2) + 8gx + 8fy = g^2 + f^2$$

- (d) None of these
- The equation of the circle of radius $2\sqrt{2}$ whose centre lies on the line x y = 0 and which touches the line x + y = 4, and whose centre's coordinates satisfy the inequality x + y > 4 is

(a)
$$x^2 + y^2 - 8x - 8y + 24 = 0$$

(b)
$$x^2 + y^2 = 8$$

(c)
$$x^2 + y^2 - 8x + 8y = 24$$

- (d) None of these
- The circumcircle of the quadrilateral formed by the lines x = a, x = 2a, y = -a, $y = \sqrt{2}a$ is 62.

(a)
$$x^2 + y^2 + 3ax + a^2 = 0$$
 (b) $x^2 + y^2 - 3ax - a^2 = 0$

(c)
$$x^2 + y^2 - 3ax + 2a^2 = 0$$
 (d) $x^2 + y^2 + 3ax - a^2 = 0$

(d)
$$x^2 + y^2 + 3ax - a^2 = 0$$

Equation of a circle S(x, y) = 0, S(2, 3) = 16, which touches the line 3x + 4y - 7 = 0 at (1, 1) is given by 63.

(a)
$$x^2 + y^2 + x + 2y - 5 = 0$$
 (b) $x^2 + y^2 + 2x + 2y - 6 = 0$ (c) $x^2 + y^2 + 4x - 6y = 0$

$$x^2 + y^2 + 4x - 6y = 0$$
 (d) None of these

Centre and Radius of a Circle

				·	
54.	The area of the circle whos	se centre is at (1, 2) and which pas	= =		
	() 5	(1) 10	[MNR 1982; IIT 1980; Karnatak		002; DCE 2000]
- =	(a) 5π	(b) 10π	(c) 25π	(d) None of these	D 4D DET 400 (1
55.			= 1 and $x^2 + y^2 - 12x + 4y = 1$ are	(1) M 6.1	[MP PET 1986]
6	(a) Same	(b) Collinear ne point (0, 0), (<i>a</i> , 0), (0, <i>b</i>), then i	(c) Non-collinear	(d) None of these	[MNR 1975]
66.	ii a circle passes unough u	the point $(0, 0)$, $(a, 0)$, $(0, b)$, then if		(h a)	[WINK 1975]
	(a) (a, b)	(b) (<i>b</i> , <i>a</i>)	(c) $\left(\frac{a}{2}, \frac{b}{2}\right)$	(d) $\left(\frac{b}{2}, -\frac{a}{2}\right)$	
7.	If the radius of the circle x	$x^2 + y^2 - 18x + 12y + k = 0$ be 1	11, then $k =$		[MP PET 1987]
	(a) 347	(b) 4	(c) -4	(d) 49	
8.	The centre and radius of th	e circle $2x^2 + 2y^2 - x = 0$ are		[N	MP PET 1984, 87]
	(a) $\left(\frac{1}{4}, 0\right)$ and $\frac{1}{4}$	(b) $\left(-\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(c) $\left(\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(d) $\left(0, -\frac{1}{4}\right)$ and	<u>1</u> 4
9.	Centre of the circle $(x-3)$	$y^2 + (y - 4)^2 = 5$ is			[MP PET 1988]
	(a) (3, 4)	(b) $(-3, -4)$	(c) (4, 3)	(d) $(-4, -3)$	-
0.		the form $x^2 + y^2 + 2x + 4y + 1$	= 0. Choose the correct coordinates of		alue of its radius
	from the following	·			[MP PET 1982]
	(a) Centre (-1, -2), radiu		Centre $(2, 1)$, radius = 1	_	
	(c) Centre (1, 2), radius =		(d) Centre $(-1, 2)$, radius =	2	DAD DEW 40041
•	A circle touches the axes at (a) $(3, -3)$	t the points $(3, 0)$ and $(0, -3)$. The (b) $(0, 0)$	e centre of the circle is $(c) (-3,0)$	(d) $(6, -6)$	[MP PET 1992]
		$v^2 + 2x\cos\theta + 2y\sin\theta - 8 = 0,$		(u) (o, o)	[MNR 1974]
•			_		
	(a) 1	(b) 3	(c) $2\sqrt{3}$	(d) $\sqrt{10}$	D 4D DET 400 4
3.		centre is (h, k) and radius a is	2	(1) M 6.1	[MP PET 1994]
	(a) $\pi (h^2 + k^2 - a^2)$	(b) $\pi a^2 h k$	(c) πa^2	(d) None of these	
l.			$x^2 + y^2 - 8x - 4y + c = 0$ are $(-3, 2)$, the		er end are [Roork
_	(a) (5, 3)	(b) (6, 2)	(c) $(1, -8)$	(d) (11, 2)	
5.		$= -1 + 2\cos\theta, \ y = 3 + 2\sin\theta, \ is$			[MP PET 1995]
	(a) $(1, -3)$	(b) (-1, 3)	(c) (1, 3)	(d) None of these	
Ó.	If $g^2 + f^2 = c$, then the e	$quation x^2 + y^2 + 2gx + 2fy + c$	r = 0 will represent		[MP PET 2003]
	(a) A circle of radius g	(b) A circle of radius f	(c) A circle of diameter \sqrt{c}	(d) A circle of radio	ıs 0
'.	The centre of circle inscrib	ed in square formed by the lines .	$x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 =$	= 0, is [III]	Γ Screening 2003]
	(a) (4, 7)	(b) (7, 4)	(c) (9, 4)	(d) (4, 9)	
3.	The equation $x^2 + y^2 + 2$	gx + 2fy + c = 0 will represent a	real circle if		
	(a) $g^2 + f^2 - c < 0$	(b) $g^2 + f^2 - c \ge 0$	(c) Always	(d) None of these	
١.	One of the diameters of the	e circle $x^2 + y^2 - 12x + 4y + 6 =$	= 0 is given by		
	(a) x + y = 0	(b) x + 3y = 0	(c) $x = y$	(d) 3x + 2y = 0	
).			of whose diameters are $x + y = 6$ and		BIT Ranchi 1993]
•					
	(a) 10	(b) $2\sqrt{5}$	(c) 6	(d) 4	
1.	If the equation of a circle is	$s ax^2 + (2a - 3)y^2 - 4x - 1 = 0$	then its centre is		
	(a) (2, 0)	(b) (2/3, 0)	(c) $(-2/3, 0)$	(d) None of these	
2.	If $2(x^2 + y^2) + 4\lambda x + \lambda^2$	= 0 represents a circle of meanin	gful radius then the range of real values	of λ is	

120	Circle and System of Circle	es			
	(a) R	(b) (0, +∞)	(c) (-∞, 0)	(d)	None of these
83.	The locus of the centres of the	e circles for which one end of a diamet	ter is (1, 1) while the other end is on	the l	ine $x + y = 3$ is
	(a) $x + y = 1$	(b) $2(x - y) = 5$	(c) $2x + 2y = 5$	(d)	None of these
84.	If A and B are two points on the	he circle $x^2 + y^2 - 4x + 6y - 3 = 0$	which are farthest and nearest respe	ctive	ly from the point (7, 2) then
	(a) $A = (2 - 2\sqrt{2}, -3 - 2\sqrt{2})$	$\sqrt{2}$)	(b) $B = (2 + 2\sqrt{2}, -3 + 2\sqrt{2})$		
	(c) $A = (2 + 2\sqrt{2}, -3 + 2\sqrt{2})$	$\sqrt{2}$)	(d) $B = (2 - 2\sqrt{2}, -3 + 2\sqrt{2})$		
85.	The radius of the circle passin	g through the point (5, 4) and concent	tric to the circle $x^2 + y^2 - 8x - 12$	y + 15	5 = 0 is
	(a) 5	(b) $\sqrt{5}$	(c) 10	(d)	$\sqrt{10}$
86.	The length of the radius of the	e circle $x^2 + y^2 + 4x - 6y = 0$ is			[Rajasthan PET 1995]
	(a) $\sqrt{11}$	(b) 12	(c) $\sqrt{13}$	(d)	$\sqrt{14}$
87.	(2, y) is the centre of a circle	If $(x, 3)$ and $(3, 5)$ are end points of a	a diameter of this circle, then		[Roorkee 1986]
	(a) $x = 1, y = 4$	(b) $x = 4, y = 1$	(c) $x = 8, y = 2$	(d)	None of these
88.	The greatest distance of the po	point $P(10, 7)$ from the circle $x^2 + y^2$	-4x - 2y - 20 = 0 is		
	(a) 5	(b) 15	(c) 10	(d)	None of these
89.	If one end of a diameter of the	e circle $x^2 + y^2 - 4x - 6y + 11 = 0$	be (3, 4), then the other end is		[MP PET 1986; BIT Ranchi 1991]
	(a) (0,0)	(b) (1, 1)	(c) (1, 2)	(d)	(2, 1)
		Advano	ce Level		
90.	If $2x - 4y = 9$ and $6x - 12y$	y + 7 = 0 are the tangents of same circ	cle, then its radius will be		[Roorkee 1995]
	(a) $\frac{\sqrt{3}}{5}$	(b) $\frac{17}{6\sqrt{5}}$	(c) $\frac{2\sqrt{5}}{3}$	(d)	$\frac{17}{3\sqrt{5}}$
91.	If $5x - 12y + 10 = 0$ and 12	y - 5x + 16 = 0 are two tangents to a	a circle, then the radius of the circle	is	[EAMCET 2003]
	(a) 1	(b) 2	(c) 4	(d)	6
92.	If $2x^2 + \lambda xy + 2y^2 + (\lambda - 4)$	6x + 6y - 5 = 0 is the equation of a ci	ircle then its radius is		
	(a) $3\sqrt{2}$	(b) $2\sqrt{3}$	(c) $2\sqrt{2}$	(d)	None of these
93.	C_1 is a circle of radius 1 touc Then the radius of C_2 is	thing the x-axis and the y-axis. C_2 is a	another circle of radius >1 and touc	ching	the axes as well as the circle C_1 .
	(a) $3 - 2\sqrt{2}$	(b) $3 + 2\sqrt{2}$	(c) $3 + 2\sqrt{3}$	(d)	None of these
94.		nce and the shortest distance respective $q=0$ then GM of q and q is equal to	vely of the point $(-7, 2)$ from any po	oint (α , β) on the curve whose equation
	(a) $2\sqrt{11}$	(b) $5\sqrt{5}$	(c) 13	(d)	None of these
95.	The equation of a circle is x^2	$+y^2 = 4$. The centre of the smallest	circle touching this circle and the li	ne x	$+y = 5\sqrt{2}$ has the coordinates
	(a) $\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$	(b) $\left(\frac{3}{2}, \frac{3}{2}\right)$	(c) $\left(-\frac{7}{2\sqrt{2}}, -\frac{7}{2\sqrt{2}}\right)$	(d)	None of these

A circle touches the line 2x - y - 1 = 0 at the point (3, 5). If its centre lies on the line x + y = 5 then the centre of that circle is

(c) (4, 1)

(b) (-3, 8)

[Rajasthan PET 1992]

(d) (8, -3)

96.

(a) (3, 2)

	(a) $x^2 + y^2 = a^2$	(b) $x^2 + y^2 = 2a^2$	(c) $x^2 + y^2 = 4a^2$	(d) $x^2 + y^2 - 2a$	$x - 2ay + a^2 = 0$
98.	If a circle $S(x, y) = 0$ touch	hes at the point $(2, 3)$ of the line x	+ y = 5 and $S(1, 2) = 0$, then rad	ius of such circle	
	(a) 2 units	(b) 4 units	(c) $\frac{1}{2}$ units	(d) $\frac{1}{\sqrt{2}}$ units	
				Intersection of a Lin	ne and a Circle
		В	Casic Level		
99.	A circle touches the y-axis a	at the point (0, 4) and cuts the x-axi	s in a chord of length 6 units. The r	radius of the circle is	[MP PET 1992]
	(a) 3	(b) 4	(c) 5	(d) 6	
100.		n touches y-axis at (0, 3) and cuts in			[HT 1972]
	(a) 3	(b) 2	(c) 5	(d) 8	
101.	The intercept on the line y	$= x \text{ by the circle } x^2 + y^2 - 2x =$	0 is AB. Equation of the circle with	h AB as a diameter is	[HT 1996]
	(a) $x^2 + y^2 - x - y = 0$	(b) $x^2 + y^2 - 2x - y = 0$	(c) $x^2 + y^2 - x + y = 0$	(d) $x^2 + y^2 + x - $	-y=0
102.	The circle $x^2 + y^2 - 3x - 4$	4y + 2 = 0 cuts x-axis at		[Ka	rnataka CET 2001]
	(a) $(2, 0), (-3, 0)$	(b) (3, 0), (4, 0)	(c) $(1,0), (-1,0)$	(d) (1, 0), (2, 0)	
103.	If the line $y = x + 3$ meets	the circle $x^2 + y^2 = a^2$ at A and	B, then the equation of the circle ha	aving AB as a diameter will	be
					njasthan PET 1988]
	(a) $x^2 + y^2 + 3x - 3y - 6$	$a^2 + 9 = 0$	(b) $x^2 + y^2 - 3x + 3y - 6$	$a^2 + 9 = 0$	
	(c) $x^2 + y^2 + 3x + 3y - 6$	$a^2 + 9 = 0$	(d) None of these		
104.	•	x + 8y + 16 = 0 touches x-axis, then	the value of a is	ſ R :	njasthan PET 1994]
	(a) ± 16	(b) ±4	(c) ±8	(d) ±1	Justium 121 1554]
105.		made by the circle $x^2 + y^2 = 1$ on		(0) =1	
105.					
	(a) 2	(b) $\sqrt{2}$	(c) $1/\sqrt{2}$	(d) $2\sqrt{2}$	
106.	The AM of the abscissae of	points of intersection of the circle	$x^2 + y^2 + 2gx + 2fy + c = 0$ with	x-axis is	
	(a) g	(b) $-g$	(c) f	(d) $-f$	
107.	The straight line $(x-2)+($	$(y+3) = 0$ cuts the circle $(x-2)^2$	$+(y-3)^2 = 11$ at		[MNR 1975]
	(a) No points	(b) One point	(c) Two points	(d) None of these	
108.	The equation of a circle who	ose centre is $(3, -1)$ and which cut	s off a chord of length 6 on the line	2x - 5y + 18 = 0	[Roorkee 1977]
	(a) $(x-3)^2 + (y+1)^2 = 3$	38 (b) $(x+3)^2 + (y-1)^2 = 38$	(c) $(x-3)^2 + (y+1)^2 = x^2$	$\sqrt{38}$ (d) None of these	
109.	The points of intersection o	If the line $4x - 3y - 10 = 0$ and the	e circle $x^2 + y^2 - 2x + 4y - 20 =$	= 0 are	[HT 1983]
	(a) $(-2, -6), (4, 2)$	(b) $(2, 6), (-4, -2)$	(c) $(-2, 6), (-4, 2)$	(d) None of these	
110.	The line $y = mx + c$ inters	sects the circle $x^2 + y^2 = r^2$ at two	o real distinct points, if		
	(a) $-r\sqrt{1+m^2} < c < 0$	(b) $0 \le c < r\sqrt{1 + m^2}$	(c) (a) and (b) both	(d) $-c\sqrt{1-m^2}$ <	: r
111.		the circle $x^2 + y^2 - 2ax = 0$ at A a			
111.	A fine unough (0, 0) cuts th	is choice $x + y - 2ax = 0$ at A a	na <i>b</i> , then focus of the centre of the		ier is ijasthan PET 2002]
	(a) $x^2 + y^2 - 2ay = 0$	(b) $x^2 + y^2 + ay = 0$	(c) $x^2 + y^2 + ax = 0$	(d) $x^2 + y^2 - ax$	_
	· · · · · · · · · · · · · · · · · · ·	(*) · · · · · · · · · · · · · · · · · · ·	(-,)	()	

112. If the line y-1=m(x-1) cuts the circle $x^2+y^2=4$ at two real points then the number of possible values of m is

The locus of the centre of the circle $(x \cos \theta + y \sin \theta - a)^2 + (x \sin \theta - y \cos \theta + a)^2 = a^2$ is

97.

122 Circle and System of Circles (b) 2 (d) None of these (c) Infinite (a) 1 113. The GM of the abscissae of the points of intersection of the circle $x^2 + y^2 - 4x - 6y + 7 = 0$ and the line y = 1 is (b) $\sqrt{2}$ (c) $\sqrt{14}$ The equation(s) of the tangent at the point (0, 0) to the circle, making intercepts of length 2a and 2b units on the coordinate axes, is (are) 114. (a) ax + by = 0(b) ax - by = 0(c) x = y(d) None of these Advance Level A circle which passes through origin and cuts intercepts on axes a and b, the equation of circle is [Rajasthan PET 1991] (a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax + by = 0$ (c) $x^2 + y^2 - ax + by = 0$ (d) $x^2 + y^2 + ax - by = 0$ 116. Let L_1 be a straight line passing through the origin and L_2 be the straight line x + y = 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$ on L_1 and L_2 are equal, then which of the following equations can represent L_1 (b) x - y = 0(c) x + 7y = 0(d) x - 7y = 0117. The two lines through (2, 3) from which the circle $x^2 + y^2 = 25$ intercepts chords of length 8 units have equations (a) 2x + 3y = 13, x + 5y = 17(b) y = 3, 12x + 5y = 39(c) x = 2, 9x - 11y = 51(d) None of these 118. Circles are drawn through the point (2, 0) to cut intercepts of length 5 units on the x-axis. If their centres lie in the first quadrant, then their [Roorkee 1992] (a) $x^2 + y^2 - 9x + 2ky + 14 = 0$ (b) $3x^2 + 3y^2 + 27x - 2ky + 42 = 0$ (c) $x^2 + y^2 - 9x - 2ky + 14 = 0$ (d) $x^2 + y^2 - 2kx - 9y + 14 = 0$ A circle touches the y-axis at (0, 2) and has an intercept of 4 units on the positive side of the x-axis. Then the equation of the circle is [IIT 1995] (b) $x^2 + y^2 - 4(x + \sqrt{2}y) + 4 = 0$ (a) $x^2 + y^2 - 4(\sqrt{2}x + y) + 4 = 0$ (c) $x^2 + y^2 - 2(\sqrt{2}x + y) + 4 = 0$ (d) None of these Circles are drawn through the point (3, 0) to cut an intercept of length 6 units on the negative direction of the x-axis. The equation of the locus of their centres is (b) x - y = 0(c) The y-axis (d) x + y = 0(a) The x-axis 121. Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $\left(-2, \frac{1}{2}\right)$. The slope of the line is (c) $\frac{-1-\sqrt{29}}{14}$ (a) $\frac{-1+\sqrt{29}}{14}$ (b) $\frac{1+\sqrt{7}}{4}$ (d) None of these If 2l be the length of the intercept made by the circle $x^2 + y^2 = a^2$ on the line y = mx + c, then c^2 is equal to (a) $(1+m^2)(a^2+l^2)$ (b) $(1+m^2)(a^2-l^2)$ (c) $(1-m^2)(a^2+l^2)$ (d) $(1-m^2)(a^2-l^2)$ 123. For the circle $x^2 + y^2 + 4x - 7y + 12 = 0$ the following statement is true (a) The length of tangent from (1, 2) is 7 (b) Intercept on y-axis is 2 (c) Intercept on x-axis is $2 - \sqrt{2}$ (d) None of these The length of the chord joining the points in which the straight line $\frac{x}{3} + \frac{y}{4} = 1$ cuts the circle $x^2 + y^2 = \frac{169}{25}$ is [Orissa JEE 2003]

A line is drawn through a fixed point $P(\alpha, \beta)$ to cut the circle $x^2 + y^2 = r^2$ at A and B. Then PA. PB is equal to

(c) $(\alpha - \beta)^2 + r^2$

(d) None of these

(a) $(\alpha + \beta)^2 - r^2$ (b) $\alpha^2 + \beta^2 - r^2$

126.		for which the line $y = mx + 2$ cuts			
	(a) $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, -\sqrt{3}]$	$+\infty$) (b) $[-\sqrt{3}, \sqrt{3}]$	(c) $[\sqrt{3}, +\infty)$	(d)	None of these
				Posi	ition of a point w.r.t. a Circle
			Basic Level		
127.	A point inside the circle	$x^2 + y^2 + 3x - 3y + 2 = 0$ is			[MP PET 1988]
	(a) (-1, 3)	(b) $(-2, 1)$	(c) (2, 1)	(d)	(-3, 2)
128.	Position of the point (1, 1)) with respect to the circle $x^2 + y^2$	-x + y - 1 = 0 is		[MP PET 1986, 1990]
	(a) Outside the circle	(b) Upon the circle	(c) Inside the circle	(d)	None of these
129.	The number of tangents th	nat can be drawn from (0, 0) to the c	$\text{circle } x^2 + y^2 + 2x + 6y - 15 = 0$	0 is	[MP PET 1992]
	(a) None	(b) One	(c) Two	(d)	Infinite
130.	The number of tangents w	which can be drawn from the point (-	- 1, 2) to the circle $x^2 + y^2 + 2x$	-4y+4=0	is [BIT Ranchi 1991]
	(a) 1	(b) 2	(c) 3	(d)	0
131.	The point $(0.1, 3.1)$ with r	respect to the circle $x^2 + y^2 - 2x - 4$	4y + 3 = 0, is		[MNR 1980]
	(a) At the centre of the c	rircle	(b) Inside the circle but	not at the cer	ntre
	(c) On the circle		(d) Outside the circle		
132.	The number of the tangen	ts that can be drawn from $(1, 2)$ to .	$x^2 + y^2 = 5 \text{ is}$		
	(a) 1	(b) 2	(c) 3	(d)	0
133.	The number of points on t	the circle $2x^2 + 2y^2 - 3x = 0$ whi	ch are at a distance 2 from the po	int (-2, 1) is	
	(a) 2	(b) 0	(c) 1	(d)	None of these
134.	If $x^2 + y^2 - 6x + 8y - 1$	1 = 0 is a given circle and $(0, 0)$, $(1$, 8) are two points, then		
	(a) Both the points are in	nside the circle	(b) Both the points are	outside the cir	rcle
	(c) One point is on the c	ircle another is outside the circle	(d) One point is inside	and another is	outside the circle
		Ad	dvance Level		
135.	A region in the <i>x-y</i> plane	is bounded by the curve $y = \sqrt{25}$	$-x^2$ and the line $y = 0$. If the p	oint $(a, a+1)$	lies in the interior of the region
	then	(h)(1) (2)	(a) -(12)	(4)	None of these
	(a) $a \in (-4, 3)$	(b) $a \in (-\infty, -1) \cup (3, +\infty)$		` ′	None of these
136.	If (2, 4) is a point interior interval	to the circle $x^2 + y^2 - 6x - 10y$	$+\lambda = 0$ and the circle does not of	cut the axes at	t any point, then λ belongs to the
	(a) (25, 32)	(b) (9, 32)	(c) $(32, +\infty)$	(d)	None of these
137.		$\in [0, 2\pi]$ for which $(1 + \cos \theta, \sin \theta)$			
	(a) $(\pi/6, 5\pi/6)$	(b) $(2\pi/3, 5\pi/3)$	(c) $(\pi/6, 7\pi/6)$	-	$(2\pi/3, 4\pi/3)$
138.	The range of values of r for	or which the point $\left(-5 + \frac{r}{\sqrt{2}}, -3\right)$	$+\frac{r}{\sqrt{2}}$ is an interior point of the	major segmen	nt of the circle $x^2 + y^2 = 16$, cur
	off by the line $x + y = 2$				
	(a) $(-\infty, 5\sqrt{2})$	(b) $(4\sqrt{2} - \sqrt{14}, 5\sqrt{2})$	(c) $(4\sqrt{2} - \sqrt{14}, 4\sqrt{2})$	$+\sqrt{14}$) (d)	None of these
139.	If $P(2, 8)$ is an interior po	point of a circle $x^2 + y^2 - 2x + 4y - 2x$	-p = 0 which neither touches no	r intersects the	e axes, then set for p is
	(a) $p < -1$	(b) $p < -4$	(c) $p > 96$	(d)	ϕ
		F	quation of Tangent, Condition	n for Tanger	ncy and the points of Contact

Basic Level

140.	The equation of the tangen	It to the circle $x^2 + y^2 = r^2$ at (a, b)	is $ax + by - \lambda = 0$, where λ is		
	(a) a^2	(b) b^2	(c) r^2	(d)	None of these
141.	x = 7 touches the circle x	$x^2 + y^2 - 4x - 6y - 12 = 0$, then the	ne coordinates of the point of contact a	ire	[MP PET 1996]
	(a) (7, 3)	(b) (7, 4)	(c) (7, 8)	(d)	(7, 2)
142.			ion of the tangent to the circle at the o	_	[Rajasthan PET 2000]
	(a) $ax - by = 0$	(b) ax + by = 0	(c) $bx - ay = 0$		bx + ay = 0
143.	If the tangent at a point $P($	(x, y) of a curve is perpendicular to	the line that joins origin with the poin	t P , then	
	(a) Circle	(b) Parabola	(c) Ellipse	(4)	[MP PET 1998] Straight line
144.	The circle $x^2 + y^2 - 8x +$		(c) Empse	(u)	[Karnataka CET 1999]
177.	(a) x -axis only	(b) y-axis only	(c) Both x and y-axis	(d)	Does not touch any axis
145.	· ·	$x \cos \alpha + y \sin \alpha = p$ may touch th	·	(u)	[AMU 1999]
175.					
	(a) $p = a \cos \alpha$	(b) $p = a \tan \alpha$	(c) $p^2 = a^2$	(d)	$p\sin\alpha=a$
146.		a centre $(1, 2)$ and tangent $x + y - 5$			[MP PET 2001]
	(a) $x^2 + y^2 + 2x - 4y +$	6 = 0	(b) $x^2 + y^2 - 2x - 4y + 3 =$	= 0	
	(c) $x^2 + y^2 - 2x + 4y +$	8 = 0	(d) $x^2 + y^2 - 2x - 4y + 8 =$	= 0	
147.	The equation of tangent to	the circle $x^2 + y^2 = a^2$ parallel to	y = mx + c is		[Rajasthan PET 2001]
	(a) $y = mx \pm \sqrt{1 + m^2}$	(b) $y = mx \pm a\sqrt{1 + m^2}$	$(c) x = my \pm a\sqrt{1 + m^2}$	(d)	None of these
148.	The line $3x - 2y = k$ mee	ets the circle $x^2 + y^2 = 4r^2$ at only	one point, if $k^2 =$		[Karnataka CET 2003]
	(a) $20r^2$	(b) $52r^2$	(c) $\frac{52}{9}r^2$	(d)	$\frac{20}{9}r^2$
149.	The line $lx + my + n = 0$	will be a tangent to the circle $x^2 + y$	$v^2 = a^2$ if		[MNR 1974; AMU 1981]
	(a) $n^2(l^2 + m^2) = a^2$	(b) $a^2(l^2+m^2)=n^2$	(c) $n(l+m)=a$	(d)	a(l+m)=n
150.	The circle $x^2 + y^2 + 4x -$	-4y + 4 = 0 touches			[MP PET 1988]
	(a) x-axis	(b) y-axis	(c) x-axis and y-axis	(d)	None of these
151.	If the line $lx + my = 1$ be	a tangent to the circle $x^2 + y^2 = a^2$	2, then the locus of the point (l, m) is		[MNR 1978; Rajasthan PET 1997]
	(a) A straight line	(b) A circle	(c) A parabola	(d)	An ellipse
152.	The straight line $x - y - 3$	= 0 touches the circle $x^2 + y^2 - 4$	4x + 6y + 11 = 0 at the point whose of	coordinat	tes are [MP PET 1993]
	(a) $(1, -2)$	(b) (1, 2)	(c) $(-1, 2)$	(d)	(-1, -2)
153.	If the straight line $y = mx$	+ c touches the circle $x^2 + y^2 - 4$	y = 0, then the value of c will be		[Rajasthan PET 1988]
	(a) $1 + \sqrt{1 + m^2}$	(b) $1 - \sqrt{m^2 + 1}$	(c) $2(1+\sqrt{1+m^2})$	(d)	$2+\sqrt{1+m^2}$
154.	At which point on y-axis th	the line $x = 0$ is a tangent to circle x^2	$4 + y^2 - 2x - 6y + 9 = 0$		[Rajasthan PET 1984]
	(a) (0, 1)	(b) (0, 2)	(c) (0, 3)	(d)	(0, 4)
155.	At which point the line y	$= x + \sqrt{2}a$ touches to the circle x^2	$+y^2=a^2$		
	,	or			
	Line $y = x + a\sqrt{2}$ is a tan	gent to the circle $x^2 + y^2 = a^2$ at		[R	ajasthan PET 1991; MP PET 1999]
	(a) $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$	(b) $\left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(c) $\left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(d)	$\left(-\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$
156	If the line $3x \pm 4y = 1 = 0$	touches the circle $(x-1)^2 \pm (y-2)$	$(r^2 - r^2)^2$ then the value of r will be		[Dojecthen DET 1086]

[IIT Screening 2002]

(d) $3\sqrt{5}$

				Circle and System of Circles 125
	(a) 2	(b) 5	(c) $\frac{12}{5}$	(d) $\frac{2}{5}$
157.	If the centre of a circle is (-6	5, 8) and it passes through the origin,	then equation to its tangent at the o	origin, is [MNR 1976]
	(a) $2y = x$	(b) $4y = 3x$	(c) $3y = 4x$	(d) 3x + 4y = 0
158.	If the line $3x - 4y = \lambda$ touch	hes the circle $x^2 + y^2 - 4x - 8y - 5$	$5 = 0$, then λ is equal to	[Roorkee 1972; Kurukshetra CEE 1996]
	(a) $-35, -15$	(b) $-35, 15$	(c) 35, 15	(d) 35, –15
159.	The tangent to $x^2 + y^2 = 9$	which is parallel to y-axis and does n	not lie in the third quadrant touches	s the circle at the point
	(a) (3, 0)	(b) $(-3,0)$	(c) $(0,3)$	(d) $(0, -3)$
160.	The points of contact of tange	ents to the circle $x^2 + y^2 = 25$ which	ch are inclined at an angle of 30° to	the x-axis are
	(a) $\left(\pm \frac{5}{2}, \pm \frac{1}{2}\right)$	(b) $\left(\pm \frac{1}{2}, \pm \frac{5}{2}\right)$	(c) $\left(\mp \frac{5}{2}, \mp \frac{1}{2}\right)$	(d) None of these.
161.	If the line $hx + ky = 1$ touch	es $x^2 + y^2 = a^2$, then the locus of t	he point (h, k) is a circle of radius	
	(a) <i>a</i>	(b) $\frac{1}{a}$	(c) \sqrt{a}	(d) $\frac{1}{\sqrt{a}}$
162.	The slope of the tangent at the	e point (h, h) of the circle $x^2 + y^2 =$	$=a^2$ is	[Roorkee 1993]
	(a) 0	(b) 1	(c) -1	(d) Depends on h .
163.		$\overline{}^2$, $m \in \mathbb{R}$, is a tangent to the circle		
	(a) $x^2 + y^2 = 2$	(b) $x^2 + y^2 = 4$	(c) $x^2 + y^2 = 1$	(d) None of these
164.	The point of contact of a tang	gent from the point (1, 2) to the circle	$x^2 + y^2 = 1$ has the coordinates	
	(a) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$	(b) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$	(c) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$	(d) $\left(\frac{1+2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$
165.	If the line $x + y = 1$ is a tang	gent to a circle with centre (2, 3), then	n its equation will be	[Rajasthan PET 1985, 89]
	(a) $x^2 + y^2 - 4x - 6y + 4$	= 0	(b) $x^2 + y^2 - 4x - 6y + 5 =$	= 0
	(c) $x^2 + y^2 - 4x - 6y - 5$	= 0	(d) None of these	
166.	A tangent to the circle $x^2 + y^2$	$y^2 = a^2$ meets the axes at points A as		f AB is
		(b) $\frac{1}{x^2} + \frac{1}{v^2} = \frac{4}{a^2}$		
167.	If the tangent to the circle x^2	$y^2 + y^2 = 5$ at point $(1, -2)$ touches the	$y = circle x^2 + y^2 - 8x + 6y + 20 = 0$	= 0 then its point of contact is
107.	if the tangent to the effect x	y = 5 at point (1, 2) touches th	is effect $x + y = 0x + 0y + 20$	[HT 1989]
	(a) $(-1, -3)$	(b) $(3, -1)$	(c) (-2, 1)	(d) (5,0)
168.	The equation of the tangent to	to the circle $x^2 + y^2 = 25$ which is in	nclined at 60° angle with x-axis, w	rill be
	(a) $y = \sqrt{3}x \pm 10$	(b) $\sqrt{3}y = x \pm 10$	(c) $y = \sqrt{3}x \pm 2$	(d) None of these
169.	If $y = c$ is a tangent to the ci	$\operatorname{rcle} x^2 + y^2 = 4, \text{ then}$		
	(a) $ c > 2$	(b) $ c < 2$	(c) $ c = 2$	(d) $ c = 0$
		Advan	ace Level	
170.		$(r)^2 = r^2$ is a tangent to the curve $y =$	$=x^2+1$ at a point $(1, 2)$, then the	e possible location of the points (h, k) are
	given by			[AMU 2000]
15-	(a) $hk = 5/2$	(b) $h + 2k = 5$	(c) $h^2 - 4k^2 = 5$	
171.	If the tangent at the point P of	on the circle $x^{2} + y^{2} + 6x + 6y = 2$	meets the straight line $5x - 2y +$	6 = 0 at a point Q on the y-axis, then the

(c) 5

length of PQ is

(a) 4

(b) $2\sqrt{5}$

172.	The tangents to $x^2 + y^2 =$	$= a^2$ having inclinations α	and β intersect at P. If $\cot \alpha + \cot \beta = 0$, the	n the lo	cus of P is
	(a) $x + y = 0$	(b) x - y = 0	(c) $xy = 0$	(d)	None of these
173.	If the points $A(1, 4)$ and B	3 are symmetrical about the t	angent to the circle $x^2 + y^2 - x + y = 0$ at the	e origin	then coordinates of B are
	(a) (1, 2)	(b) $(\sqrt{2}, 1)$	(c) (4, 1)	(d)	None of these
174.	A line parallel to the line	x - 3y = 2 touches the circle	le $x^2 + y^2 - 4x + 2y - 5 = 0$ at the point		
	(a) $(1, -4)$	(b) (1, 2)	(c) $(3, -4)$		(3, 2)
175.	The possible values of p for	or which the line $x \cos \alpha + y$	$y \sin \alpha = p$ is a tangent to the circle $x^2 + y^2 -$	$-2qx \cos \theta$	
	(a) 0 and q	(b) q and $2q$	(c) 0 and $2q$	(d)	[SCRA, 1999]
176.	•		the circle $x^2 + y^2 = 9$, then the centre of circ		[IIT 1992]
	, ,				$\begin{pmatrix} 1 & \sqrt{2} \end{pmatrix}$
	(a) $\left(\frac{3}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, \frac{3}{2}\right)$	(c) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(u)	$\left(\frac{1}{2}, \pm \sqrt{2}\right)$
					Length of Tangent
			Basic Level		· ·
177.	The length of tangent from	the point (5, 1) to the circle	$e^{x^2 + y^2 + 6x - 4y - 3} = 0$, is		[MNR 1981]
	(a) 81	(b) 29	(c) 7	(d)	
178.	Length of the tangent from	(x_1, y_1) to the circle $x^2 +$	$+y^2 + 2gx + 2fy + c = 0$, is		[EAMCET 1980]
	(a) $(x_1^2 + y_1^2 + 2gx_1 +$	$(fy_1 + c)^{1/2}$	(b) $(x_1^2 + y_1^2)^{1/2}$		
	(c) $[(x_1 + g)^2 + (y_1 + f)]$	2]1/2	(d) None of these		
179.	The length of the tangent	from the point (4, 5) to the ci	ircle $x^2 + y^2 + 2x - 6y = 6$ is		[DCE 1999]
	(a) $\sqrt{13}$	(b) $\sqrt{38}$	(c) $2\sqrt{2}$	(d)	$2\sqrt{13}$
180.	The square of the length o	f the tangent from $(3, -4)$ or	in the circle $x^2 + y^2 - 4x - 6y + 3 = 0$ is		[MP PET 2000]
	(a) 20	(b) 30	(c) 40	(d)	50
181.	The length of the tangent i	from $(0, 0)$ to the circle $2(x)$	$(x^2 + y^2) + x - y + 5 = 0$ is		[EAMCET 1994]
	(a) $\sqrt{5}$	(b) $\frac{\sqrt{5}}{2}$	(c) $\sqrt{2}$	(d)	$\sqrt{\frac{5}{2}}$
182.	The length of the tangent t	to the circle $x^2 + y^2 - 2x - $	-y - 7 = 0 from $(-1, -3)$ is		V Z [Karnataka CET 1994]
102.	(a) 2	(b) $2\sqrt{2}$	(c) 4	(d)	
183.			y = 0 and it touches the circle at point A. The		
100.	Then PA is equal to		with trouches the circle at point 71. The	tungent	pusses through the point 1 (2, 1).
	(a) 4	(b) 2	(c) $2\sqrt{2}$	(d)	None of these
184.	Lines are drawn through the	the point $P(-2, -3)$ to meet	the circle $x^2 + y^2 - 2x - 10y + 1 = 0$. The le	ength of	the line segment PA, A being the
	point on the circle where t	he line meets the circle at co	incident points, is		
	(a) 16	(b) $4\sqrt{3}$	(c) 48	(d)	None of these
			Advance Level		
185.	The coordinates of the	e point from where the	tangents are drawn to the circles x^2	$+y^2=1$	1, $x^2 + y^2 + 8x + 15 = 0$ and
	$x^2 + y^2 + 10y + 24 = 0$	are of same length, are			[Roorkee 1982]
	(a) $\left(2, \frac{5}{2}\right)$	(b) $\left(-2, -\frac{5}{2}\right)$	(c) $\left(-2, \frac{5}{2}\right)$	(d)	$\left(2,-\frac{5}{2}\right)$

186. Length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + c_1 = 0$ to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is

(d) None of these

[Kerala (Engg.) 2002] (b) $\sqrt{c-c_1}$ (a) $\sqrt{c_1-c}$ (c) $\sqrt{c_1+c}$ (d) None of these 187. If P is a point such that the ratio of the squares of the lengths of the tangents from P to the circles $x^2 + y^2 + 2x - 4y - 20 = 0$ and $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2:3, then the locus of P is a circle with centre [EAMCET 2003] (a) (7, -8)(b) (-7, 8)(c) (7,8)(d) (-7, -8)The lengths of the tangents from any point on the circle $15x^2 + 15y^2 - 48x + 64y = 0$ to the two circles $5x^2 + 5y^2 - 24x + 32y + 75 = 0$, $5x^2 + 5y^2 - 48x + 64y + 300 = 0$ are in the ratio (b) 2:3 (c) 3:4 (d) None of these If the squares of the lengths of the tangents from a point P to the circles $x^2 + y^2 = a^2$, $x^2 + y^2 = b^2$ and $x^2 + y^2 = c^2$ are in A. P., 189. then (c) $a^2 \cdot b^2 \cdot c^2$ are in A.P. (d) $a^2 \cdot b^2 \cdot c^2$ are in G.P. (b) *a*, *b*, *c* are in *A*.*P*. (a) a, b, c are in G.P. Pair of Tangents to a Circle Basic Level A pair of tangents are drawn from the origin to the circle $x^2 + y^2 + 20(x + y) + 20 = 0$. The equation of the pair of tangents is (a) $x^2 + y^2 + 10xy = 0$ (b) $x^2 + y^2 + 5xy = 0$ (c) $2x^2 + 2y^2 + 5xy = 0$ (d) $2x^2 + 2y^2 - 5xy = 0$ 191. The equations of the tangents drawn from the origin to the circle $x^2 + y^2 - 2rx - 2hy + h^2 = 0$ are [Roorkee 1989; IIT 1988; Rajasthan PET 1996] (b) $(h^2 - r^2)x - 2rhy = 0$, x = 0 (c) y = 0, x = 4(d) $(h^2 - r^2)x + 2rhy = 0, x = 0$ (a) x = 0, y = 0192. The equations of the tangents drawn from the point (0, 1) to the circle $x^2 + y^2 - 2x + 4y = 0$ are [Roorkee 1979] (a) 2x - y + 1 = 0, x + 2y - 2 = 0(b) 2x - y + 1 = 0, x + 2y + 2 = 0(c) 2x-y-1=0, x+2y-2=0(d) 2x - y - 1 = 0, x + 2y + 2 = 0**193.** The two tangents to a circle from an external point are always [MP PET 1986] (b) Perpendicular to each other (c) Parallel to each other (d) None of these **194.** The equation of pair of tangents to the circle $x^2 + y^2 - 2x + 4y + 3 = 0$ from (6, -5), is [AMU 1980] (a) $7x^2 + 23y^2 + 30xy + 66x + 50y - 73 = 0$ (b) $7x^2 + 23y^2 + 30xy - 66x - 50y - 73 = 0$ (c) $7x^2 + 23y^2 - 30xy - 66x - 50y + 73 = 0$ (d) None of these 195. Tangents drawn from origin to the circle $x^2 + y^2 - 2ax - 2by + b^2 = 0$ are perpendicular to each other, if [MP PET 1995] (c) $a^2 = b^2$ (d) $a^2 + b^2 = 1$ (b) a+b=1(a) a - b = 1**196.** The equation to the tangents to the circle $x^2 + y^2 = 4$, which are parallel to x + 2y + 3 = 0, are [MP PET 2003] (b) $x + 2y = \pm 2\sqrt{3}$ (c) $x + 2y = \pm 2\sqrt{5}$ (d) $x - 2y = \pm 2\sqrt{5}$ 197. If 3x + y = 0 is a tangent to the circle with centre at the point (2, -1), then the equation of the other tangent to the circle from the origin is [MNR 1996] (a) x - 3y = 0(b) x + 3y = 0(c) 3x - y = 0(d) 2x + y = 0The equation of a tangent to the circle $x^2 + y^2 = 25$ passing through (-2, 11) is 198. (b) 3x + 4y = 38(c) 24x - 7y + 125 = 0 (d) 7x + 24y = 230(a) 4x + 3y = 25Tangents drawn from the point (4, 3) to the circle $x^2 + y^2 - 2x - 4y = 0$ are inclined at an angle The angle between the pair of tangents from the point (1, 1/2) to the circle $x^2 + y^2 + 4x + 2y - 4 = 0$ is (b) $\sin^{-1} \frac{4}{5}$ (c) $\sin^{-1} \frac{3}{5}$ (a) $\cos^{-1} \frac{4}{5}$

201. The equation of the pair of tangents drawn from the point (0, 1) to the circle
$$x^2 + y^2 = 1/4$$
 is

[Rajasthan PET 1998]

(a)
$$x^2 - 3y^2 + y + 1 = 0$$

(b)
$$x^2 - 3y^2 - y - 1 = 0$$

(a)
$$x^2 - 3y^2 + y + 1 = 0$$
 (b) $x^2 - 3y^2 - y - 1 = 0$ (c) $3x^2 - y^2 + 2y + 1 = 0$ (d) $3x^2 - y^2 + 2y - 1 = 0$

(d)
$$3x^2 - y^2 + 2y - 1 = 0$$

Advance Level

The angle between the two tangents from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ is 202.

[MNR 1990; Rajasthan PET 1997; DCE 2000]

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{2}$$

Tangents are drawn from the point (4, 3) to the circle $x^2 + y^2 = 9$. The area of the triangle formed by them and the line joining their points [MP PET 1991; IIT 1981, 1987] of contact is

(a)
$$\frac{24}{25}$$

(b)
$$\frac{64}{25}$$

(c)
$$\frac{192}{25}$$

(d)
$$\frac{192}{5}$$

An infinite number of tangents can be drawn from (1, 2) to the circle $x^2 + y^2 - 2x - 4y + \lambda = 0$, then $\lambda = 0$ 204.

The area of the triangle formed by the tangents from the points (h, k) to the circle $x^2 + y^2 = a^2$ and the line joining their points of contact is [MNR 19] 205.

(a)
$$a \frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$

(b)
$$a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$$

(c)
$$\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$

(a)
$$a \frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$
 (b) $a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$ (c) $\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$ (d) $\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$

Two tangents PQ and PR drawn to the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ from point P (16, 7). If the centre of the circle is C then the area 206. of quadrilateral PQCR will be [HT 1981; MP PET 1994]

The tangents are drawn from the point (4, 5) to the circle $x^2 + y^2 - 4x - 2y - 11 = 0$. The area of quadrilateral formed by these tangents 207. and radii, is [IIT 1985]

(a) 15 sq. units

Tangents are drawn to the circle $x^2 + y^2 = 50$ from a point 'P' lying on the x-axis. These tangents meet the y-axis at points 'P₁' and 'P₂'. Possible coordinates of 'P' so that area of triangle PP_1P_2 is minimum, is /are

(b)
$$(10\sqrt{2}, 0)$$

(d)
$$(-10\sqrt{2}, 0)$$

The angle between the tangents from α , β to the circle $x^2 + y^2 = a^2$ is , (where $S_1 = \alpha^2 + \beta^2 - a^2$)

(a)
$$\tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$

(b)
$$2 \tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$

(b)
$$2 \tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$
 (c) $2 \tan^{-1} \left(\frac{\sqrt{S_1}}{a} \right)$

(d) None of these

Normal and Condition of Normality

Basic Level

The normal to the circle $x^2 + y^2 - 3x - 6y - 10 = 0$ at the point (-3, 4), is

[Rajasthan PET 1986, 89]

(a)
$$2x + 9y - 30 = 0$$

(a)
$$2x + 9y - 30 = 0$$
 (b) $9x - 2y + 35 = 0$

(c)
$$2x - 9y + 30 = 0$$

(d)
$$2x - 9y - 30 = 0$$

The equation of normal to the circle $2x^2 + 2y^2 - 2x - 5y + 3 = 0$ at (1, 1) is

[MP PET 2001]

(a)
$$2x + y = 3$$

(b)
$$x - 2y = 3$$

(c)
$$x + 2y = 3$$

212. The normal at the point (3, 4) on a circle cuts the circle at the point (-1, -2). Then the equation of the circle is

[Orissa JEE 2002]

(a)
$$x^2 + y^2 + 2x - 2y - 13 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 11 = 0$$

(c)
$$x^2 + y^2 - 2x + 2y + 12 = 0$$

(d)
$$x^2 + y^2 - 2x - 2y + 14 = 0$$

213. The line $\lambda x + \mu y = 1$ is a normal to the circle $2x^2 + 2y^2 - 5x + 6y - 1 = 0$ if

a. 1		~		c	a		100
Circle	and	SI	/stem	ot	Circ	les	129

[Rajasthan PET 1986]

[Rajasthan PET 1989]

[Rajasthan PET 1992]

(a)	ЭΛ	-6μ	=	2

(b)
$$4 + 5\mu = 6\lambda$$

(c)
$$4 + 6\mu = 5\lambda$$

(d) None of these

 $(a) \quad 3x + 4y = 0$

The equation of a normal to the circle
$$x^2 + y^2 + 6x + 8y + 1 = 0$$
 passing through (0, 0) is

(c)
$$4x - 3y = 0$$

(d) 4x + 3y = 0

The equation of the normal at the point (4, -1) of the circle $x^2 + y^2 - 40x + 10y = 153$ is

(b)
$$3x - 4y = 0$$

(b)
$$x - 4y = 0$$

(b) 2x - 3y = 0

(c)
$$4x + y = 3$$

(d) 4x - y = 0

 $(a) \quad 3x - 2y = 0$

216. The equation of the normal to the circle
$$x^2 + y^2 - 4x + 6y = 0$$
 at $(0, 0)$ is

(c)
$$3x + 2y = 0$$

$$(d) \quad 2x + 3y = 0$$

Advance Level

The area of triangle formed by the tangent, normal drawn at $(1, \sqrt{3})$ to the circle $x^2 + y^2 = 4$ and positive x-axis, is

[IIT 1989; Rajasthan PET 1997, 99; Kurukshetra CEE 1998]

(a)
$$2\sqrt{3}$$

(b)
$$\sqrt{3}$$

(c)
$$4\sqrt{3}$$

218. y - x + 3 = 0 is the equation of normal at $\left(3 + \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ to which of the following circles

[Roorkee 1990]

(a)
$$\left(x - 3 - \frac{3}{\sqrt{2}}\right)^2 + \left(y - \frac{\sqrt{3}}{2}\right)^2 = 9$$

(b)
$$\left(x-3-\frac{3}{\sqrt{2}}\right)^2+y^2=6$$

(c)
$$(x-3)^2 + y^2 = 9$$

(d)
$$(x-3)^2 + (y-3)^2 = 9$$

The line ax + by + c = 0 is normal to the circle $x^2 + y^2 = r^2$. The portion of the line ax + by + c = 0 intercepted by this circle is of length

(b)
$$r^2$$

(d)
$$\sqrt{r}$$

If the straight line ax + by = 2; $a, b \ne 0$ touches the circle $x^2 + y^2 - 2x = 3$ and is normal to the circle $x^2 + y^2 - 4y = 6$ then the values of 220. a and b are respectively [Roorkee 2000]

(a)
$$1, -1$$

(c)
$$-\frac{4}{3}$$
, 1

The number of feet of normals from the point (7, -4) to the circle $x^2 + y^2 = 5$ is 221.

Equation of the Chord

Basic Level

222. If (a, b) is a point on the chord AB of the circle, where the ends of the chord are A = (2, -3) and B = (3, 2) then

(a) $a \in [-3, 2], b \in [2, 3]$ (b) $a \in [2, 3], b \in [-3, 2]$

(c) $a \in [-2, 2], b \in [-3, 3]$

(d) None of these

223. The equation of the circle with the chord y = 2x of the circle $x^2 + y^2 - 10x = 0$ as its diameter is

(a) $x^2 + y^2 - 2x - 4y - 5 = 0$

(b) $x^2 + y^2 = 2x + 4y$

(c) $x^2 + y^2 = 4x + 2y$

(d) None of these

224. The radius of the circle, having centre at (2, 1), whose one of the chord is a diameter of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$

[IIT Screening 2004]

(a) 1

(b) 2

(c) 3

(d) $\sqrt{3}$

Advance Level

225. The equation of the chord of the circle $x^2 + y^2 = 25$ of length 8 that passes through the point $(2\sqrt{3}, 2)$ and makes an acute angle with the positive direction of the x-axis is

(a) $(4\sqrt{3} - 3\sqrt{7})x + 3y = 18 - 6\sqrt{21}$

(b) $(4\sqrt{3} + 3\sqrt{7})x - 3y = 18 + 6\sqrt{21}$

(c) $(4\sqrt{3} + 3\sqrt{7})x - 3y + 18 + 6\sqrt{21} = 0$

(d) None of these

226. $P(\sqrt{2}, \sqrt{2})$ is a point on the circle $x^2 + y^2 = 4$ and Q is another point on the circle such that arc $PQ = \frac{1}{4} \times \text{circumference}$. The coordinates of Q are

(a) $(-\sqrt{2}, -\sqrt{2})$

(b) $(\sqrt{2}, -\sqrt{2})$

(c) $(-\sqrt{2}, \sqrt{2})$

(d) None of these

227. If a line passing through the point $(-\sqrt{8}, \sqrt{8})$ and making an angle 135° with x-axis cuts the circle $x = 5 \cos \theta$, $y = 5 \sin \theta$ at points A and B, then length of the chord AB is [Bihar CEE 1999]

(d) $2\sqrt{5}$

228. Equation of chord AB of circle $x^2 + y^2 = 2$ passing through P (2, 2) such that PB/PA = 3, is given by

(a) x = 3y

(b) x = y

(c) $y-2=\sqrt{3}(x-2)$

(d) None of these

229. If a chord of the circle $x^2 + y^2 = 8$ makes equal intercepts of length a on the coordinate axes, then

(a) |a| < 8

(b) $|a| < 4\sqrt{2}$

(c) |a| < 4

(d) |a| > 4

Chord of Contact

Basic Level

230. The distance between the chords of contact of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is

(a) $g^2 + f^2$

(b) $\frac{1}{2}(g^2 + f^2 + c)$ (c) $\frac{1}{2} \cdot \frac{g^2 + f^2 + c}{\sqrt{g^2 + f^2}}$ (d) $\frac{1}{2} \cdot \frac{g^2 + f^2 - c}{\sqrt{g^2 + f^2}}$

231. If the straight line x - 2y + 1 = 0 intersects the circle $x^2 + y^2 = 25$ in points *P* and *Q*, then the coordinates of the point of intersection of tangents drawn at P and Q to the circle $x^2 + y^2 = 25$ are

(a) (25, 50)

(b) (-25, -50)

(c) (-25,50)

(d) (25, -50)

232. If the chord of contact of tangents drawn from the point (h, k) to the circle $x^2 + y^2 = a^2$ subtends a right angle at the centre, then

(a)
$$h^2 + k^2 = a^2$$

(b)
$$2(h^2 + k^2) = a^2$$

(c)
$$h^2 - k^2 = a^2$$

(d)
$$h^2 + k^2 = 2a^2$$

233. The chord of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to the circle $x^2 + y^2 = 1$ pass through the point [IIT 1997]

Advance Level

234. If the tangents are drawn to the circle $x^2 + y^2 = 12$ at the point where it meets the circle $x^2 + y^2 - 5x + 3y - 2 = 0$, then the point of intersection of these tangents is

(a)
$$(6, -6)$$

- (d) None of these
- **235.** A tangent to the circle $x^2 + y^2 = 1$ through the point (0, 5) cuts the circle $x^2 + y^2 = 4$ at A and B. The tangents to the circle $x^2 + y^2 = 4$ at A and B meet at C. The coordinates of C are

(a)
$$\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$$

(b)
$$\left(\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$$

(a)
$$\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$$
 (b) $\left(\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$

- (d) None of these
- **236.** Tangents drawn from (2, 0) to the circle $x^2 + y^2 = 1$ touch the circle at *A* and *B*. Then

(a)
$$A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

(b)
$$A = \left(-\frac{1}{2}, \frac{-\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

(c)
$$A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

$$A = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

Equation of a Chord whose Middle point is given

Basic Level

237. The equation of the chord of the circle $x^2 + y^2 = a^2$ having (x_1, y_1) as its mid-point is [IIT 1983; MP PET 1986]

(a)
$$xy_1 + yx_1 = a^2$$

(b)
$$x_1 + y_1 = a$$

(c)
$$xx_1 + yy_1 = x_1^2 + y_1^2$$
 (d) $xx_1 + yy_1 = a^2$

(d)
$$xx_1 + yy_1 = a^2$$

238. From the origin chords are drawn to the circle $(x-1)^2 + y^2 = 1$. The equation of the locus of the middle points of these chords is

[IIT 1985; EAMCET 1991]

(a)
$$x^2 + y^2 - 3x = 0$$

(a)
$$x^2 + y^2 - 3x = 0$$
 (b) $x^2 + y^2 - 3y = 0$

(c)
$$x^2 + y^2 - x = 0$$

(d)
$$x^2 + y^2 - y = 0$$

239. The equation to the chord of the circle $x^2 + y^2 = 9$ whose middle point is (1, -2) is

[Roorkee 1989]

(a)
$$x - 2y = 9$$

(b)
$$x - 2y - 4 = 0$$

(c)
$$x - 2y - 5 = 0$$

(d)
$$x - 2y + 5 = 0$$

240. The locus of the middle point of chords of the circle $x^2 + y^2 = a^2$ which pass through the fixed point (h, k) is

(b)
$$x^2 + y^2 + hx + ky = 0$$

(c)
$$x^2 + y^2 - 2hx - 2ky =$$

(a)
$$x^2 + y^2 - hx - ky = 0$$
 (b) $x^2 + y^2 + hx + ky = 0$ (c) $x^2 + y^2 - 2hx - 2ky = 0$ (d) $x^2 + y^2 + 2hx + 2ky = 0$

241. Equation of the chord of the circle $x^2 + y^2 - 4x = 0$ whose mid point is (1, 0) is

(b)
$$u = 1$$

(c)
$$x = 2$$

(d)
$$x = 1$$

242. The equation of a chord of the circle $x^2 + y^2 - 4x = 0$ which is bisected at the point (1, 1) is

(b)
$$3x - y = 2$$

(c)
$$x - 2y + 1 = 0$$

(d)
$$x - y = 0$$

243. The locus of the mid points of the chords of the circle $x^2 + y^2 - 2y = 0$ which are drawn from the origin, is [EAMCET 199]

(a) $x^2 + y^2 - y = 0$ (b) $x^2 + y^2 - x = 0$

b)
$$x^2 + y^2 - x = 0$$

(c)
$$x^2 + y^2 - 2x = 0$$
 (d) $x^2 + y^2 - x - y = 0$

(d)
$$x^2 + y^2 - x - y = 0$$

(a) $(3, -\sqrt{7})$

244.	The locus of the middle is	e points of chords of the circ	cle $x^2 + y^2 - 2x - 6y - 10 = 0$ v	which passes through the origin, [Roorkee 1989]
	(a) $x^2 + y^2 + x + 3y = 0$	(b) $x^2 + y^2 - x + 3y = 0$	(c) $x^2 + y^2 + x - 3y = 0$	(d) $x^2 + y^2 - x - 3y = 0$
245.	The locus of mid-point of is	of the chords of the circle x^2	$+y^2 - 2x - 2y - 2 = 0$ which ma	ukes an angle of 120° at the centre [MNR 1994]
	(a) $x^2 + y^2 - 2x - 2y + 1 =$	= 0	(b) $x^2 + y^2 + x + y - 1 = 0$	
	(c) $x^2 + y^2 - 2x - 2y - 1 =$	= 0	(d) None of these	
246.	If the equation of a $3x + 4y - 15 = 0$ is	given circle is $x^2 + y^2 = 36$,	then the length of the cl	hord which lies along the line
	(a) $3\sqrt{6}$	(b) $2\sqrt{3}$	(c) $6\sqrt{3}$	(d) None of these
247.	The locus of the mid-po	oints of a chord of the circle	$x^2 + y^2 = 4$ which subtends a	right angle at the origin is
	(a) $x + y = 2$	(b) $x^2 + y^2 = 1$	(c) $x^2 + y^2 = 2$	(d) $x + y = 1$
248.	=	cus of the middle point of a cite point of intersection of the (b) $x - y = 2$		(x + y) such that the pair of linesally inclined to the <i>x</i>-axis is(d) None of these
249.	The locus of the mid-po	oint of chords of length 2 <i>l</i> of	the circle $x^2 + y^2 = a^2$ is	[Rajasthan PET 1998]
	(a) $x^2 + y^2 = l^2 - a^2$	(b) $x^2 + y^2 = l^2 + a^2$	(c) $x^2 + y^2 = a^2 - 2l^2$	(d) $x^2 + y^2 = a^2 - l^2$
			Diameter of	a Circle and Director Circle
		Basi	c Level	U
250		ector circle of the circle x^2 +	$y^2 = 16$ is	
250.	The equation of the dire			
250.	The equation of the direction (a) $x^2 + y^2 = 8$	(b) $x^2 + y^2 = 32$	(c) $x^2 + y^2 = 64$	(d) $x^2 + y^2 = 4$
	(a) $x^2 + y^2 = 8$	(b) $x^2 + y^2 = 32$ ter of the circle $2(x^2 + y^2) + 3x$	•	* * *
251.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$	ter of the circle $2(x^2 + y^2) + 3x$ (b) - 1/2	x + 4y - 1 = 0, then the value (c) 1	of k is (d) - 1
251.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diameter (a) $1/2$	ter of the circle $2(x^2 + y^2) + 3x$ (b) - 1/2	x + 4y - 1 = 0, then the value (c) 1	of k is
251. 252.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the diamet (a) $x + 2y = 0$	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ term of the circle $x^2 + y^2 - 2$	x + 4y - 1 = 0, then the value of (c) 1 x + 4y = 0 passing through th (c) $2x + y = 0$	of k is $(d) - 1$ the origin is [Rajasthan PET 1991] $(d) 2x - y = 0$
251. 252.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the dia (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thr	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ tended the circle $x^2 + y^2 - 2$ (b) $x - 2y = 0$ of intersection of perpendicular rough origin	x + 4y - 1 = 0, then the value of (c) 1 x + 4y = 0 passing through th (c) $2x + y = 0$ lar tangents to the circle x^2 (b)	of k is $(d) - 1$ the origin is [Rajasthan PET 1991] $(d) 2x - y = 0$
251. 252. 253.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the dia (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thr (c) A concentric circle	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ tender of the circle $x^2 + y^2 - 2$ (b) $x - 2y = 0$ of intersection of perpendicular rough origin of radius $\sqrt{2} a$	x + 4y - 1 = 0, then the value of (c) 1 x + 4y = 0 passing through the (c) $2x + y = 0that tangents to the circle x^2 (b) (d) None of these$	of k is (d) - 1 the origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $+ y^2 = a^2$ is [MNR 1987]
251. 252. 253.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the dia (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thr (c) A concentric circle The equation of directors	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ tender of the circle $x^2 + y^2 - 2$ (b) $x - 2y = 0$ of intersection of perpendicular rough origin of radius $\sqrt{2} a$ or circle of the circle $x^2 + y^2 = 0$	x + 4y - 1 = 0, then the value of (c) 1 x + 4y = 0 passing through the (c) $2x + y = 0clar tangents to the circle x^2 (b)(d) None of these= a^2, is$	of k is (d) - 1 the origin is [Rajasthan PET 1991] (d) $2x - y = 0$ $+ y^2 = a^2$ is [MNR 1987]
251. 252. 253.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the dia (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thr (c) A concentric circle	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ tender of the circle $x^2 + y^2 - 2$ (b) $x - 2y = 0$ of intersection of perpendicular rough origin of radius $\sqrt{2} a$ or circle of the circle $x^2 + y^2 = 0$	x + 4y - 1 = 0, then the value of (c) 1 x + 4y = 0 passing through the (c) $2x + y = 0that tangents to the circle x^2 (b) (d) None of these$	of k is $(d) - 1$ the origin is [Rajasthan PET 1991] $(d) 2x - y = 0$ $+ y^2 = a^2 \text{ is} \qquad [MNR 1987]$ A circle of radius $2a$
251. 252. 253.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the dia (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thr (c) A concentric circle The equation of directors	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ timeter of the circle $x^2 + y^2 - 2$ (b) $x - 2y = 0$ of intersection of perpendicular rough origin of radius $\sqrt{2} a$ or circle of the circle $x^2 + y^2 = 0$ (b) $x^2 + y^2 = \sqrt{2} a^2$	x + 4y - 1 = 0, then the value of (c) 1 x + 4y = 0 passing through the (c) $2x + y = 0clar tangents to the circle x^2 (b)(d) None of these= a^2, is$	of k is $(d) - 1$ the origin is [Rajasthan PET 1991] $(d) 2x - y = 0$ $+ y^2 = a^2 \text{ is } [MNR 1987]$ A circle of radius $2a$ [Ranchi BIT 1990]
251. 252. 253.	(a) $x^2 + y^2 = 8$ If $y = 2x + k$ is a diamet (a) $1/2$ The equation of the dia (a) $x + 2y = 0$ The locus of the point of (a) A circle passing thr (c) A concentric circle The equation of director (a) $x^2 + y^2 = 4a^2$	ter of the circle $2(x^2 + y^2) + 3x^2$ (b) $-1/2$ Immeter of the circle $x^2 + y^2 - 2$ (b) $x - 2y = 0$ Of intersection of perpendicular ough origin of radius $\sqrt{2} a$ or circle of the circle $x^2 + y^2 = 0$ (b) $x^2 + y^2 = \sqrt{2} a^2$	(c) 1 x+4y=0 passing through th (c) $2x+y=0$ lar tangents to the circle x^2 (b) (d) None of these $=a^2$, is (c) $x^2+y^2-2a^2=0$	of k is $(d) - 1$ the origin is [Rajasthan PET 1991] $(d) 2x - y = 0$ $+ y^2 = a^2 \text{ is } [MNR 1987]$ A circle of radius $2a$ [Ranchi BIT 1990]

256. A point on the line x = 3 from which the tangents drawn to the circle $x^2 + y^2 = 8$ are at right angles is

(c) $(3, \sqrt{7})$

(b) $(3, \sqrt{23})$

(d) $(3, -\sqrt{23})$

Pole and Polar w.r.t. a Circle

Basic Level

257.	The coordinates of pole	of line $lx + my + n = 0$ with resp	pect to circle $x^2 + y^2 = 1$, is	[Rajasthan PET 1987]
	(a) $\left(\frac{l}{n}, \frac{m}{n}\right)$	(b) $\left(-\frac{l}{n}, -\frac{m}{n}\right)$	(c) $\left(\frac{l}{n}, -\frac{m}{n}\right)$	(d) $\left(-\frac{l}{n}, \frac{m}{n}\right)$
258.	The equation of polar of	the point (1, 2) with respect t	to the circle $x^2 + y^2 = 7$, is [1]	MNR 1973; Rajasthan PET 1983, 84]
	(a) $x - 2y - 7 = 0$	(b) $x + 2y - 7 = 0$	(c) $x - 2y = 0$	(d) $x + 2y = 0$
259.	If polar of a circle $x^2 + y$	$a^2 = a^2$ with respect to (x', y') is	is $Ax + By + C = 0$, then its p	ole will be[Rajasthan PET 1984, 95]
	(a) $\left(\frac{a^2A}{-C}, \frac{a^2B}{-C}\right)$	(b) $\left(\frac{a^2A}{C}, \frac{a^2B}{C}\right)$	(c) $\left(\frac{a^2C}{A}, \frac{a^2C}{B}\right)$	(d) $\left(\frac{a^2C}{-A}, \frac{a^2C}{-B}\right)$
260.	Polar of origin (0, 0) wit	th respect to the circle $x^2 + y^2$	$+2\lambda x + 2\mu y + c = 0$ touches c	ircle $x^2 + y^2 = r^2$ if [Rajasthan PET 199:
	(a) $c = r(\lambda^2 + \mu^2)$	(b) $r = c(\lambda^2 + \mu^2)$	(c) $c^2 = r^2 (\lambda^2 + \mu^2)$	(d) $r^2 = c^2 (\lambda^2 + \mu^2)$
261.	The polar of the point (5	$(x, -1/2)$ w.r.t. circle $(x-2)^2 + y^2$	$^2 = 4$ is	[Rajasthan PET 1996]
	(a) $5x - 10y + 2 = 0$	(b) $6x - y - 20 = 0$	(c) $10x - y - 10 = 0$	(d) $x - 10y - 2 = 0$
262.	The pole of the line $2x +$	$3y = 4$ w.r.t. circle $x^2 + y^2 = 64$	4 is	[Rajasthan PET 1996]
		(b) (48, 32)	(c) (- 32, 48)	(d) (48, - 32)
263.	The pole of the straight	line $x + 2y = 1$ with respect to	the circle $x^2 + y^2 = 5$ is	[Rajasthan PET 2000, 01]
		(b) (5, 10)	(c) (10, 5)	(d) (10, 10)
264.	The polars drawn from ($(-1, 2)$ to the circles $S_1 \equiv x^2 +$	$y^2 + 6y + 7 = 0$ and $S_2 = x^2$	$+y^{2}+6x+1=0$, are[Rajasthan PET 200
	(a) Parallel		* * *	(d) Intersect at a point
265.	•	cle be $x^2 + y^2 = a^2$. If $h^2 + k^2 - a^2$	•	$=a^2$ is the
		nt (h, k) with respect to the circle.	rcle (b)	Real chord of contact of the
tange	ents from (h, k) to the circ	cie nt to the circle from the point ((h k)	(d) None of these
266.	-	3y = 50 with respect to the cir		[Rajasthan PET 1993]
	(a) (16, 12)	(b) (- 16, 12)	(c) (12, 16)	(d) (- 16, - 12)
267.	The equation of the pola	er of the point (4, 4) with resp	ect to the circle $(x-1)^2 + (y-1)^2$	$(-2)^2 = 0$ is
	(a) $3x + 2y = 7$	(b) $3x + 2y + 8 = 0$	(c) $3x - 2y = 8$	(d) $7x + 5y = 8$
268.	The chord of contact and	l polar of a circle with respect	to a point are coincident if	f[MP PET 1984; BIT Ranchi 1990]
	(a) The point is inside the	he circle	(b)	The point is outside the
circle		do the circle	(d) Never	
260	(c) The point is not inside	4y = 28 with respect to the cir		[Rajasthan PET 1994]
209.			(c) $(16/7, 36/7)$	(d) None of these
270.		- 2, 3) w.r.t. the circle $x^2 + y^2$		jasthan PET 1996; EAMCET 1996]
,	(a) $x = 0$	(b) $y = 0$	(c) $x = 1$	(d) $y = 1$
271.		· · ·	n the circle $x^2 + y^2 = 9c^2$. th	nen that line will touch[Rajasthan PET
-	(a) $x^2 + y^2 = 4c^2$			(d) $x^2 + y^2 = 2c^2$

(c) $x^2 + y^2 + 156x + 38y + 168 = 0$

7 2. I	If the polar of a point (p, q) with respect to the circle	$x^2 + y^2 = a^2$ touches the cir	cle $(x-c)^2 + (y-d)^2 = b^2$	then
((a) $b^2 (p^2 + q^2) = (a^2 - cp - qd)^2$	(b) $b^2(p^2+q^2)=(a^2-cq-cq)$	$(dp)^2$	
((c) $a^2 (p^2 + q^2) = (b^2 - cp - dq)^2$	(d) None of these		
7 3 •	The equation of a circle is $x^2 + y^2 - 4x + 2y - 4 = 0$. Wit	h respect to the circle		
	(a) The pole of the line $x - 2y + 5 = 0$ is (1, 1)	•		
	(b) The chord of contact of real tangents from (1, 1) is	s the line $x - 2y + 5 = 0$		
	(c) The polar of the point (1, 1) is $x - 2y + 5 = 0$	·		
	(d) None of these			
	a) None of these			(
			System of	Cricles
	Basic	Level		
1. I	If d is the distance between the centres of two circles	, r_1 , r_2 are their radii and d	$= r_1 + r_2$, then [MP I	PET 1986]
((a) The circles touch each other externally	(b) The circles touch each	•	
	(c) The circles cut each other		(d) The circles are d	isjoint
. 7	The points of intersection of the circles $x^2 + y^2 = 25$ a	and $x^2 + y^2 - 8x + 7 = 0$ are	[MP I	PET 1988
	(a) (4, 3) and (4, -3) (b) (4, -3) and (-4, -3)	(c) (-4, 3) and (4, 3)	(d) (4, 3) and (3, 4)	
5. (Circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$		[MP I	PET 1990
	(a) Touch internally	(b) Touch externally		
	(c) Intersect each other at two distinct points	(d) Do not intersect each		
	For the given circles $x^2 + y^2 - 6x - 2y + 1 = 0$ and $x^2 + y$	$x^2 + 2x - 8y + 13 = 0$, which of	the following is true[N	AP PET 19
	(a) One circle lies inside the other ethe other	(b)	One circle lies co	mpletely
	(c) Two circle intersect in two points	(d) They touch each other		
	The two circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2 - 8y = 0$			BIT 1985]
	(a) Touch each other internally	(b)	Touch each other ext	ernally
((c) Do not touch each other	(d)	None of these	-
). (Circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$		1	[IIT 1973]
((a) Touch each other internally	(b)	Touch each other ext	ernally
((c) Cuts each other at two points	(d)	None of these	
). A	A tangent to the circle $x^2 + y^2 = 5$ at the point (1, -2)	to the circle $x^2 + y^2 - 3$	8x + 6y + 20 = 0	[IIT 1975]
((a) Touches (b) Cuts at real points	(c) Cuts at imaginary poin	nts (d) None	of these
ι. I	If the circles $x^2 + y^2 - 9 = 0$ and $x^2 + y^2 + 2ax + 2y + 1 =$	0 touch each other, then a	= [Roor	kee 1998]
((a) -4/3 (b) O	(c) 1	(d) 4/3	
2. 7	The equation of the circle through the point	of intersection of the	circles $x^2 + y^2 - 8x - 2$	2y + 7 = 0,
	$x^{2} + y^{2} - 4x + 10y + 8 = 0$ and (3, -3) is		[AI C	BSE 1981]
((a) $23x^2 + 23y^2 - 156x + 38y + 168 = 0$	(b) $23x^2 + 23y^2 + 156x + 38$	y + 168 = 0	

(d) None of these

283.	The locus of the centre of	of a circle which touches exte	ernally the circle $x^2 + y^2 -$	6x - 6y + 14 = 0 and also touch	hes
	the y-axis is given by the		•	[IIT 1993; DCE 200	
	(a) $x^2 - 6x - 10y + 14 = 0$	(b) $x^2 - 10x - 6y + 14 = 0$	(c) $y^2 - 6x - 10y + 14 = 0$	(d) $y^2 - 10x - 6y + 14 = 0$	
284.	Circles $x^2 + y^2 + 2gx + 2fy =$	= 0 and $x^2 + y^2 + 2g'x + 2f'y = 0$	touch externally, if [M	IP PET 1994; Karnataka CET 200	03]
	(a) $f'g = g'f$	(b) $fg = f'g'$	(c) $f'g' + fg = 0$	(d) $f'g + g'f = 0$	
285.	The circle passing through	gh point of intersection of the	circle $S = 0$ and the line P	= 0 is [Rajasthan PET 199	95]
	(a) $S + \lambda P = 0$	(b) $S - \lambda P = 0$	(c) $\lambda S + P = 0$	(d) $P - \lambda S = 0$	
286.	The two circles $x^2 + y^2 -$	$2x - 3 = 0$ and $x^2 + y^2 - 4x - 6y$	-8 = 0 are such that	[MNR 199	95]
	(a) They touch each other	er (b)	They intersect each other	(c) One lies inside the other	er(d)
287.	Consider the circles x^2 +	$(y-1)^2 = 9$, $(x-1)^2 + y^2 = 25$. The	hey are such that	[EAMCET 199	94]
	(a) These circles touch e	ach other	(b) One of these circles li	ies entirely inside the other	
	(c) Each of these circles		(d) They intersect in two	•	
288.		circle passing through the po = 0 and the line $3x + 2y - 5 = 0$		the points of intersection of t [Rajasthan PET 199	
	(a) $x^2 + y^2 + 2x - 4y - 4 =$	0	(b) $x^2 + y^2 + 4x - 2y - 4 = 0$	0	
	(c) $x^2 + y^2 - 3x - 4y = 0$		(d) $x^2 + y^2 - 4x - 2y = 0$		
289.	If the circles $x^2 + y^2 = 4$,	$x^2 + y^2 - 10x + \lambda = 0 $ touch exte	ernally, then λ is equal to	[AMU 199	99]
	(a) - 16	(b) 9	(c) 16	(d) 25	
290.	The condition that the cir	rcle $(x-3)^2 + (y-4)^2 = r^2$ lies e	entirely within the circle x	$^{2} + y^{2} = R^{2}$, is [AMU 199]	99]
	(a) $R + r \le 7$	(b) $R^2 + r^2 < 49$	(c) $R^2 - r^2 < 25$	(d) $R - r > 5$	
291.	If the centre of a circle	which passing through the p	oints of intersection of th	e circles $x^2 + y^2 - 6x + 2y + 4 =$	= 0
	and $x^2 + y^2 + 2x - 4y - 6 =$	0 is on the line $y = x$, then the	ne equation of the circle is	[Rajasthan PET 1991; Roorkee 1	1989]
	(a) $7x^2 + 7y^2 - 10x + 10y - $	-11 = 0	(b) $7x^2 + 7y^2 + 10x - 10y -$	12 = 0	
	(c) $7x^2 + 7y^2 - 10x - 10y - $	-12 = 0	(d) $7x^2 + 7y^2 - 10x - 12 = 0$	l	
292.	The equation of a circ	cle passing through points	of intersection of the ci	arcles $x^2 + y^2 + 13x - 3y = 0$ a	and
	$2x^2 + 2y^2 + 4x - 7y - 25 = 0$			Rajasthan PET 1988, 89; IIT 198	
	(a) $4x^2 + 4y^2 - 30x - 10y - $	-25 = 0	(b) $4x^2 + 4y^2 + 30x - 13y - $	25 = 0	
	(c) $4x^2 + 4y^2 - 17x - 10y + 10y $	+ 25 = 0	(d) None of these		
293.	The equation of circle pa	sses through the points of int		$-6x + 8 = 0$ and $x^2 + y^2 = 6$ a	and
	point (1, 1) is	0 1	,	,	
				PET 1988; IIT 1980; MP PET 200	02]
	(a) $x^2 + y^2 - 6x + 4 = 0$	(b) $x^2 + y^2 - 3x + 1 = 0$	(c) $x^2 + y^2 - 4y + 2 = 0$	(d) None of these	
294.	The equation of the cir	rcle having its centre on th	the line $x + 2y - 3 = 0$ and	passing through the points	of
	intersection of the circles	$s x^2 + y^2 - 2x - 4y + 1 = 0$ and $x^2 + y^2 - 2x - 4y + 1 = 0$	$x^2 + y^2 - 4x - 2y + 4 = 0$, is	[MNR 199	92]
	(a) $x^2 + y^2 - 6x + 7 = 0$	(b) $x^2 + y^2 - 3y + 4 = 0$	(c) $x^2 + y^2 - 2x - 2y + 1 = 0$	(d) $x^2 + y^2 + 2x - 4y + 4 = 0$	
295.	A circle of radius 5 touch	the another circle $x^2 + y^2 - 2x$	-4y - 20 = 0 at (5, 5), then	its equation is [IIT 197	79]
	(a) $x^2 + y^2 + 18x + 16y + 12$	20 = 0	(b) $x^2 + y^2 - 18x - 16y + 12y$	0 = 0	
	(c) $x^2 + y^2 - 18x + 16y + 12$	20 = 0	(d) None of these		

296. The points of intersection of circles $x^2 + y^2 = 2ax$ and $x^2 + y^2 = 2by$ are

	(a) (0, 0), (a, b) (b) (0, 0), $\left(\frac{2ab^2}{a^2+b^2}, \frac{2ba^2}{a^2+b^2}\right)$	(c) (0, 0), $\left(\frac{a^2+b^2}{a^2}, \frac{a^2+b}{b^2}\right)$	$\begin{pmatrix} 2 \\ - \end{pmatrix}$ (d) None of these
297.	The equation of the circle which passes th	rough the intersection	of $x^2 + y^2 + 13x - 3y = 0$ and
	$2x^2 + 2y^2 + 4x - 7y - 25 = 0$ and whose centre lies on 13	x + 30y = 0	[DCE 2001]
	(a) $x^2 + y^2 + 30x - 13y - 25 = 0$	(b) $4x^2 + 4y^2 + 30x - 13y - 2$	25 = 0
	(c) $2x^2 + 2y^2 + 30x - 13y - 25 = 0$	(d) $x^2 + y^2 + 30x - 13y + 25$	= 0
298.	The two circles $x^2 + y^2 - 2x + 6y + 6 = 0$ and $x^2 + y^2 - 5x$	x + 6y + 15 = 0	[Karnataka CET 2001]
	(a) Intersect (b) Are concentric	(c) Touch internally	(d) Touch externally
299.	The equation of the circle passing through (1, $x^2+y^2-6x+8y-16=0$, $x^2+y^2+4x-2y-8=0$ is	- 3) and the points of	common to the two circles
	(a) $x^2 + y^2 - 4x + 6y + 24 = 0$	(b) $2x^2 + 2y^2 + 3x + y - 20 =$: 0
	(c) $3x^2 + 3y^2 - 5x - 7y - 19 = 0$	(d) None of these	
300.	The circles whose equations are $x^2 + y^2 + c^2 = 2ax$ and	$x^2 + y^2 + c^2 = 2by$ will touch	one another externally if
	(a) $\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$ (b) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$	(c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$	(d) None of these
301.	The equation of the circle and its chord are respective circle of which this chord is a diameter is	ely $x^2 + y^2 = a^2$ and $x \cos \alpha +$	$-y \sin \alpha = p$. The equation of the
	(a) $x^2 + y^2 - 2px \cos \alpha - 2py \sin \alpha + 2p^2 - a^2 = 0$	(b) $x^2 + y^2 - 2px \cos \alpha - 2py$	$y \sin \alpha + p^2 - a^2 = 0$
	(c) $x^2 + y^2 + 2px \cos \alpha + 2py \sin \alpha + 2p^2 - a^2 = 0$	(d) None of these	
302.	The two circles $x^2 + y^2 - 5 = 0$ and $x^2 + y^2 - 2x - 4y - 15$	= 0	
	(a) Touch each other externally	(b)	Touch each other internally
	(c) Cut each other orthogonally	(d)	Do not intersect
303.	The circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 4x + 6y - 12 = 0$	y + 4 = 0	[EAMCET 1991]
		(c) Intersect at two points	s (d) Do not intersect
304.	The equations of two circles are $x^2 + y^2 - 26y + 25 = 0$	and $x^2 + y^2 = 25$ then	
ortho	(a) They touch each other gonally	(b)	They cut each other
01 1110	(c) One circle is inside the other circle	(d) None of these	
305.	The equation of a circle C_1 is $x^2 + y^2 - 4x - 2y - 11 = 0$.	A circle C_2 of radius 1 ro	lls on the outside of the circle
	\mathcal{C}_1 . The locus of the centre of \mathcal{C}_2 has the equation		[MP PET 2003]
	(a) $x^2 + y^2 - 4x - 2y - 20 = 0$	(b) $x^2 + y^2 + 4x + 2y - 20 = 0$	0
	(c) $x^2 + y^2 - 3x - y - 11 = 0$	(d) None of these	
306.	The locus of the centres of the circles passing t $x^2 + y^2 - 2x + y = 0$ is	hrough the intersection o	of the circles $x^2 + y^2 = 1$ and
	(a) A line whose equation is $x + 2y = 0$	(b) A line whose equation	is $2x - y = 1$
	(c) A circle	(d) A pair of lines	
307.	If circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 8y + c = 0$ touch each	other, then c is equal to	[Rajasthan PET 1994]
	(a) 15 (b) - 15	(c) 16	(d) - 16

[AMU 2000]

308.	The locus of the centre of the circle which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches
	the <i>y</i> -axis, is
	[IIT 1993]

(a)
$$x^2 - 6x - 10y + 14 = 0$$
 (b) $x^2 - 10x - 6y + 14 = 0$ (c) $y^2 - 6x - 10y + 14 = 0$ (d) $y^2 - 10x - 6y + 14 = 0$

(c)
$$y^2 - 6x - 10y + 14 = 0$$

(d)
$$y^2 - 10x - 6y + 14 =$$

309. The circle S_1 with centre $C_1(a_1, b_1)$ and radius r_1 touches externally the circle S_2 with centre $C_2(a_2, b_2)$ and radius r_2 . If the tangent at their common point passes through the origin, then

(a)
$$(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = r_1^2 + r_2^2$$

(b)
$$(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = r_1^2 - r_2^2$$

(c)
$$(a_1^2 - b_2^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$$

(d)
$$(a_1^2 - b_1^2) + (a_2^2 + b_2^2) = r_1^2 + r_2^2$$

Advance Level

310. The circles
$$x^2 + y^2 - 10x + 16 = 0$$
 and $x^2 + y^2 = r^2$ intersect each other in two distinct points if

(a)
$$r < 2$$

(b)
$$r > 8$$

(c)
$$2 < r < 8$$

(d)
$$2 \le r \le$$

311. The centre of the circle passing through (0, 0) and (1, 0) and touching the circle
$$x^2 + y^2 = 9$$
 is **[AIEEE 2002]**

(a)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

(b)
$$\left(\frac{1}{2}, -\sqrt{2}\right)$$
 (c) $\left(\frac{3}{2}, \frac{1}{2}\right)$ (d) $\left(\frac{1}{2}, \frac{3}{2}\right)$

(c)
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$

(d)
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

312. The locus of the centre of the circles which touch both the circles
$$x^2 + y^2 = a^2$$
 and $x^2 + y^2 = 4ax$ externally has the equation

(a)
$$12(x-a)^2 - 4y^2 = 3a^2$$
 (b) $9(x-a)^2 - 5y^2 = 2a^2$ (c) $8x^2 - 3(y-a)^2 = 9a^2$ (d) None of these

(c)
$$8x^2 - 3(y - a)^2 = 9a$$

313. Tangents *OP* and *OQ* are drawn from the origin *O* to the circle
$$x^2 + y^2 + 2gx + 2fy + c = 0$$
. Then the equation of the circumcircle of the triangle *OPQ* is

(a)
$$x^2 + y^2 + 2gx + 2fy = 0$$
 (b) $x^2 + y^2 + gx + fy = 0$ (c) $x^2 + y^2 - gx - fy = 0$ (d) $x^2 + y^2 - 2gx - 2fy = 0$

(c)
$$x^2 + y^2 - gx - fy = 0$$

(d)
$$x^2 + y^2 - 2gx - 2fy = 0$$

314. If the circle
$$x^2 + y^2 + 2x + 3y + 1 = 0$$
 cuts $x^2 + y^2 + 4x + 3y + 2 = 0$ in *A* and *B*, then the equation of the circle on *AB* as diameter is

(a)
$$x^2 + y^2 + x + 3y + 3 = 0$$
 (b) $2x^2 + 2y^2 + 2x + 6y + 1 = 0$ (c) $x^2 + y^2 + x + 6y + 1 = 0$ (d) None of these

(c)
$$x^2 + y^2 + x + 6y + 1 = 0$$
 (d) None of

315. The equation of the smallest circle passing through the intersection of the line
$$x + y = 1$$
 and the circle $x^2 + y^2 = 9$ is

(a)
$$x^2 + y^2 + x + y - 8 = 0$$
 (b) $x^2 + y^2 - x - y - 8 = 0$ (c) $x^2 + y^2 - x + y - 8 = 0$

(c)
$$x^2 + y^2 - x + y - 8 = 0$$

316.
$$x^2 + y^2 + 2(2k+3)x - 2ky + (2k+3)^2 + k^2 - r^2 = 0$$
 represents the family of circles with centres on the line [SCRA 1999]

(a)
$$x - 2y - 3 = 0$$

(b)
$$x + 2y - 3 = 0$$

(c)
$$x - 2y + 3 = 0$$

(d)
$$x + 2y + 3 = 0$$

Common Tangents to Two Circles

Basic Level

317. The number of common tangents to the circles
$$x^2 + y^2 - 4x - 6y - 12 = 0$$
 and $x^2 + y^2 + 6x + 18y + 26 = 0$ is [MP PET 1995]

(d) 4

318. The number of common tangents to two circles
$$x^2 + y^2 = 4$$
 and $x^2 + y^2 - 8x + 12 = 0$ is **[EAMCET 1990]**

(d) 4

319. The number of common tangents to the circles
$$x^2 + y^2 - x = 0$$
, $x^2 + y^2 + x = 0$ is

[EAMCET 1994]

(d) 3

320. The circles
$$x^2 + y^2 = 9$$
 and $x^2 + y^2 - 12y + 27 = 0$ touch each other. The equation of their common tangent is [MP PET 195]

(a)
$$4y = 9$$

(b)
$$y = 3$$

(c)
$$y = -3$$

(d)
$$x = 3$$

321.	The two circles $x^2 + y^2 - 2x + 6y + 6 = 0$	and $x^2 + y^2 - 5x + 6y + 15 = 0$	touch each other. The equation of their
	common tangent is		[KCET 1993; DCE 1999]

(a)
$$x = 3$$

(b)
$$y = 6$$

(c)
$$7x - 12y - 21 = 0$$

(d)
$$7x + 12y + 21 = 0$$

322. The number of common tangents to the circle
$$x^2 + y^2 + 2x + 8y - 23 = 0$$
 and $x^2 + y^2 - 4x - 10y + 19 = 0$ is

Advance Level

323. If a>2b>0 then the positive value of m for which $y=mx-b\sqrt{1+m^2}$ is a common tangent to $x^2+y^2=b^2$ and $(x-a)^2 + y^2 = b^2$, is [IIT Screening 2002]

(a)
$$\frac{2b}{\sqrt{a^2-4h^2}}$$

(a)
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$
 (b) $\frac{\sqrt{a^2 - 4b^2}}{2b}$

(c)
$$\frac{2b}{a-2b}$$

(d)
$$\frac{b}{a-2b}$$

324. Two circles, each of radius 5, have a common tangent at (1, 1) whose equation is 3x + 4y - 7 = 0. Then their centres are

(a)
$$(4, -5), (-2, 3)$$

(d) None of these

325. The number of common tangents to the circles one of which passes through the origin and cuts off intercepts 2 from each of the axes, and the other circle has the line segment joining the origin and the point (1, 1) as a diameter, is

326. The range of values of λ for which the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 4\lambda x + 9 = 0$ have two common tangents, is

(a)
$$\lambda \in \left[-\frac{13}{8}, \frac{13}{8} \right]$$

(a)
$$\lambda \in \left[-\frac{13}{8}, \frac{13}{8} \right]$$
 (b) $\lambda > \frac{13}{8}$ or $\lambda < -\frac{13}{8}$ (c) $1 < \lambda < \frac{13}{8}$

(c)
$$1 < \lambda < \frac{13}{8}$$

(d) None of these

327. Two circles with radii r_1 and r_2 , $r_1 > r_2 \ge 2$, touch each other externally, if θ be the angle between the direct common tangents, then

(a)
$$\theta = \sin^{-1} \left(\frac{r_1 + r_2}{r_1 - r_2} \right)$$

(a)
$$\theta = \sin^{-1}\left(\frac{r_1 + r_2}{r_1 - r_2}\right)$$
 (b) $\theta = 2\sin^{-1}\left(\frac{r_1 - r_2}{r_1 + r_2}\right)$ (c) $\theta = \sin^{-1}\left(\frac{r_1 - r_2}{r_1 + r_2}\right)$

(c)
$$\theta = \sin^{-1}\left(\frac{r_1 - r_2}{r_1 + r_2}\right)$$

Common Chord of Two Circles

Basic Level

328. The common chord of the circle $x^2 + y^2 + 4x + 1 = 0$ and $x^2 + y^2 + 6x + 2y + 3 = 0$ is

[MP PET 1991]

(a)
$$x + y + 1 = 0$$

(a)
$$x + y + 1 = 0$$
 (b) $5x + y + 2 = 0$

(c)
$$2x + 2y + 5 = 0$$

(d)
$$3x + y + 3 = 0$$

329. The equation of line passing through the points of intersection of the circles $3x^2 + 3y^2 - 2x + 12y - 9 = 0$ and $x^{2} + y^{2} + 6x + 2y - 15 = 0$, is [IIT 1986; UPSEAT 1999]

(a)
$$10x - 3y - 18 = 0$$

(b)
$$10x + 3y - 18 = 0$$

(b)
$$10x + 3y - 18 = 0$$
 (c) $10x + 3y + 18 = 0$

330. Length of the common chord of the circles $x^2 + y^2 + 5x + 7y + 9 = 0$ and $x^2 + y^2 + 7x + 5y + 9 = 0$ is [Kurukshetra CEE 1996]

(a) 9

(b) 8

331. The length of the common chord of the circles $x^2 + y^2 + 2x + 3y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$ is [MP PET 2000]

(b) $2\sqrt{2}$

(c) $3\sqrt{2}$

(d) 3/2

332. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c' = 0$, then

(a)
$$2g(g-g')+2f(f-f')=c-c'$$

(b)
$$2g'(g-g')+2f'(f-f')=c'-c$$

(c)
$$2g'(g-g')+2f'(f-f')=c-c'$$

(d)
$$2g(g-g')+2f(f-f')=c'-c$$
.

333. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c' = 0$, then the length of the common chord of these two circles is

(a)
$$2\sqrt{g^2 + f^2 - c}$$
 (b) $2\sqrt{g'^2 + f'^2 - c'}$

(b)
$$2\sqrt{g'^2+f'^2-c}$$

(c)
$$2\sqrt{g^2+f^2+c}$$

(d)
$$2\sqrt{g'^2+f'^2+c'}$$

334. The equation of the circle described on the common chord of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 + 2y = 0$ as diameter is

(a)
$$x^2 + y^2 + x - y = 0$$

(b)
$$x^2 + y^2 - x - y = 0$$

(a)
$$x^2 + y^2 + x - y = 0$$
 (b) $x^2 + y^2 - x - y = 0$ (c) $x^2 + y^2 - x + y = 0$ (d) $x^2 + y^2 + x + y = 0$

(d)
$$x^2 + y^2 + x + y = 0$$

335. The distance of the point (1, 2) from the common chord of circles $x^2 + y^2 - 2x + 3y - 5 = 0$ and $x^{2} + y^{2} + 10x + 8y - 1 = 0$ is

[EAMCET 1990]

(a) 2 units

(b) 3 units

(c) 4 units

(d) None of these

Advance Level

336. The length of common chord of the circles $(x-a)^2 + y^2 = a^2$ and $x^2 + (y-b)^2 = b^2$ is

[MP PET 1989]

(a)
$$2\sqrt{a^2+b^2}$$

(b)
$$\frac{ab}{\sqrt{a^2+b^2}}$$

(c)
$$\frac{2ab}{\sqrt{a^2+b^2}}$$

- (d) None of these
- 337. The length of common chord of the circles $x^2 + y^2 = 12$ and $x^2 + y^2 4x + 3y 2 = 0$, is [Rajasthan PET 1990, 99]

(a)
$$4\sqrt{2}$$

(b)
$$5\sqrt{2}$$

(c)
$$2\sqrt{2}$$

- **338.** The line L passes through the points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line L, is [Bihar CEE 1994]

339. The common chord of $x^2 + y^2 - 4x - 4y = 0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{2}$$

340. The length of the common chord of the circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ is

(a)
$$\sqrt{c^2 - (a-b)^2}$$

(b)
$$\sqrt{4c^2-2(a-b)^2}$$

(c)
$$\sqrt{2c^2 - (a-b)^2}$$

(d)
$$\sqrt{4c^2 + (a-b)^2}$$

341. If the circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ touch each other, then

(a)
$$a = b \pm 2a$$

(b)
$$a = b \pm \sqrt{2}c$$

(c)
$$a = b \pm c$$

- (d) None of these
- **342.** If the circle $c_1: x^2 + y^2 = 16$ intersects another circle c_2 of radius 5 in such a manner that the common chord is of maximum length and has a slope equal to 3/4, the coordinates of the centre of c_2 are [IIT 1988]

(a)
$$\left(-\frac{9}{5}, \frac{12}{5}\right)$$
, $\left(\frac{9}{5}, -\frac{12}{5}\right)$ (b) $\left(-\frac{9}{5}, -\frac{12}{5}\right)$, $\left(\frac{9}{5}, \frac{12}{5}\right)$ (c) $\left(\frac{12}{5}, -\frac{9}{5}\right)$, $\left(-\frac{12}{5}, \frac{9}{5}\right)$ (d) None of these

(b)
$$\left(-\frac{9}{5}, -\frac{12}{5}\right), \left(\frac{9}{5}, \frac{12}{5}\right)$$

(c)
$$\left(\frac{12}{5}, -\frac{9}{5}\right), \left(-\frac{12}{5}, \frac{9}{5}\right)$$

- **343.** The common chord of the circle $x^2 + y^2 + 6x + 8y 7 = 0$ and a circle passing through the origin, and touching the line y = x, always passes through the point

- (d) None of these
- **344.** The equation of the circle drawn on the common chord of circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ as a diameter is

[Rajasthan PET 1998]

(a)
$$x^2 + y^2 + \frac{2ab^2}{a^2 + b^2}x + \frac{2a^2b}{a^2 + b^2}y + c = 0$$

(b)
$$x^2 + y^2 + \frac{ab^2}{a^2 + b^2}x + \frac{a^2b}{a^2 + b^2}y + c = 0$$

(c)
$$(a^2 + b^2)(x^2 + y^2) + 2ab(bx + ay) + c = 0$$

(d) None of these

345.	The e	quation	of 1	the	circle	drawn	on	the	common	chord	of	circles	$(x-a)^2$	$+y^2 =$	$=a^2$	and	x^2	$+(y-b)^2$	$=b^2$	as
	diame	ter is																		

[EAMCET 1989]

(a)
$$(a^2 + b^2)(x^2 + y^2) = 2ab(bx + ay)$$

(b)
$$(a^2 + b^2)(x^2 + y^2) = 2ab(ax + by)$$

(c)
$$(a^2 - b^2)(x^2 + y^2) = 2ab(bx - ay)$$

(d)
$$(a^2 - b^2)(x^2 + y^2) = 2ab(ax - by)$$

Angle of Intersection of Two Circles and Orthogonal System of Circles

Basic Level

346. If a circle passes through the point (1, 2) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the equation of the locus of its centre is

[MNR 1992]

(a)
$$x^2 + y^2 - 3x - 8y + 1 = 0$$

(b)
$$x^2 + y^2 - 2x - 6y - 7 = 0$$

(c)
$$2x + 4y - 9 = 0$$

(d)
$$2x + 4y - 1 = 0$$

347. The locus of centre of a circle passing through (p, q) and cuts orthogonally to circle $x^2 + y^2 = k^2$, is [IIT 1988]

(a)
$$2px + 2qy - (p^2 + q^2 + k^2) = 0$$

(b)
$$2px + 2qy - (p^2 - q^2 + k^2) = 0$$

(c)
$$x^2 + y^2 - 3px - 4qy + (p^2 + q^2 - k^2) = 0$$

(d)
$$x^2 + y^2 - 2px - 3qy + (p^2 - q^2 - k^2) = 0$$

348. Two given circles $x^2 + y^2 + ax + by + c = 0$ and $x^2 + y^2 + dx + ey + f = 0$ will intersect each other orthogonally, only

(a)
$$a+b+c=d+e+f$$
 (b) $ad+be=c+f$

(b)
$$ad + be = c + f$$

(c)
$$ad + be = 2c + 2f$$
 (d) $2ad + 2be = c + f$

(d)
$$2ad + 2be = c + i$$

349. Two circles $S_1 = x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $S_2 = x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ cut each other orthogonally, then

[Rajasthan PET 1995]

(a)
$$2g_1g_2 + 2f_1f_2 = c_1 + c_2$$
 (b) $2g_1g_2 - 2f_1f_2 = c_1 + c_2$ (c) $2g_1g_2 + 2f_1f_2 = c_1 - c_2$ (d) $2g_1g_2 - 2f_1f_2 = c_1 - c_2$

(c)
$$2g_1g_2 + 2f_1f_2 = c_1 - c_2$$

(d)
$$2g_1g_2 - 2f_1f_2 = c_1 - c_2$$

350. If the circles of same radius a and centres at (2, 3) and (5, 6) cut orthogonally, then a =

351. The circles $x^2 + y^2 + 4x + 6y + 3 = 0$ and $2(x^2 + y^2) + 6x + 4y + c = 0$ will cut orthogonally, if c equals [Kurukshetra CEE 1996]

352. The equation of a circle that intersects the circle $x^2 + y^2 + 14x + 6y + 2 = 0$ orthogonally and whose centre is (0, 2) is [MP PET 1998]

(b)
$$r^2 + v^2 + 4v - 14 = 0$$

(a)
$$x^2 + y^2 - 4y - 6 = 0$$
 (b) $x^2 + y^2 + 4y - 14 = 0$ (c) $x^2 + y^2 + 4y + 14 = 0$ (d) $x^2 + y^2 - 4y - 14 = 0$

353. If the circles $x^2 + y^2 + 2x + 2ky + 6 = 0$ and $x^2 + y^2 + 2ky + k = 0$ intersect orthogonally, then k is [IIT Screening 2000]

(a) 2 or
$$-\frac{3}{2}$$
 (b) - 2 or $\frac{3}{2}$

(c) 2 or
$$\frac{3}{2}$$

(c) 2 or
$$\frac{3}{2}$$
 (d) - 2 or $\frac{3}{2}$

354. The locus of the centre of circle which cuts the circles $x^2 + y^2 + 4x - 6y + 9 = 0$ and $x^2 + y^2 - 4x + 6y + 4 = 0$ orthogonally is

[UPSEAT 2001]

(a)
$$12x + 8y + 5 = 0$$

(b)
$$8x + 12y + 5 = 0$$

(a)
$$12x + 8y + 5 = 0$$
 (b) $8x + 12y + 5 = 0$ (c) $8x - 12y + 5 = 0$

355. If the two circles $2x^2 + 2y^2 - 3x + 6y + k = 0$ and $x^2 + y^2 - 4x + 10y + 16 = 0$ cut orthogonally, then the value of *k* is [Kerala (Engg.) 2002]

356. The circles $x^2 + y^2 + x + y = 0$ and $x^2 + y^2 + x - y = 0$ intersect at an angle of

Circle and System of Circles 14	11

	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
357.	The equation of the ci	rcle having its centre on	the line $x+2y-3=0$ and	passing through the point of
	intersection of the circle	s $x^2 + y^2 - 2x - 4y + 1 = 0$ and $x^2 + y^2 - 2x - 4y + 1 = 0$	$x^2 + y^2 - 4x - 2y + 4 = 0$ is	[MNR 1992]
	(a) $x^2 + y^2 - 6x + 7 = 0$	(b) $x^2 + y^2 - 3x + 4 = 0$	(c) $x^2 + y^2 - 2x - 2y + 1 = 0$	(d) $x^2 + y^2 + 2x - 4y + 4 = 0$
358.	The two circles $x^2 + y^2 - x^2$	$2x - 2y - 7 = 0$ and $3(x^2 + y^2) - 8$	3x + 29y = 0	[Karnataka CET 1993]
	(a) Touch externally		(b) Touch internally	
	(c) Cut each other ortho		(d)	Do not cut each other
359.	$x^2 + y^2 - 5x + 3y - 1 = 0$	itres of circles passing t	inrough the origin and	intersecting the fixed circle orthogonally is
		, 3		
	(a) A straight line of the	slope –	(b)	A circle
	(c) A pair of straight lin		(d)	None of these
360.		of circles $x^2 + y^2 + 8x - 2y - 9$		
264	(a) 45°	(b) 90°	(c) 60°	(d) 30°
361.	centre is	gn the point (a, b) and cuts	the circle $x + y = 4$ orth	ogonally, then the locus of its [AIEEE 2004]
	(a) $2ax - 2by - (a^2 + b^2 + 4)$	= 0	(b) $2ax + 2by - (a^2 + b^2 + 4)$	
	(c) $2ax - 2by + (a^2 + b^2 + 4a^2 + b^2)$		(d) $2ax + 2by + (a^2 + b^2 + 4)$	
362.	`	,	, ,	the circle $x^2 + y^2 + 4x + 2y = 0$
	orthogonally is	,	,,,	
	_			[MP PET 2004]
	(a) $\frac{-5}{2}$	(b) - 1	(c) $\frac{-11}{8}$	(d) $\frac{-5}{4}$
	_		·	
		Advance	e Level	
262	The equation of a circle w	which cuts the three circles x^2	$+v^2-3r-6v+14=0$ r^2+v^2	$-x-4y+8=0$ and $x^2+y^2+2x-6y+3$
J o J.	orthogonally is	incircuto the three circles x	$3x 0y \mid 14 = 0, x y$	x + y + 0 = 0 and $x + y + 2x + 0y + 1$
	(a) $x^2 + y^2 - 2x - 4y + 1 =$	0	(b) $x^2 + y^2 + 2x + 4y + 1 = 0$	
	(c) $x^2 + y^2 - 2x + 4y + 1 =$		(d) $x^2 + y^2 - 2x - 4y - 1 = 0$	
26.4			•	
364.			ersects circles $x + y + 4x +$	$7 = 0, 2x^2 + 2y^2 + 3x + 5y + 9 = 0$
	and $x^2 + y^2 + y = 0$ ortho		(-) (0 4)	(4) (5, 4)
	(a) (-2, 1)	(b) (-2, -1)	(c) (2, -1)	(d) (2, 1)
365.			-	$(1+\lambda^2)y - 10 = 0$. The number of
		family that are cut orthogona		
	(a) 2	(b) 1	(c) 0	(d) None of these
				al Axis and Radical Centre

Basic Level

366. The equation of radical axis of the circles $x^2 + y^2 + x - y + 2 = 0$ and $3x^2 + 3y^2 - 4x - 12 = 0$, is

(a) $2x^2 + 2y^2 - 5x + y - 14 = 0$

 $2(x^{2} + y^{2}) - 10x + 3y - 2 = 0$ are equal is

(c) 5x - y + 14 = 0

(a) The orthocentre

 $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ orthogonally is [Karnataka CET 1991] (a) An ellipse (b) The radical axis of the given circles (c) A conic (d) Another circle **369.** The coordinates of the radical centre of the three circles $x^2 + y^2 - 4x - 2y + 6 = 0$, $x^2 + y^2 - 4x - 2y + 6y = 0$, $x^{2} + y^{2} - 12x + 2y + 30 = 0$ are (a) (6, 30) (b) (0, 6)(d) None of these (c) (3, 0) 370. The equation of radical axis of the circles $2x^2 + 2y^2 - 7x = 0$ and $x^2 + y^2 - 4y - 7 = 0$ is [Rajasthan PET 1987, 89, 93, 96] (c) 7x - 8y - 14 = 0(a) 7x + 8y + 14 = 0(b) 7x - 8y + 14 = 0(d) None of these **371.** The radical centre of the circles $x^2 + y^2 - 16x + 60 = 0$, $x^2 + y^2 - 12x + 27 = 0$, $x^2 + y^2 - 12y + 8 = 0$ is [Rajasthan PET 2000] (b) (33/4, - 13) (d) None of these (a) (13, 33/4)(c) (33/4, 13) **372.** The radical axis of two circles and the line joining their centres are [Karnataka CET 2001] (a) Parallel (b) Perpendicular (c) Neither parallel, nor perpendicular (d) Intersecting, but not fully perpendicular **373.** Radical axis of the circles $3x^2 + 3y^2 - 7x + 8y + 11 = 0$ and $x^2 + y^2 - 3x - 4y + 5 = 0$ is [Rajasthan PET 2001] (d) x + 10y - 8 = 0(b) x + 10y - 2 = 0(c) x + 10y + 8 = 0**374.** Two tangents are drawn from a point *P* on radical axis to the two circles touching at *Q* and *R* respectively then triangle formed by joining PQR is [UPSEAT 2002] (a) Isosceles (c) Right angled (b) Equilateral (d) None of these **375.** Equation of radical axis of the circles $x^2 + y^2 - 3x - 4y + 5 = 0$ and $2x^2 + 2y^2 - 10x - 12y + 12 = 0$ is [Rajasthan PET 2003] (a) 2x + 2y - 1 = 0(b) 2x + 2y + 1 = 0(c) x + y + 7 = 0(d) x + y - 7 = 0**376.** If the circle $x^2 + y^2 + 6x - 2y + k = 0$ bisects the circumference of the circle $x^2 + y^2 + 2x - 6y - 15 = 0$, then k = [EAMCET 200](b) - 21 (c) 23 (d) - 23377. The locus of a point which moves such that the tangents from it to the two circles $x^2 + y^2 - 5x - 3 = 0$ and $3x^{2} + 3y^{2} + 2x + 4y - 6 = 0$ are equal, is given by (a) $2x^2 + 2y^2 + 7x + 4y - 3 = 0$ **(b)** 17x + 4y + 3 = 0(c) $4x^2 + 4y^2 - 3x + 4y - 9 = 0$ (d) 13x - 4y + 15 = 0**378.** Two equal circles with their centres on x and y axes will possess the radical axis in the following form (a) $ax - by - \frac{a^2 + b^2}{4} = 0$ (b) $2gx - 2fy + g^2 - f^2 = 0$ (c) $g^2x + f^2y - g^4 - f^4 = 0$ (d) $2g^2x + 2f^2y - g^4 - f^4 = 0$ **379.** The equations of two circles are $x^2 + y^2 + 2\lambda x + 5 = 0$ and $x^2 + y^2 + 2\lambda y + 5 = 0$. *P* is any point on the line x - y = 0. If PA and PB are the lengths of the tangents from P to the two circles and PA = 3 then PB is equal to (d) None of these (c) 3 **380.** The locus of a point from which the lengths of the tangents to the circles $x^2 + y^2 = 4$ and

(b) 7x - 3y + 18 = 0

(d) None of these

(c) The incentre of the triangle

367. The radical centre of three circles described on the three sides of a triangle as diameter is

368. The locus of centre of the circle which cuts the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$

(b) The circumcentre

[Rajasthan PET 1984, 85, 86, 91, 2000]

[EAMCET 1994]

(d)

and

[EAMCET 1983]

(d) None of these

Co-axial System of Circles and Limiting Points

		erpendicular to the line joinin		
381.				+5 = 0 is [Rajasthan PET 1986]
	(a) $2x + 2y = 5$	(b) $4x - 2y - 5 = 0$	(c) $2x + 2y + 5 = 0$	(d) None of these
382.	The equation of the r	radical axis of circles $(x-a)^2$ +	$+(y-b)^2 = c^2$ and $(x-b)^2 + (y-b)^2$	$a)^2 = c^2$ is
	(a) $x + y = 0$	(b) $x - y = 0$	(c) $x + y = c^2$	(d) None of these
				Miscellaneous problems
		Ва	sic Level	
383.	If three circles are su	uch that each intersects the re	emaining two, then their radi	cal axes
	(a) Form a triangle	(b) Are coincident	(c) Concurrent	(d) Parallel
384.		the circumference of another		
	(a) Passes through t		(b) Passes through the	centre of S_2
_	(c) Bisects the line j		(d) None of these	
385.		ect a third circle orthogonally,		
41 41	(a) Touches the third	d circle	(b)	Passes through the centre of
tne t	hird circle (c)Does not interse	at the third single	(d) None of these	
286	The radical axis of ty		(d) None of these	
300.	(a) Always intersect		(b) Intersects only one	circle
	(c) Bisects the line j		<u> </u>	on tangent to those circles
287	_	_	•	passes through the point (1, - 1),
30/.	then <i>p</i> is equal to	circles x + y = 0x - 6y + p = 0	$\int d d d x + y = \partial x + \partial y + 14 = 0$	passes through the point (1, 1),
	(a) - 1	(b) 10	(c) - 14	(d) 14
200		Figure 2 in the first form $x^2 + y^2 + 2ax + c = 0$, x^2		
300.				
	(a) (0, 0)	(b) (a, 0)	(c) (0, b)	(d) (a, b)
389.	The equation of the i	radical axis of circles $7x^2 + 7y$	$x^2 - 7x + 14y + 18 = 0$ and $4x^2 + 4x^2 $	
				[Roorkee 1989]
	(a) $21x - 68 = 0$	(b) $3y - 1 = 0$	(c) $3x^2 + 3y^2 + 6y - 6 = 0$	(d) None of these
		Adv	ance Level	
		2 2		
390.			$-2fy + c = 0$ and $2x^2 + 2y^2 + 3$	3x + 8y + 2c = 0 touches the circle
	$x^2 + y^2 + 2x + 2y + 1 =$	0, then		
	$(a) = \frac{3}{3}$ and (a)	(b) $g \neq \frac{3}{4}$ and $f = 2$	$(a) = \frac{3}{3}$ and $(a) = \frac{3}{3}$	(d) None of these
	(a) $g = \frac{1}{4}$ and $f \neq 2$	(b) $g \neq \frac{1}{4}$ and $f = 2$	(c) $g = \frac{1}{4}$ and $f = 2$	(d) None of these
391.	If (1, 2) is t	the radical centre of	circle $x^2 + y^2 - 3x - 6y + d$.	$=0, x^2+y^2-x-4y+d_2=0$ and
JJ_,			yy -w ₁	, , , , , , , , , , , , , , , , , , ,
	$x^2 + y^2 + 2x - 6y + d_3 =$			
	(a) $d_1 + d_3 = 5$	(b) $d_1 - d_3 = 5$	(c) $d_1 + d_3 = 10$	(d) $d_1 - d_3 = 10$
392.	x = 1 is the equation	n of the radical axis of two	circle which intersect orthog	gonally. If the equation of one of

(a) A straight line inclined at $\pi/4$ with the line joining the centres of the circles

(b) A circle (c) An ellipse

(c) $x^2 + y^2 + 8x + 4 = 0$

these circles is $x^2 + y^2 = 4$, then the equation of the other is

(a) $x^2 + y^2 - 8x - 4 = 0$ (b) $x^2 + y^2 - 8x + 4 = 0$

393.		int of a coaxial system of w	hich $x^2 + y^2 - 6x - 8y + 1 =$	= 0 is a member. The other limiting point
	is (a) (-2, -4)	(b) $\left(\frac{3}{25}, \frac{4}{25}\right)$	(c) $\left(-\frac{3}{25}, -\frac{4}{25}\right)$	[EAMCET 1994] $(d) \begin{pmatrix} 4 & 3 \end{pmatrix}$
			,	
394.	If $(3, \lambda)$ and $(5, 6)$ are (a) 2	e conjugate points with res (b) - 2	pect to circle $x^{2} + y^{2} = 3$, (c) 3	then λ equals [Rajasthan PET 1998] (d) 4
	(u) 2	(0) 2	(6) 3	(4) 4
		Ad	vance Level	
395.		limiting point of 0, $x^2 + y^2 - 2x - 4y + 3 = 0$ is		system of circles containing
	(a) (-1,1)	(b) (-1, 2)	(c) (-2,1)	[EAMCET 1987] (d) (-2, 2)
396.		of circles given by $x^2 + y^2 +$	2gx + c = 0 for c < 0 repr	resents. [Karnataka CET 2004]
	(a) Intersecting circle(c) Touching circles	es	(b) Non intersect	ting circles non-intersecting circles
	(c) Touching circles		(u) Touching of I	Miscellaneous problems
				intisectiuneous problems
		В	Basic Level	
397.	The limit of the perin	neter of the regular n -gons	inscribed in a circle of r	adius R as $n \to \infty$ is [MP PET 2003]
	(a) 2 <i>πR</i>	(b) πR	(c) 4 R	(d) πR^2
	A B C and D are the	nainte of intercection with	h the coordinate axes of	The lines $ax + by = ab$ and $bx + ay = ab$,
398.		points of intersection with		
398.	then (a) A, B, C, D are cor		(b)	A, B, C, D form a
	then (a) A, B, C, D are corlelogram	ncyclic		
	then (a) A, B, C, D are con	ncyclic	(b) (d)	A, B, C, D form a None of these
	then (a) A, B, C, D are corlelogram	ncyclic		
paral	then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conlelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a n	ncyclic	(d)	None of these
paral	then (a) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are conlelogram (c) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> form a note of the points (2, 0), (0)	ncyclic rhombus Ad	(d)	None of these
paral 399.	then (a) A, B, C, D are conclelogram (c) A, B, C, D form a solution of the points (2, 0), (6) (a) $-1, -\frac{3}{14}$	neyclic rhombus Ad (b) -1, $-\frac{14}{3}$	(d) Evance Level concyclic, then c is equal (c) $\frac{14}{3}$, 1	None of these to [MNR 1982]
paral 399.	then (a) A, B, C, D are conclelogram (c) A, B, C, D form a solution of the points (2, 0), (c) (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ ($x^2 + y^2 + a'x + b'y + c' = 0$)	rhombus Ad 2, 1), (4, 5) and (0, c) are concept (b) -1 , $-\frac{14}{3}$ cuts circle $x^2 + y^2 + ax + by + by$ of in R and S . If the four points	(d) Evance Level concyclic, then c is equal (c) $\frac{14}{3}$, 1 $+ c = 0$ in P and Q and t	None of these to [MNR 1982] (d) None of these the line $A'x + B'y + C' = 0$ cuts the circle
paral 399.	then (a) A, B, C, D are conclelogram (c) A, B, C, D form a solution of the points (2, 0), (6) (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$	rhombus Ad 2, 1), (4, 5) and (0, c) are concept (b) -1 , $-\frac{14}{3}$ cuts circle $x^2 + y^2 + ax + by + by$ of in R and S . If the four points	(d) Evance Level concyclic, then c is equal (c) $\frac{14}{3}$, 1 $+ c = 0$ in P and Q and t	None of these to [MNR 1982] (d) None of these the line $A'x + B'y + C' = 0$ cuts the circle
399·	then (a) A, B, C, D are conclelogram (c) A, B, C, D form a result of the points (2, 0), (c) (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ or $x^2 + y^2 + a'x + b'y + c' = 0$ $A = \begin{bmatrix} a - a' & b - b' & C - c' &$	neyclic rhombus Ad O, 1), (4, 5) and (0, c) are considered by the constant of the constant	(d) Evance Level concyclic, then c is equal c (c) $\frac{14}{3}$, 1 $c = 0$ in P and Q and the points P , Q , R and S are concept c (c) c	None of these to [MNR 1982] (d) None of these the line $A'x + B'y + C' = 0$ cuts the circle oncyclic, then [Roorkee 1986]
399·	then (a) A, B, C, D are conclelogram (c) A, B, C, D form a result of the points (2, 0), (c) (a) $-1, -\frac{3}{14}$ Line $Ax + By + C = 0$ or $x^2 + y^2 + a'x + b'y + c' = 0$ $A = \begin{bmatrix} a - a' & b - b' & C - c' &$	neyclic rhombus Ad O, 1), (4, 5) and (0, c) are considered by the constant of the constant	(d) Evance Level concyclic, then c is equal c (c) $\frac{14}{3}$, 1 $c = 0$ in P and Q and the points P , Q , R and S are concept c (c) c	None of these to [MNR 1982] (d) None of these the line $A'x + B'y + C' = 0$ cuts the circle oncyclic, then [Roorkee 1986]

402.		points of intersection of the l angle subtended by the arc P		= 2 if intersects these lines at [MP PET 1998]					
radiu	(a) 180°	(b) 90°	(c) 120°	(d) Depends on centre of					
		formed by joining the origin	to the points of intersection	n of the line $x\sqrt{5} + 2y = 3\sqrt{5}$ and					
403.	circle $x^2 + y^2 = 10$ is	formed by Johning the origin	to the points of intersection	[Roorkee 1998]					
	(a) 3	(b) 4	(c) 5	(d) 6					
404.	Let AB be a chord of the	circle $x^2 + y^2 = r^2$ subtending	g a right angle at the centre	. Then the locus of the centroid					
	of the $\triangle PAB$ as P moves			[IIT Screening 2001]					
	(a) A parabola		(c) An ellipse						
405.	A square is inscribed in th of its vertices are	$e circle x^2 + y^2 - 2x + 4y - 93 = 0$	0 with its sides parallel to the	e coordinate axes. The coordinates					
	(a) (-6, -9), (-6, 5), (8, - 9), (8, 5)	(b) (-6, 9), (-6, -5), (8, (d) (-6, -9), (-6, 5), (8,	- 9), (8, 5)					
	(c) (-6, -9), (-6, 5), (8, 9), (8, 5)	(d) (-6, -9), (-6, 5), (8,	- 9), (8, - 5)					
406.		$= 0$ and $a_2x + b_2y + c_2 = 0$ cut							
	(a) $a_1 a_2 = b_1 b_2$			(d) None of these					
407.	Let P be a point on the	circle $x^2 + y^2 = 9$, Q a point of	on the line $7x + y + 3 = 0$, and	d the perpendicular bisector of					
	PQ be the line $x - y + 1 =$	$\boldsymbol{0}$. Then the coordinates of \boldsymbol{P}	are						
	(a) (3, 0)	(b) (o, 3)	(c) $\left(\frac{72}{25}, -\frac{21}{25}\right)$	(d) $\left(-\frac{72}{25}, \frac{21}{25}\right)$					
408.			t at O are equal to m and n r	he triangle <i>OAB</i> . The distances respectively. Then the diameter					
	(a) $m(m+n)$	(b) $n(m+n)$	(c) $m-n$	(d) None of these					
409.	If the circle $x^2 + y^2 + 2gx$	x + 2fy + c = 0 is touched by $y =$	$= x$ at P such that $OP = 6\sqrt{2}$,	then the value of c is					
410.	(a) 36 One of the diameters of	(b) 144 the circle circumscribing the	(c) 72 rectangle <i>ABCD</i> is $4y = x + 7$	(d) None of these 7. If A and B are the points (-3,					
	·	ly, then the area of the rectan							
	-	-	(c) 32 sq. units	(d) None of these					
411.	The maximum number of	of points with rational coordin	nates on a circle whose centi	re is $(\sqrt{3},0)$ is					
412.		(b) Two tes of the centre of the circ nates (-1, 0) and (1, 0) and w		(d) Infinite exagon whose two consecutive					
		(b) $x^2 + y^2 - \sqrt{3}y - 1 = 0$							
440	• • • •	• • •	• •	, ,					
413.				e circle C_k , a particle moves k					
				icle moves to C_{k+1} in the radial					
		ection of the x-axis for the firs		starts at $(1, 0)$. If the particle $n n is$					
	(a) 7	(b) 6	(c) 2	(d) None of these					
414.				0, - 1) to the circle $x^2 + y^2 = 1$.					
	The reflected ray touched (a) $4x - 3y + 11 = 0$	es the circle. The equation of t (b) $4x + 3y + 11 = 0$	the line along which the inci (c) $3x + 4y + 11 = 0$	dent ray moved is (d) None of these					
415.	_	he plane of a regular hexagon is $6a^2$. If the radius of the cir		uares of its distances from the $r(< a)$ then the locus of P is					
	(a) A pair of straight lin	nes	(b)	An ellipse					
	(c) A circle of radius \sqrt{a}	$\overline{a^2-r^2}$	(d)	An ellipse of major axis a					
and n	ninor axis r		• •	1 191 11 11					
416.	The equation of a circle	e is $x^2 + y^2 = 4$. A regular hex	agon is inscribed in the cir	cle whose one vertex is (2, 0).					
	Then a consecutive verte	ex has the coordinates							
	(a) $(\sqrt{3}, 1)$	(b) $(1, -\sqrt{3})$	(c) $(\sqrt{3}, -1)$	(d) $(1, \sqrt{3})$					

417. A point $P(\sqrt{3}, 1)$ moves on the circle $x^2 + y^2 = 4$ and after covering a quarter of the circle leaves it tangentially. The equation of a line along which the point moves after leaving the circle is

(b) $\sqrt{3}y = x + 4$

(c) $\sqrt{3}y = x - 4$

(d) $y = \sqrt{3}x - 4$

(a) $y = \sqrt{3}x + 4$ (b) $\sqrt{3}y = x + 4$ (c) $\sqrt{3}y = x - 4$ (d) $y = \sqrt{3}x - 4$ **418.** If the curves $ax^2 + 4xy + 2y^2 + x + y + 5 = 0$ and $ax^2 + 6xy + 5y^2 + 2x + 3y + 8 = 0$ intersect at four concyclic points then the value of *a* is

(a) 4

(b) - 4

(c) 6

(d) - 6

Assignment (Basic and Advance level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	b	a	b	a	b	b	a	b	b	С	С	a	a	a	С	a	d	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	С	a	b	С	a	d	С	b	d	с	d	a	a,b,	a	b	a	d	d	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	a	d	С	b	С	d	b	С	b	a	a	С	a	a	С	b	a	С	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	С	a	С	b	С	С	a	a	a	a	b	С	d	b	d	a	b	b	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	a	С	b	b	С	a	b	С	b	a	d	b	a	a	b	b	d	С	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	d	a	b	b	b	a	a	a	С	d	С	b	b	a	b,c	b	С	a	С
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
a,c	b	d	b	b	a	b	a	a	d	d	a	b	d	С	a	d	b	d	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	b	С	b	b	b	b	С	b	a	С	С	d	a	b	b	a	a
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	С	b	a,d	b	b	b	a	С	b	С	С	С	b,c	С	d	С	a	a	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	b	b	b	b	b	b	a	С	С	b	a	a	a	С	С	a	a,c	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	d	С	С	a	a	С	a,c	b	a	С	b	С	С	a	С	a	С	С	С
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
b	b	b	С	b	b,c	a	b	С	d	С	d	b	С	a	c,d	С	С	С	a

146 Circle and System of Circles																			
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	d	a	d	a	С	С	a	d	b	a	С	С	С	a	a,c	b	b	a	С
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	a	b	d	a	a	a	С	b	a	b	a	a,c	a	a	a	d	a	a	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a,d	a	d	a	a,b,c d	b	b	b	a	d	С	b	b	a	b	a	b	С	b	С
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	b	С	b	a	a	a	d	b	С	b	a	b	b	b	d	С	С	d	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
b	С	a	С	b	b	b	a	a	d	b	С	b	d	a	С	a	d	d	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
b	a	С	a	a	С	a	С	a	С	b	d	a	С	С	d	a	С	d	b
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
b	d	a	b	a	b	С	b	d	С	d	b	b	a	a	d	b	b	С	d
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
a	b	С	b	b	d	b	a	a	С	b	b	b	b	a	a	a	a	С	b
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418		
С	a	С	b	a	a	a,d	d	С	С	b	a	a	b	С	b	b	b		