

		Basi	c Level		
1.	Area under the curve $y = x^2$.	-4x within the x-axis and the line x	=2, is		[SCRA 1991]
	(a) $\frac{16}{3}$ sq. units	(b) $-\frac{16}{3}$ sq. units	(c) $\frac{4}{7}$ sq. units	(d)	Cannot be calculated
2.	The area bounded by the curv	we $y = 4x - x^2$ and the x-axis is			[MP PET 1999, 2003]
	(a) $\frac{30}{7}$ sq. units	(b) $\frac{31}{7}$ sq. units	(c) $\frac{32}{3}$ sq. units	(d)	$\frac{34}{3}$ sq. units
3.	The area between the curve y	$y = 4 + 3x - x^2$ and x-axis is			[Rajasthan PET 2001]
	(a) $\frac{125}{6}$	(b) $\frac{125}{3}$	(c) $\frac{125}{2}$	(d)	None of these
4.	Area under the curve $y = \sqrt{3}$.	$\overline{x+4}$ between $x=0$ and $x=4$, i	S		[Al CBSE 1979,1980]
	(a) $\frac{56}{9}$ sq. units	(b) $\frac{64}{9}$ sq. units	(c) 8 sq. units	(d)	None of these
5.	The area bounded by the curv	we $y = x^3$, x- axis and two ordinates	x = 1 to $x = 2$ equal to		[MP PET 1999]
	(a) $\frac{15}{2}$ sq. units	(b) $\frac{15}{4}$ sq. units	(c) $\frac{17}{2}$ sq. units	(d)	$\frac{17}{4}$ sq. units
6.	If the area above the <i>x</i> -axis, be	ounded by the curves $y = 2^{kx}$ and .	$x = 0$ and $x = 2$ is $\frac{3}{\ln 2}$, then the value of $x = 0$ and $x = 2$ is $\frac{3}{\ln 2}$.	lue of I	k is [Orissa JEE 2003]
	(a) $\frac{1}{2}$	(b) 1	(c) -1	(d)	2
7.	Area bounded by curve $y = x$	x^3 , x-axis and ordinates $x = 1$ and .	x = 4, is		
	(a) 64 sq. units	(b) 27 sq. units	(c) $\frac{127}{4}$ sq. units	(d)	$\frac{255}{4}$ sq. units
8.	Area bounded by curve $xy =$	c, x-axis between $x = 1$ and $x = 4$, is		
9.	(a) c log 3 sq. units The measurement of the area	(b) 2 log c sq. units bounded by the coordinate axes and	(c) $2c \log 2$ sq. units the curve $y = \log_{a} x$ is	(d)	2c log5 sq. units [MP PET 1998]
	(a) 1	(b) 2	(c) 3	(d)	∞
10.	The area bounded by the curv	$y = \log x$, the x- axis and ordinate	e x = e is		[MP PET 1994]
11	(a) <i>e</i>	(b) 1	(c) ∞	(d)	None of these
11.	Area bounded by the curve y	= $\log x$, x-axis and the ordinates x (b) $\log 4 + 1$ sq units	= 1, x = 2 is (a) log 4 1 sq units	(d)	None of these
12.	(a) $\log 4$ sq. units Area bounded by the curve y	$= x e^{x^2}$, x-axis and the ordinates x=	=0, $x=a$ is	(u)	None of these
	(a) $\frac{e^{a^2} + 1}{2}$ sq. units	(b) $\frac{e^{a^2}-1}{2}$ sq. units	(c) $e^{a^2} + 1$ sq. units	(d)	$e^{a^2} - 1$ sq. units
13.	If area bounded by the curves	s $y^2 = 4ax$ and $y = mx$ is $\frac{a^2}{2}$, the	en the value of m is		
	(a) 2	(b) -2	(c) 1/2	(d)	None of these
14.	The area of the region (in the	square units) bounded by the curve	$x^2 = 4y$, line $x = 2$ and x-axis is		[MP PET 2002]

	(a) 1	(b) $\frac{2}{3}$	(c) $\frac{4}{3}$	(d)	$\frac{8}{3}$
15.	Area bounded by the parabola	a $y = 4x^2$, y- axis and the lines $y =$	1, y = 4 is		
	(a) 3 sq. units	(b) $\frac{7}{5}$ sq. units	(c) $\frac{7}{3}$ sq. units	(d)	None of these
16.	Area bounded by parabola y	$x^2 = x$ and straight line $2y = x$ is			[MP PET 1996]
	(a) $\frac{4}{3}$	(b) 1	(c) $\frac{2}{3}$	(d)	$\frac{1}{3}$
17.	Area enclosed by the parabola	a $ay = 3(a^2 - x^2)$ and x-axis is			
	(a) $4a^2$ sq. units	(b) $12a^2$ sq. units	(c) $4a^3$ sq. units	(d)	None of these
18.	The area enclosed by the curv	$y = \sin x$, $y = 0$, $x = 0$ and $x = 0$	$\frac{\pi}{2}$ is		[MP PET 1995]
	(a) π	(b) 2π	(c) 1	(d)	2
19.	Area bounded by the curve y	$y = \sin x$ between $x = 0$ and $x = 2$.	π is		
20	(a) 2 sq. units	(b) 4 sq. units	(c) 8 sq. units	(d)	None of these
20.	Area bounded by the curve y	$x = k \sin x$ between $x = \pi$ and $x = 2\pi$	τ, 15		
	(a) 2κ sq. units	(b) 0	(c) $\frac{\kappa^2}{2}$ sq. units	(d)	κ sq. units
21.	The area of the region bounde	ed by the <i>x</i> -axis and the curves define	ed by $y = \tan x \left(-\frac{\pi}{3} \le x \le \frac{\pi}{3}\right)$ is		[Kurukshetra CEE 1998]
	(a) $\log \sqrt{2}$	(b) $-\log \sqrt{2}$	(c) 2 log 2	(d)	0
22.	The area between the curve <i>y</i>	$v = \sin^2 x$, x-axis and the ordinates x	x=0 and $x = \frac{\pi}{2}$ is		[Rajasthan PET 1996]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{8}$	(d)	π
23.	Area of the region bounded by	y the curve $y = \tan x$, tangent draw	on to the curve at $x = \frac{\pi}{4}$ and the x-axis	is	[DCE 2002]
	(a) $\frac{1}{4}$	(b) $\log \sqrt{2} - \frac{1}{4}$	(c) $\log \sqrt{2} + \frac{1}{4}$	(d)	None of the above
24.	The ratio of the areas bounded	d by the curves $y = \cos x$ and $y = \cos x$	$\cos 2x$ between $x = 0$, $x = \frac{\pi}{3}$ and x-	- axis, is	[MP PET 1997]
	(a) $\sqrt{2}$:1	(b) 1:1	(c) 1:2	(d)	2:1
25.	The area bounded by the curv	$y = \sec x$, the <i>x</i> -axis and the lines	s x=0 and $x = \frac{\pi}{4}$ is		[Tamilnadu PCEE 2002]
	(a) $\log(\sqrt{2} + 1)$	(b) $\log(\sqrt{2}-1)$	(c) $\frac{1}{2}\log 2$	(d)	$\sqrt{2}$
26.	The area bounded by $y = [x]$	and the two ordinates $x=1$ and $x=1.7$	7 is		
	(a) $\frac{17}{10}$	(b) 1	(c) $\frac{17}{5}$	(d)	$\frac{7}{10}$
27.	The value of k for which the a	area of the figure bounded by the cu	rve $y = 8x^2 - x^5$, the straight line $x =$	= 1 and x	x = k and the <i>x</i> -axis is equal to
	$\frac{16}{3}$				
	(a) 2	(b) $\sqrt[3]{8-\sqrt{17}}$	(c) 3	(d)	- 1
		Advan	nce Level		

28.	The area of the region bound	led by the curves $y = x - 2 $, $x = 1$, $x = 3$ and the <i>x</i> -axis is	[AIEEE 2004
	(a) 4	(b) 2	(c) 3	(d) 1
29.	The area of the region bound	ed by $y = x - 1 $ and $y = 1$ is		[IIT Screening 1994
30	(a) 2 Area bounded by lines $y = 2$	(b) 1 $(x - 2) = 2$ (b) $(x - 2) = 2$	(c) 1/2	(d) None of these
50.	(a) 3	(b) 4 and $x = 2$ is	(c) 8	(d) 16
31.	Area enclosed between the c	urve $y^2(2a-x) = x^3$ and line $x = 2$	2a above x-axis is	[MP PET 2001
	() 2	$3\pi a^2$	$()$ 2^{2}	(1) 2
	(a) πa^2	(b) ${2}$	(c) $2\pi a^2$	(d) $3\pi a^2$
32.	Area bounded by the curve	xy - 3x - 2y - 10 = 0, x-axis and th	e lines $x = 3$, $x = 4$ is	[AI CBSE 1991
	(a) $16 \log 2 - 3$	(b) $16 \log 2 - 13$	(c) $16 \log 2 + 3$	(d) None of these
33.	The area of the triangle form	ed by the tangent to the hyperbola x	$ay = a^2$ and coordinate axes is	[Rajasthan PET 2000
	(a) a^2	(b) $2a^2$	(c) $3a^2$	(d) $4a^2$
34.	If a curve $y = a\sqrt{x + bx}$ particular for $y = a\sqrt{x + bx}$ particular for $y = bx$ and $y = bx$ for $y = bx$ and $y = bx$.	sses through the point $(1, 2)$ and the	area bounded by the curve, line x	= 4 and x-axis is 8 square units, then [MP PET 2002]
	(a) $a=3, b=-1$	(b) $a = 3, b = 1$	(c) $a = -3, b = 1$	(d) $a = -3, b = -1$
35.	The area bounded by the cur	ve $y = f(x)$, x-axis and ordinates $x =$	= 1 and $x = b$ is $(b-1)\sin(3b+4)$	then $f(x)$ is
	(a) $3(r-1)\cos(3r+4) + \sin(3r+4)$	in(3x + 4)	(b) $(h-1)\sin(3x+4)+3$	[Rajasthan PET 2000] $\cos(3r+4)$
	(c) $(b-1)\cos(3x+4)+3\sin(3x+4)$	in(3x + 4)	(d) None of these	() () () () () () () () () () () () () (
36.	The area enclosed by the par	abola $y^2 = 4ax$ and the straight line	y = 2ax, is	[MP PET 1993
	(a) $\frac{a^2}{2}$ sq. units	(b) $\frac{1}{2}$ sq. units	(c) $\frac{1}{2}$ sq. units	(d) $\frac{2}{2}$ sq. units
	3	$3a^2$	3 <i>a</i>	3 <i>a</i>
37.	The area bounded by the cur	ve $x = at^2$, $y = 2at$ and the x-axis in	$1 \le t \le 3$ is.	[Pb. CET 1998
	(a) $26a^2$	(b) $8a^2$	(c) $\frac{26a^2}{3}$	(d) $\frac{104 a^2}{3}$
38.	If A_n be the area bounded b	by the curve $y = (\tan x)^n$ and the lin	es x=0, y=0 and $x = \frac{\pi}{4}$, then for r	<i>n</i> >2 [IIT 1996, Him. UCET 2002]
	(a) $A_n + A_{n-2} = \frac{1}{n-1}$	(b) $A_n + A_{n-2} < \frac{1}{n-1}$	(c) $A_n - A_{n-2} = \frac{1}{n-1}$	(d) None of these
39.	The area between the curve	$y = 2x^4 - x^2$, the axis and the ordin	ates of two minima of the curve is	
	(a) $\frac{7}{120}$	(b) $\frac{9}{120}$	(c) $\frac{11}{120}$	(d) None of these
40.	The slope of the tangent to	a curve $y = f(x)$ at $(x, f(x))$ is $2x$	+1. If the curve passes through the	he point (1, 2), then the area of the region
	bounded be the curve, the <i>x</i> -a	axis and the line $x=1$ is		[IIT 1995
	(a) $\frac{5}{6}$	(b) $\frac{6}{5}$	(c) 6	(d) $\frac{1}{6}$
				Summetrical Area
				Symmetrical Area
		Bas	sic Level	
41.	The area bounded by the <i>x</i> -ax	xis and the curve $y = \sin x$ and $x =$	$x = 0$, $x = \pi$ is	[Kerala (Engg.)2002
	(a) 1	(b) 2	(c) 3	(d) 4
42.	The area of the curve $xv^2 =$	$a^{2}(a-x)$ bounded by y-axis is		[Rajasthan PET 1996
	(a) πa^2	(b) $2\pi a^2$	(c) $3\pi a^2$	(d) $4\pi a^2$

43.

The area bounded by the parabola $y^2 = 4ax$, its axis and two ordinates x = 4, x = 9 is

(d) $\frac{152\sqrt{a}}{2}$ (a) $4a^2$ (b) $4a^2.4$ (c) $4a^2(9-4)$ Area bounded by the parabola $y^2 = 2x$ and the ordinates x = 1, x = 4 is 44. (a) $\frac{4\sqrt{2}}{2}$ sq. units (b) $\frac{28\sqrt{2}}{2}$ sq. units (c) $\frac{56}{2}$ sq. units (d) None of these Area bounded by the parabola $y^2 = 4ax$ and its latus rectum is [Rajasthan PET 1997, 2000, 2002] 45. (c) $\frac{8}{2}a^2$ sq. units (a) $\frac{2}{3}a^2$ sq. units (b) $\frac{4}{3}a^2$ sq. units (d) $\frac{3}{8}a^2$ sq. units The area between the curve $y^2 = 4ax$, x-axis and the ordinates x = 0 and x = a is [Rajasthan PET 1996] 46. (a) $\frac{4}{2}a^2$ (b) $\frac{8}{3}a^2$ (c) $\frac{2}{2}a^2$ (d) $\frac{5}{2}a^2$ Area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 47. [Karnataka CET 1993] (a) πab sq. units (b) $\frac{1}{2}\pi ab$ sq. units (c) $\frac{1}{4}\pi ab$ sq. units (d) None of these The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is [Rajasthan PET 2002] 48. (a) $\frac{1}{2}(9 \sec^{-1} 3 - \sqrt{8})$ (b) $9 \sec^{-1}(3) - \sqrt{8}$ (c) $\sqrt{8} - 9 \sec^{-1} 3$ (d) None of these The area of the upper half of the circle whose equation is $(x-1)^2 + y^2 = 1$ is given by 49. [Kurukshetra CEE 1995] (b) $\int_{0}^{1} \sqrt{2x - x^2} dx$ (c) $\int_{1}^{2} \sqrt{2x - x^2} dx$ (a) $\int_{0}^{2} \sqrt{2x - x^2} dx$ (d) $\frac{\pi}{4}$ Advance Level 50. The area bounded by the curves $y = \ln x$, $y = \ln |x|$, $y = \ln x |$ and $y = \ln ||x|$ is [AIEEE 2002] (a) 4 sq. units (b) 6 sq. units (d) None of these (c) 10 sq. units Ratio of the area cut off a parabola by any double ordinate is that of the corresponding rectangle contained by that double ordinate and its 51. distance from the vertex is (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) 1 The area bounded by the curves $x = a \cos^3 t$, $y = a \sin^3 t$ is 52. (b) $\frac{3\pi a^2}{16}$ (a) $\frac{3\pi a^2}{8}$ (c) $\frac{3\pi a^2}{32}$ (d) $3\pi a^2$ Area between Two curves **Basic Level** The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x-axis in the 1st quadrant is 53. [IIT 2003] (b) $\frac{27}{4}$ (a) 9 (c) 36 (d) 18 The area of region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ is 54. [Kerala (Engg.) 2002] (a) $\frac{\pi^2}{5}$ (c) $\frac{\pi^2}{2}$ (d) $\frac{\pi}{4} - \frac{1}{2}$ (b) $\frac{\pi^2}{2}$ 55. The area bounded by the curve y = x, x-axis and ordinates x = -1 to x = 2 is [Rajasthan PET 2001]

56.	(a) 0 The area bounded by the curve	(b) $1/2$ es $y = x - 1$ and $y = - x + 1$ i	(c) 3/2 s	(d)	5/2 [IIT Screening 2002]
	(a) 1	(b) 2	(c) $2\sqrt{2}$	(d)	4
57.	The area bounded by the straig	ght lines $x = 0, x = 2$ and the curv	ves $y = 2^x$, $y = 2x - x^2$ is		[AMU 2001]
	(a) $\frac{4}{3} - \frac{1}{\log 2}$	(b) $\frac{3}{\log 2} + \frac{4}{3}$	(c) $\frac{4}{\log 2} - 1$	(d)	$\frac{3}{\log 2} - \frac{4}{3}$
58.	The area of figure bounded by	$y = e^x, y = e^{-x}$ and the straight l	line $x = 1$ is		[Karnataka CET 1999]
	(a) $e + \frac{1}{e}$	(b) $e - \frac{1}{e}$	(c) $e + \frac{1}{e} - 2$	(d)	$e + \frac{1}{e} + 2$
59.	The area bounded by the curve	es $y = \log_e x$ and $y = (\log_e x)^2$	is		[Rajasthan PET 2000]
	(a) $3 - e$	(b) <i>e</i> – 3	(c) $\frac{1}{2}(3-e)$	(d) $\frac{1}{2}(e-3)$)
60.	The area bounded by the curve	es $y^2 - x = 0$ and $y - x^2 = 0$ is			[MP PET 1997]
	(a) $\frac{7}{3}$	(b) $\frac{1}{3}$	(c) $\frac{5}{3}$	(d)	1
61.	The area enclosed by the paral	bolas $y = x^2 - 1$ and $y = 1 - x^2$	is		[AMU 1999]
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $\frac{4}{3}$	(d)	$\frac{8}{3}$
62.	The area bounded by curve y	$y^2 = x$, line $y = 4$ and y-axis is		[Roorkee 19	95; Rajasthan PET 2003]
	(a) $\frac{16}{3}$	(b) $\frac{64}{3}$	(c) $7\sqrt{2}$	(d)	None of these
63.	Area included between the two	o curves $y^2 = 4ax$ and $x^2 = 4ay$, is		
	32	16	[SCRA 1986; Roorke 32	e 1984; Rajasthar	16 a
	(a) $\frac{32}{3}a^2$ sq. units	(b) $\frac{10}{3}$ sq. units	(c) $\frac{32}{3}$ sq. units	(d)	$\frac{10}{3}a^2$ sq. units
64.	Area bounded by the curve x^2	$x^2 = 4y$ and the straight line $x = 4$	y - 2, is		[SCRA 1986; IIT 1981]
	(a) $\frac{8}{9}$ sq. units	(b) $\frac{9}{8}$ sq. units	(c) $\frac{4}{3}$ sq. units	(d)	None of these
65.	What is the area bounded by the	he curves $x^2 + y^2 = 9$ and $y^2 =$	8 x		[DCE 1999]
	(a) 0	(b) $\frac{2\sqrt{2}}{3} + \frac{9\pi}{2} - 9\sin^{-1}\left(\frac{1}{3}\right)$	(c) 16π	(d)	None of these
66.	The area bounded by the circle	e $x^2 + y^2 = 4$, line $x = \sqrt{3}y$ and	<i>x</i> - axis lying in the first quadra	ant, is asthan PET 1997.	Kurukshetra CEE 1998]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{2}$	(d)	π
	2	4	3	(u)	
67.	The area in the first quadrant t	between $x^2 + y^2 = \pi^2$ and $y = \sin^2 x$			[MP PET 1997]
	(a) $\frac{(\pi^2 - 8)}{4}$	(b) $\frac{\pi^2}{3}$	(c) $\frac{(\pi^2 - 16)}{4}$	(d)	$\frac{(\pi^2-8)}{2}$
68.	For $0 \le x \le \pi$, the area bound	ded by $y = x$ and $y = x + \sin x$, is			– [Roorkee Quqalifying 1998]
	(a) 2	(b) 4	(c) 2π	(d)	4π
69.	Area bounded by $y = x \sin x$	and x-axis between $x = 0$ and $x = 0$	$=2\pi$, is	[Roorkee 1981;	Rajasthan PET 1995]
	(a) 0	(b) 2π sq. units	(c) π sq. units	(d)	4π sq. units
70.	The area bounded by curves y	$y = \cos x$ and $y = \sin x$ and ordinates	ates $x = 0$ and $x = \frac{\pi}{4}$ is	[Karı	nataka CET 2002]
	(a) $\sqrt{2}$	(b) $\sqrt{2} + 1$	(c) $\sqrt{2} - 1$	(d)	$\sqrt{2}(\sqrt{2}-1)$
71.	The area formed by triangular	shaped region bounded by the cur	ves $y = \sin x, y = \cos x$ and x	x = 0 is	[MP PET 2000]
	(a) $\sqrt{2} - 1$	(b) 1	(c) $\sqrt{2}$	(d)	$1 + \sqrt{2}$

83.	The v	volume of the solid formed	l by r	otating the area enclosed between	1 the	curve $y = x^2$ and the line $y = x^2$	1 abo	out $y = 1$ is (in cubic units)
	(a)	$\frac{9\pi}{5}$	(b)	$\frac{7\pi}{3}$	(c)	$\frac{8\pi}{3}$	(d)	None of these
84.	The v	volume of the solid obtaine	ed by	v rotating the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	l abo	but the axis of x is		[MNR 1995]
	(a)	$\pi a^2 b$	(b)	$\pi - b^2$	(c)	$\frac{4}{3}\pi a^2b$	(d)	$\frac{4}{3}\pi ab^2$
85.	The p	part of the parabola betwee	n the	parabola $y^2 = 4ax$ and the line	<i>x</i> =	c is revolved about x-axis. The	volu	me of the resulting solid is
	(a)	$2\pi ac^2$	(b)	$\pi a c^2$	(c)	$\frac{\pi c^2}{4}$	(d)	$4\pi ac^2$
86.	The v	volume of the solid generat	ted by	v revolving about the y- axis the	figur	e bounded by the parabola $y = x$	x^2 and	nd $x = y^2$ is
								[UPSEAT 2002]
	(a) $\frac{2}{3}$	$\frac{21}{5}\pi$	(b)	$\frac{24}{5}\pi$	(c)	$\frac{5}{24}\pi$	(d)	None of these
87.	The v	volume of the frustum of a	(1)	e of height 6 <i>cm.</i> , and radii are 5	cms	and 8 cms is	(1)	275
00	(a) The r	$258 \ cc$	(D)	250 cc	(c)	208 CC	(a)	2/5 cc
00.	(a)	2π	= 4 De	x = 1 and $x = 2$ is revol		6π	(d)	8π
_	(a)	21	(0)	+11	(0)	07	(u)	81
				Advance	Lev	el		
89.	The v	volume of a solid obtained	l by r	evolving about y-axis enclosed b	oetwe	een the ellipse $x^2 + 9y^2 = 9$ an	d the	straight line $x + 3y = 3$ in the
	first o	quadrant is						[MNR 1994]
	(a)	3π	(b)	4π	(c)	6π	(d)	9π
90.	The v is	volume of the frustum of a	right	circular cone. The radii of whos	e en	ds are respectively 10 <i>cms</i> and 1	l6 cm	s and thickness is 4 <i>cms</i> ,
	(a)	1232 π	(b)	332π	(c)	1032π	(d)	1132 π
91.	The l is 14	ine segment joining the p π then the value of m is e	oints qual 1	(1, m) and $(2, 2m)$ is revolved rotation	ound	the <i>y</i> -axis to form a frustum of	a con	ne of the volume of the frustum
	(a)	2	(b)	4	(c)	6	(d)	8
92.	A fru then	stum of sphere is made by what will be the curved su	y cutt rface	ing two parallel planes of any sp of frustum when the distance of t	ohere first j	. If radius of sphere is 5 <i>cm</i> and plane from the centre of sphere is	d dista is 2 <i>ci</i>	ance between the plane is 1cm,m[UPSEAT 1999]
	(a)	$5\pi cm^2$	(b)	$10 \pi cm^2$	(c)	$15 \pi cm^2$	(d)	$40\pi cm^2$

\mathcal{A} nswer Sheet

Assignment (Basic and Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	с	a	d	b	b	d	c	d	b	с	b	a	b	с	a	a	c	b	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	b	d	d	a	d	b	d	b	b	b	c	b	a	a	c	d	a	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	d	b	с	b	a	b	a	a	c	a	a	d	d	b	d	c	a	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	d	b	b	c	a	a	d	c	a	b	c	b	с	b	a	a	c	b
81	82	83	84	85	86	87	88	89	90	91	92								
a	а	d	d	a	d	a	b	a	с	с	b								