

The radius of a glass ball is 5 cm. There is an air bubble at 1 cm from the centre of the ball and refractive index of glass is 1.5. The position of image viewed from surface near the bubble is.

- a) 3.63 cm
- b) 4.63 cm
- c) 2.12 cm
- d) 5.12 cm

The radius of a glass ball is 5 cm. There is an air bubble at 1 cm from the centre of the ball and refractive index of glass is 1.5. The position of image viewed from surface near the bubble is.

- 3.63 cm
- b) 4.63 cm
- c) 2.12 cm
- d) 5.12 cm

Given:

$$R = 5 cm$$

$$u = 4 cm$$

$$n_2 = 1$$

$$n_1 = 1.5$$

$$\vee = ?$$

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$

$$\frac{1}{v} - \frac{1.5}{4} = \frac{-0.5}{5}$$

$$\frac{1}{v} = \frac{1.5}{4} - \frac{0.5}{5}$$

A small point object is placed at O, at a distance of 0.60 m in air from a convex spherical surface of refractive index 1.5. If the radius of the curvature is 25 cm, then what is the position of the image on the principal axis?

- (a) 4.5 m
- (b) 2.5 m
- (c) 1.5 m
- (d) 5.5 m

https://rkvisionacademy.com/

Ph: 8248951556